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The Effect of the Choice of the Loss Severity Distribution and the Parameter 
Estimation Method on Operational Risk Measurement 

– Analysis Using Sample Data – 
Atsutoshi Mori*, Tomonori Kimata*, and Tsuyoshi Nagafuji* 

(Abstract)  

A number of financial institutions in Japan and overseas employ the loss 
distribution approach as an operational risk measurement technique.  However, as 
yet, there is no standard practice.  There are wide variations, especially in the 
specifications of the models used, the assumed loss severity distribution and the 
parameter estimation methods. 

In this paper we introduce a series of processes for the measurement of operational 
risk: estimation of the loss severity distribution: estimation of the loss distribution 
and assessment of the results.  For that purpose, we present an example of 
operational risk quantification for a sample data set that has the characteristics 
summarized below. 

We use a sample data set extracted and processed from operational risk loss data 
for Japanese financial institutions. The sample data set is characterized as having 
‘stronger tail heaviness’ than data drawn from a lognormal distribution, which is 
often used as a loss severity distribution. 

By using this data set, we analyzed the effect on risk measurement of assumptions 
about the loss severity distributions and the effect of the parameter estimation 
methods used. 

We could not find any distribution or parameter estimation method that is generally 
best suited.  However, by analyzing the measurement results, we found that a more 
reasonable result could be obtained by: 1) estimating the loss severity distribution 
separately for low-severity and high-severity loss portions; and 2) selecting an 
appropriate parameter estimation method.   
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1. Introduction 
Many financial institutions in Japan and overseas are measuring their operational risk in 
order to manage it.1  They use quantification to better understand their operational risk 
profiles and to estimate the economic capital for operational risk.2 

Those financial institutions often face the following challenges in managing their 
operational risk through quantification: 

1) There are challenges associated with the absence of any well-established practical 
technique for operational risk measurement.3  For example, as different measurement 
techniques give significantly different quantification results, it is difficult to use them as 
objective standards for risk capital allocation and for day-to-day management.  It is 
necessary to share an understanding of the characteristics of several major measurement 
techniques and of the differences in the risk amounts calculated. 

2) There are challenges associated with the paucity of internal loss data.  In this regard, 
Japanese financial institutions face two challenges.  First, few institutions have collected 
enough internal operational loss data.  Second, it is very difficult for institutions to find 
an external operational risk database suitable for them. 

In this paper, we aim to develop a process for operational risk measurement that 
contributes to financial institutions’ efforts to measure their operational risk and 
enhances their operational risk management. 

To that end, we perform a comparative analysis of the characteristics, advantages, and 
disadvantages of various techniques used in many financial institutions in terms of their 
applicability to actual loss data and in terms of the validity of the measured amounts of 
risk.  We measure operational risk based on operational risk loss data collected from 
financial institutions in Japan by using various risk measurement techniques.4 

To understand this paper, readers should be aware of several issues relating to the 
sample data analyzed and the measurement techniques described.  First, the sample data 
used in this paper are restricted in the sense that data on higher severity losses with low 
frequency (low-frequency high-severity losses) may not have been collected.5  This is 
inevitable when measuring operational risk.  In addition, although in this paper we 
mainly use proven measurement techniques that have already been widely used by 
financial institutions (including the loss distribution approach),6 it is quite likely that 
other superior techniques are available.  In addition, because operational risk 

                                                 
1 The term operational risk, as used herein, is defined as the risk of loss resulting from inadequate or 
failed internal processes, people and systems or from external events, including legal risk (the risk that 
includes exposure to fines, penalties, or punitive damages resulting from supervisory actions, as well as 
private settlements) but excluding strategic risk (the risk of any loss suffered as a result of developing or 
implementing improper management strategy) and reputational risk (the risk to financial institutions of 
losses suffered as a result of a deterioration in creditworthiness due to the spread of rumors). 
2 See the Study Group for the Advancement of Operational Risk Management [2006]. 
3 See the Study Group for the Advancement of Operational Risk Management [2006]. 
4 The data record information about each loss resulting from an operational risk event is the amount of 
each loss and the date when it occurred. 
5 The characteristics of the data used herein are described in Section 4.   
6 A summary of loss distribution approach is provided in Section 3.  
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measurement techniques remain under development, other new and better techniques 
may be developed in future.  Moreover, the techniques preferred in this paper may not 
necessarily be appropriate for data that exhibit different operational risk characteristics. 

The paper is organized as follows:  The next section surveys examples of earlier studies 
of the measurement of operational risk.  In Section 3 we summarize the risk 
measurement framework.  In Section 4 we outline the characteristics of the sample data 
used in this paper.  In Section 5 we estimate the loss severity distribution by using 
various methods and compare the results obtained from those methods.  In Section 6, we 
review the aforementioned processes and summarize the practical insights gained about 
operational risk measurement and discuss outstanding issues.   

Matters relevant to the subject that may help to illuminate the discussion are provided as 
supplementary discussions.  In Appendix 1, we explain the relationship between 
confidence intervals in risk measurement and the range of the loss data that may affect 
the amount of risk.  In Appendix 2, we provide an explanation of technical terms and 
issues.   

 

2. Examples of Earlier Studies 
There are a number of analyses of operational risk measurement that use loss data.  To 
our knowledge, the only publicly available analysis performed in Japan is the one by the 
Mitsubishi Trust & Banking Corporation’s Operational Risk Study Group [2002].  There 
are a number of overseas studies, including those by de Fontnouvelle et al. [2003], de 
Fontnouvelle et al. [2004], Chapelle et al. [2004], Moscadelli [2004], and Dutta and 
Perry [2006].  Below, we summarize these papers from the viewpoint of the data and the 
measurement techniques used.   

2.1. Data Used for Measurement 
With the exception of the study by de Fontnouvelle et al. [2003], who used 
commercially available loss data, all the studies used internal loss data from a single or 
several financial institutions (data on actual losses collected from the financial 
institution(s)). 

Leaving aside the study by de Fontnouvelle et al. [2003], the Mitsubishi Trust & 
Banking Corporation’s Operational Risk Study Group [2002] and Chapelle et al. [2004] 
used data from a single financial institution, whereas Moscadelli [2004], de 
Fontnouvelle et al. [2004], and Dutta and Perry [2006] used loss data from a number of 
financial institutions (ranging from six to 89 banks). 

Of the authors that used internal loss data from more than one financial institution, de 
Fontnouvelle et al. [2004] and Dutta and Perry [2006] measured risk on an individual 
institution basis.  Moscadelli [2004] measured risk after having consolidated data from 
all financial institutions.   

For all studies, loss data were classified into several units of measurement based on the 



 5

event type, business line, or both.7  Then, operational risks by measurement unit were 
quantified. 

2.2. Techniques Used for Measurement 
In all studies that used the loss distribution approach to measure risk, it was found that 
measurement results depend significantly on the shape of severity distribution assumed.  
In all studies, extreme value theory (the Peak Over Threshold (POT) approach) was 
used to develop the quantification model,8 taking into account the tail heaviness of the 
operational risk loss distribution.  de Fontnouvelle et al. [2004], Chapelle et al. [2004], 
and Moscadelli [2004] favored the use of extreme value theory (the POT approach).  
However, Dutta and Perry [2006] criticized this method on two grounds.  First, the 
method yields an unreasonable capital estimate.  Second, the measured amounts of risk 
depend heavily on the thresholds used.  Thus, Dutta and Perry [2006] advocated the use 
of a distribution with four parameters, which allows for a greater degree of freedom.9 

With regard to the parameter estimation method used for the severity distribution, the 
Mitsubishi Trust & Banking Corporation’s Operational Risk Study Group [2002] 
demonstrated that the amount of risk depends significantly on the estimation method 
applied.  However, in other studies, only one technique (typically maximum likelihood 
estimation) was used.  Moreover, there was no comparison or evaluation of the 
calculated amounts of risk obtained on the basis of different parameter estimation 
methods.  

In this paper, first, we quantify risk by applying a single severity distribution to the full 
sample data set.  Second, we measure risk by applying a compound distribution to the 
sample data set.  As we explain later, use of the compound distribution involves 
estimating two different distributions, one above and one below a certain threshold, 
after which the distributions are consolidated.  In using the compound distribution, we 
applied the concept of extreme value theory (the POT approach), as used in existing 
studies, to low-frequency, high-severity loss data.   

 

3. Summary of the Loss Distribution Approach 
In this section, we describe some basic techniques and concepts used in this paper.  First, 
we introduce the framework for the loss distribution approach, which is used in this 
paper.  Second, we explain the loss distribution approach (parametric method) used for 
analysis, and then we explain the nonparametric method, which has been adopted as a 

                                                 
7 They all used the Basel II business lines (e.g., corporate finance, retail banking) and event types (e.g. 
internal fraud, clients, products & business practices). 
8 Extreme value theory is a theory that addresses distributions formed by extremely large values (the 
extreme value distribution).  The POT approach is a method used to estimate the extreme value 
distribution based on the proposition that “if the threshold is set at a sufficiently high level, the 
distribution of amounts in excess of the threshold can be approximated by a generalized Pareto 
distribution” (the Pickands–Balkema–de Haan theorem).  When the POT approach is used for the 
measurement of operational risk, the threshold for the loss data is set at an appropriate level, and it is 
assumed that the amount of data in excess of the threshold (i.e., the tail) forms a generalized Pareto 
distribution.  See Morimoto [2000] for further details.  
9 Introduced by Hoaglin et al. [1985] as a g–and-h distribution. 
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benchmark for evaluating the risk measurements based on the parametric method.  
Third, we discuss our justification and the conditions required for using the 
nonparametric method as a benchmark in this paper. 

 
3.1. Framework for Loss Distribution Approach   
In this paper, we define the amount of operational risk as value at risk (VaR),10 that is, 
the amount of risk based on a confidence interval of 100α%, as the 100α percentile 
point of the loss distribution, i.e., the distribution of the total amount of all the loss 
events that occur during the risk measurement period. 

The estimated loss distribution combines the loss frequency distribution (the probability 
distribution of the number of times a loss occurs during the risk measurement period) 
and the loss severity distribution (the probability distribution of the amount of loss 
incurred per occurrence). 

We assume a risk measurement period of one year and confidence intervals of 99% and 
99.9%.  We use Monte Carlo simulation (hereafter, simulation) to estimate the loss 
distribution.11 

The amount of risk is estimated by using the following process.   

1) Estimation of the Loss Frequency Distribution  

The distribution of N, the number of losses during the risk measurement period of 
one year (the loss frequency distribution), is estimated.  We assume that N follows 
a Poisson distribution, for which we assume parameters based on the annual 
average number of loss events.12 

2) Estimation of the Loss Severity Distribution  

Having estimated the distribution, we estimate ( )NiX i ,...,2,1, = , which 
represents the amount of loss per occurrence of the loss event (the severity 
distribution).  Broadly, the methods used to estimate severity distributions can be 
classified into two types: one is parametric methods, in which a particular severity 
distribution (e.g., lognormal or Weibull) is assumed, and the other is 
nonparametric methods, in which no particular distribution is assumed.  We 
assume that the severity of each loss, represented by iX , is independent and 
identically distributed (i.i.d.).  We also assume that the number of loss events and 
the severity of each loss, represented by N and iX  respectively, are independent 
of each other.   

                                                 
10 We use the VaR, which is most largely used in practice for operational risk quantification. 
11 Other methods of calculating the total loss distribution without using a simulation include a method 
based on Panjer’s recurrence equation and the fast Fourier transformation, which are well known.  See 
Klugman et al. [2004] for details.   

12 The probability function of the Poisson distribution is 
!

)(
x

exf
xλλ−

= .  The expected value is λ , 

which is estimated by equating this with the annual average number of loss events.  



 7

3) Calculation of the Loss Amount 

Using the loss frequency distribution estimated in 1) above, the number of annual 
losses ( N ) is derived.  Then, the severity of losses for N  occurrences, 
represented by ),,,( 21 NXXX L , is derived from the severity distribution 
estimated in 2) above.  Then, the total amount of loss for the risk measurement 
period of one year, represented by S , is calculated as follows:   

∑
=

=
N

i
iXS

1
 

4) Calculation of the VaR by Simulation (from a Trial of K  Times)  

Step 3) is repeated K  times to calculate the severity for K  trials, i.e.,  
)()2()1( ,...,, KSSS , which are arranged in ascending order as )( 21 Ki SSSS ≤≤≤ L .  

The amount of risk is defined as:  

,

,...,2,1,1,)(

]1[ +=

=<≤
−

=

K

i

S

Ki
K
i

K
iSVaR

α

αα
 

where [x] represents the largest integer that is smaller than x. 

For example, if K  = 100,000 and α  = 0.99, the amount of risk is 
99001)99.0( SVaR = ; i.e., the 1000th severest in terms of the total amount of loss.   

 
3.2. Loss Severity Distribution Estimation Methods (Parametric and 
Nonparametric) 

3.2.1. Parametric Methods  

The parametric method assumes a particular severity distribution.  In this paper, the 
distributions assumed are the lognormal, the Weibull, and a generalized Pareto 
distribution.13  The estimation methods used are the Method of Moments (MM) (with a 
probability-weighted method of moments (PWM) being used for the generalized Pareto 
distribution), Maximum Likelihood Estimation (MLE), and Ordinary Least Squares 
(OLS).14 

3.2.2. Nonparametric Methods 
Unlike the parametric method, the nonparametric method derives a loss amount at 
random from loss data to perform a simulation without assuming any particular severity 
distribution.  

                                                 
13  In general, distributions that can capture tail heaviness are chosen for severity distributions in 
operational risk quantification, as tail heaviness is a characteristic of operational risk.  There are other 
types of distribution that can be used for loss amounts, such as the gamma distribution and the 
generalized extreme value distribution.   
14 See (1) and (2) in [Appendix 2] for the characteristics and shapes of distributions used for loss severity 
and the concepts and characteristics of the parameter estimation methods in this paper.   
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Given L  items of loss data, in this paper, we arrange the data items in ascending order 
of loss amounts as )( 21 Li XXXX ≤≤≤ L .  We then define the following function for 
X  that yields a particular loss (in which p  represents a probability; 10 << p ): 

]1[

,...,2,1,1,)(

+=

=<≤
−

=

Lp

i

X

Li
L
ip

L
iXpX

 

 

3.3. The Nonparametric Method as a Benchmark 
We treat the estimated risk based on the nonparametric method, which assumes no 
particular loss severity distribution, as a benchmark for the risk estimated from using the 
parametric method. 

Because of the small number of data points in the sample data set used, this benchmark 
does not necessarily represent a conservative amount of risk.15 

 

4. Data  
We use the observations corresponding to the 774 largest loss amounts, obtained from 
operational risk loss data on Japanese financial institutions over a 10-year period from 
January 1994 to December 2003.  Hence, from the viewpoint of a single financial 
institution, the sample data used can be considered as a loss database that comprises loss 
data for other banks (external loss data) in addition to its own internal loss data.   

To determine the characteristics of the sample data set used for operational risk 
measurement, we evaluate the ‘tail heaviness’ of the sample distribution.16  As shown in 
[Table 1], the distribution of the sample data exhibits heavier tails than those of the 
lognormal distribution.  

To evaluate tail heaviness, we compare the percentiles of the two distributions for the 
same loss amount: the distribution of the sample data and the lognormal distribution 
estimated from the sample data; the latter is often used for severity distributions.  The 
comparisons are based on various loss amounts. 

We adopt the following process to evaluate tail heaviness. 

1) The sample data were arranged in ascending order of loss amount as 
)( 21 Ni XXXX ≤≤≤ L  to calculate the average logarithm value (μ ) and the standard 

deviation (σ ), which were used to normalize the data as follows: 

σ
μ−

= i
i

X
Y

log
 

                                                 
15 These issues are discussed in Appendix1. 
16 In this paper, for two distribution functions )(xF  and )(xG , if there exist some amount represented 

by 0x  such that for any 0xx > , )(1)(1 xGxF −>− , i.e., )()( xGxF < , then we define the 

distribution represented by )(xF  has a heavier tail than does the distribution represented by )(xG . 
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2) For the distribution function for the normalized sample values iY , each iY is 
defined as follows:  

Ni
N

iYS iN ,,2,1,5.0)( L=
−

=  

3) The standard normal distribution function is denoted by )(xF . 

4) The values of the distribution functions defined in 2) and 3) above are compared to 
identify the tail heaviness of the sample data.  In this context, we set 

)8,,2,1(,5.0 L== nnxn  and calculated )( n
N YS  by using )( nxF  for each point, 

where  nY  is the smallest value of iY  that satisfies in Yx ≤  (i.e., iY  is the minimum 

value that is at least as large as nx ).  In this context, we assume that )()( n
NnN YSxS ≤  

represents an appropriate definition of )( nN xS , because the distribution function is 
monotonically nondecreasing.   

These calculations are summarized in [Table 1]. The sample data have heavier tails than 
those of the lognormal distribution, that is, for all loss amounts, if 5.1≥nx , the 
following relationship holds:  

)()())(( n
n

NnN xFYSxS <≤  

 

[Table 1] Comparative Verification of the Tail Heaviness of the Severity 
Distribution 

 

 

 

 

 

 

 

 

 

In what follows, we evaluate the validity of each method applied to the sample data, 
which have the tail heaviness shown in this section, both on the basis of goodness of fit 
for the tails of the distribution and on the basis of the amount of risk. 

n  
nx  )( n

N YS  (A) )( nxF  (B) Difference (B-A) 

1 0.5 0.76421 0.69146 -0.07275 
2 1 0.84690 0.84134 -0.00555 
3 1.5 0.90504 0.93319 0.02815 
4 2 0.94767 0.97725 0.02958 
5 2.5 0.97222 0.99379 0.02157 
6 3 0.98385 0.99865 0.01480 
7 3.5 0.99160 0.99977 0.00817 
8 4 0.99677 0.99997 0.00320 
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5. Measurement Results and Analysis  
In this section, we evaluate the results of measuring operational risk based on the 
sample data set discussed in Section 4 by using the techniques described in Section 3.  

First, in subsection 5.1, we calculate and analyze the amount of risk by assuming a 
single severity distribution.  Then, in subsection 5.2, we calculate and analyze the 
amount of risk by assuming a compound severity distribution.  This is done to improve 
the goodness of fit in part of the distribution, which tends to be poor when using a 
single distribution.   

In both cases, we use the quantification result of the nonparametric method as a 
benchmark.  In addition, we use a PP plot or a QQ plot, as applicable, to assess the 
goodness of fit of the assumed distribution of the loss data.17, 18 

 
5.1. Methods that Assume a Single Severity Distribution  

5.1.1. Quantification Method  

To quantify the amount of risk, we applied three different single severity distributions to 
the whole data set and used three parameter estimation methods.  The estimated 
parameters are shown in [Table 2].  

The distributions used were the lognormal, the Weibull, and a generalized Pareto 
distribution.  For parameter estimation, we used MLE, OLS, and MM (with PWM being 
used for the generalized Pareto distribution).19   

 

                                                 
17 See [Appendix 2] 3 for an explanation of PP and QQ plots.   
18 We rely on a visual technique, such as inspecting the PP or the QQ plot to assess the fit of the tail, 
which has a great impact on the amount of risk. The widely known statistical techniques (such as the 
Kolmogorov–Smirnov test or the Anderson–Darling test) cannot fully assess the fitness in the tail of a 
very heavy-tailed dataset.  See [Appendix 2] 4 for details. 
19 See [Appendix 2] 1 and 2 for the characteristics and shapes of distributions used for loss severity and 
the concepts and characteristics of the parameter estimation methods in this paper.   
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[Table 2] Results of Parameter Estimation  
When a Single Severity Distribution is Assumed 

Lognormal Distribution 
 

MM  MLE OLS 
μ  σ  μ  σ  μ  σ  Results of 

Parameter 
Estimation  

2.17 2.47 1.48 1.61 1.48 1.47 

Weibull Distribution  
 

MM MLE OLS 
θ  p  θ  p  θ  p  Results of 

Parameter 
Estimation 0.70 0.18 10.85 0.43 10.90 0.63 

Generalized Pareto Distribution  
 

PWM  MLE OLS 
β  ξ  β  ξ  β  ξ  Results of 

Parameter 
Estimation 4.57 0.98 3.44 1.10 3.84 0.60 

 

5.1.2. Results of Risk Measurement 
The amounts of risk at confidence intervals of 99% and 99.9% calculated using the 
estimated parametric severity distributions and the nonparametric severity distribution 
are shown in [Table 3].   

[Table 3] shows that the estimated amount of risk depends greatly on the distribution 
assumed and the parameter estimation method chosen.  When the lognormal or Weibull 
distribution is assumed, the estimated amount of risk is high for MM.  In contrast, under 
MLE and OLS, the amount of risk is small.  The ratio between the amounts of risks 
estimated under MM and under OLS at 99% confidence interval is 42:1 ([Table 3] (A)) 
for the lognormal and 65:1 ([Table 3] (B)) for the Weibull.  At 99.9% confidence 
interval, the corresponding ratios are 99:1 ([Table 3] (C)) and 190:1 ([Table 3] (D)).  
When the generalized Pareto distribution is assumed, the amount of risk obtained under 
MLE is high and the amount of risk under OLS is low.  At confidence intervals of 99% 
and 99.9%, the ratios between the estimates under MLE and OLS are 30:1 ([Table 3] 
(E)) and 125:1 ([Table 3] (F)), respectively. 
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[Table 3] Amount of Risk When a Single Severity Distribution is Assumed 

Confidence Interval  99% )(α 99.9% )(β  )/()( αβ

MM 
74.9

<1>(0.75)
272.6 

<3>(1.4) 
3.6

MLE 
2.5

(0.025)
4.4 

(0.023) 
1.8Lognormal 

Distribution 

OLS 
1.8

<9>(0.018)
2.8 

<9>(0.015) 
1.6

MM 
105.8

<2>.(1.1)
351.7 

<4>(1.9) 
3.3

MLE 
3.9

(0.039)
5.0 

(0.026) 
1.3Weibull 

Distribution 

OLS 
1.6

<9>(0.016)
1.8 

<9>(0.010) 
1.1

PWM 
26.8

<5>(0.268)
255.4 

<7>(1.348) 
9.5

MLE 
54.1

<6>(0.541)
686.1 

<8>(3.622) 
12.7

Generalized 
Pareto 
Distribution 

OLS 
1.8

<9>(0.018)
5.5 

<9>(0.029) 
3.0

Nonparametric Method 
100.0
(1.00)

189.4 
(1.00) 

1.9

Notes: 

1) The amount of risk is the relative value indexed to the value based on the nonparametric method (at 
99% confidence), which represents 100. 

2) The figures in brackets represent the scaling factors for the amounts of risk against the benchmark at 
each confidence interval.  

3) The number of trials is 100,000. 

 

5.1.3. Assessment and Discussion of Quantification Results 
Next, we benchmarked the quantification results based on the parametric method 
against the results based on the nonparametric method.  When the lognormal or Weibull 
distribution is assumed, if MM is used for parameter estimation, the amount of risk is at 
least as high as the benchmarks.  At the 99% confidence interval, the ratios of the 
parametrically estimated amount of risk to the benchmark (nonparametorically 
estimated amount) are 0.75:1 ([Table 3] <1> ) and 1.1:1 ([Table 3] <2>) for the 
lognormal and Weibull distributions, respectively.  At the 99.9% confidence interval, the 
corresponding figures are 1.4:1 ([Table 3] <3>) and 1.9:1 ([Table 3] <4>).  

(C) 99:1 

(D) 190 :1 

(F) 125 :1 

(E) 30 :1
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When MLE or OLS is used, in all cases, the parametrically estimated amount of risk is 
less than 5% of the benchmark, thus falling well below it.   

When the generalized Pareto distribution is assumed, at the 99% confidence interval, for 
PWM and MLE, the ratios are 0.27:1 ([Table 3] <5>) and 0.54:1 ([Table 3] <6>), 
respectively, and thus fall below the benchmark.  At the 99.9% confidence interval, the 
corresponding ratios are 1.35:1 ([Table 3] <7>) and 3.62:1 ([Table 3] <8>), and thus 
exceed the benchmark.  By contrast, when OLS is used, at both confidence invervals, 
the amount of risk is less than 3% of the benchmark ([Table 3] <9>). 

The differences in the estimated risk amounts arising because of the distribution 
assumed or the parameter estimation method adopted are interpreted below.  

1) Distribution Assumed  

The variations between the results based on different distributions are caused by 
differences in the tail heaviness of the distributions.  Among the severity distributions 
we used, it is generally known that the Weibull distribution is the least tail-heavy 
distribution, followed by the lognormal distribution, and then by the generalized Pareto 
distribution.20 

2) Parameter Estimation Method 

In our analysis, there are quite significant variations in the results because of differences 
in the parameter estimation method used.  This means that, in our analysis, there is a 
substantial difference between the assumed distribution and the data.  Unless there is a 
large deviation, a parametric distribution yields a similar approximation irrespective of 
the parameter estimation method used.  

The PP and QQ plots confirm this.  Using the PP plot for the lognormal severity 
distribution as an example, when MLE and OLS are used, although there is a reasonable 
goodness of fit in the central part (the body) of the distribution, on the right side of the 
distribution (in the tail), the loss amount declines, which leads to a difference between 
the estimates and the data.  By contrast, if MM is used, although there is a large 
deviation in the data in the body, the deviation in the tail is smaller.  In addition, 
according to the QQ plot, the deviation from the data, particularly in the tail, is larger 
under MLE and OLS than under MM (see [Table 4]). 

  

                                                 
20 It is generally known that in terms of the degree of tail heaviness they are ranked in the following 
order: the generalized Pareto distribution, the lognormal distribution, the Weibull distribution (if 1<p ), 
the gamma distribution, and the Weibull distribution (if 1>p ).  Of these, the generalized Pareto 
distribution has the heaviest tail; i.e., between each distribution function, 

)(),(),(),(),( 1,1, xFxFxFxFxF pWBGAMpWBLNGPD ><  and for x  of a sufficiently large value, the 
equality  

)()()()()( 1,1, xFxFxFxFxF pWBGAMpWBLNGPD >< <<<<  
is true.  In all cases, the shape parameter p  of the Weibull distribution used to measure risk in this paper 
(see [Appendix 2] (1) for the parameter of the Weibull distribution) is less than unity.   
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The PP / QQ plots (*) are shown for three types of parameter estimation method 
assuming a log-normal severity distribution. 

＜PP Plot＞    ＜QQ Plot＞ 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*In the QQ Plot both X - and Y  axes standardize and represent the average and standard 
deviation as 0 and 1, respectively, for the estimates and the log values of the data based on the 
assumed parameters (as with any QQ plot hereinafter).   

[Figure 4] Fitness Assessment Using PP / QQ Plot 
 Assuming a Single Distribution  

A QQ plot better shows the 
deviation range in the tail part: 
The method of moment gives a 
better fit than the maximum 
likelihood method or the least 
square method. 

Severity is 

underestimated 

A PP plot better shows the 
deviation range in the body: 
The maximum likelihood 
method or the least square 
method gives a better fit than 
the method of moment. 

The fitness in the 
tail is confirmed by 
a QQ plot (shown 
right). 

・  Real data
―― Estimates

Severity is 

conservatively 

estimated 
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As explained above, when it is difficult to fit a single parametric distribution to the 
whole data, the amount of quantified risk depends greatly on the parameter estimation 
method used, which determines which part of the data the estimated distribution fits 
well. 

More precisely, when MM is used, the quantified risk amounts are at least as high as the 
benchmarks, which are the estimated risk amounts based on the nonparametric method.  
In this case, these estimates fit well in the tail, whereas there are large deviations 
between the two distributions in the body. 

In contrast, when MLE and OLS are used, the quantified risk amounts are below the 
benchmarks.  The two distributions fit well in the body, but underestimate the severity 
of loss in the tail.   

The calculations above suggest that the goodness of fit in the tail of the distribution has 
a particularly marked effect on the estimated amount of risk.  Therefore, to estimate 
the amount of risk, it is important to check goodness of fit to the data in the tail of the 
distribution before assuming the distribution.  Then, one can choose a parameter 
estimation technique.   

A parameter estimation technique that fits the tail well yields a better estimate of the 
amount of risk.  This is because the amount of risk calculated is greatly affected by the 
tail.  When we used a lognormal distribution for the sample data, MM seems to be a 
more appropriate method for parameter estimation than MLE or OLS.21 

When there is a large deviation between the assumed distribution and the distribution of 
the data, even if the amount of risk calculated at a certain confidence interval is the 
same as at the benchmark, the amount of risk calculated at another confidence interval 
may not necessarily match the benchmark.  For example, the generalized Pareto 
distribution, when estimated by using the PWM method, yields a measure of risk that is 
well below the benchmark at the 99% confidence interval, but yields a risk amount that 
is well above the benchmark at the 99.9% confidence interval. 

It is difficult to find a single severity distribution that fits well throughout the range of 
the sample data from the body to the tail.  That the estimated amount of risk depends 
greatly on the parameter estimation technique used, whatever distribution is assumed, 
confirms this.   

For this reason, to improve goodness of fit in the tail, in the next subsection, we conduct 
an analysis based on the compound distribution.   

 

                                                 
21 However, such a relationship between the parameter estimation techniques and the risk quantification 
results is not always stable, and depends on the distribution conditions of the data. For example, 
according to the Mitsubishi Trust & Banking Corporation’s Operational Risk Study Group [2002], when 
the amount of risk calculated by using MLE exceeds the amount of risk calculated by using MM, the 
magnitude of the relationship between the parameter estimation techniques and the quantification results 
is reversed.   
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5.2. Methods that Assume a Compound Severity Distribution  

5.2.1. Risk Measurement Method  
To avoid the problems in fitting a single parametric distribution to the whole data, we 
use a compound severity distribution.  This involves dividing the severity distribution 
into the body and the tail and assuming a different distribution for each part.  These 
distributions are then combined into a single severity distribution (termed a compound 
distribution).  A threshold is set for the loss amount,22 and different distributions (one 
for the body and one for the tail) are estimated for values above and below this 
threshold value.  These distributions are then consolidated into a single severity 
distribution (the compound distribution) and a Monte Carlo simulation is performed.  

Details of this process are given below:  

1) Setting the Thresholds  

The minimum loss amount that exceeds the percentile point p  when the loss data are 
arranged in ascending order is used as the threshold )( pT .  Losses below and above 
the threshold are referred to as low-severity and high-severity losses, respectively.23  
The loss data are denoted by ),...,2,1(, LiLi = , and the threshold is defined as follows:  

 x.exceedingnot number  integrallargest   therepresents [x],

,...,2,1,1,)(

]1[ +=

=<≤
−

=

pL

i

L
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L
ip
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2) Estimation of the Loss Frequency Distribution  

As for the case of a single severity distribution, the loss frequency distribution is 
estimated.  We assume a common loss frequency distribution for the body and the tail.  
This means that the total number of high-frequency low-severity and low-frequency 
high-severity losses during the year is represented by N , which is assumed to follow a 
Poisson distribution.   

3) Estimation of the Severity Distribution  

To estimate the distribution for the amount of loss per occurrence of a loss event 
( )NiX i ,...,2,1, =  (the loss severity distribution), the following process is adopted: 

(i) Estimation of the Severity Distribution in the Body 

The severity distribution for the body (for which the distribution function is 
)(xFb ) is estimated by using the full data set.24 

                                                 
22 The threshold may be set at a certain amount of money as well as at a certain percentile point. In this 
paper, we use the latter approach. 
23 Three threshold levels are assumed: 90% ( 9.0=p ), 95% ( 95.0=p ), and 99% ( 99.0=p ). 
24 We chose the lognormal distribution for the severity distribution in the body and MM for the parameter 
estimation technique. We numerically verified that, regardless of the point at which the threshold was set, 
neither the assumption about the distribution nor the chosen parameter estimation technique had any 
significant impact on the risk quantification results. 
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(ii) Estimation of the Severity Distribution in the Tail   

The severity distribution in the tail (for which the distribution function is )(xFt ) 
is estimated by using the observed loss amounts that exceed the threshold.  Three 
distributions, the lognormal, the Weibull, and a generalized Pareto distribution, are 
used for the tail, as was the case when a single distribution was used (see previous 
subsection).  For parameter estimation for the tail, MLE, OLS, and MM (PWM 
for the generalized Pareto distribution) are used.   

(iii) Compounding Distributions  

The distributions estimated in (i) and (ii) are combined at the threshold to produce 
a single compound distribution (referred to as )(xF ) after making adjustments to 
eliminate overlapping and gaps.   

The percentile point of the threshold )( pT  of the distribution function for the body is 
represented by α , and the distribution functions for α=))(( pTFb  and )(xF  are 
defined as follows:  

⎪
⎩
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<−−+
=
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This means that, for the distribution in the body, the value of the distribution function is 
scaled so that the area of the density function in the part below the threshold is equal to 

%100 p .  For the distribution in the tail, the value of the distribution function is scaled 
so that the area of the density function in the part above the threshold is equal to 

)%1(100 p− .   

This method embraces the concept of the extreme value method (POT approach),25 in 
that two different distributions are combined to form a single distribution, but it does 
not strictly apply this method.  This is because the generalized Pareto distribution did 
not fit well in the high-severity loss portion above any threshold value that we tried at 
90%, 95%, or 99% confidence.  For this reason, we did not apply the 
Pickands–Balkema–de Haan Theorem, which states that “the distribution of the 
observations in excess of a certain high threshold can be approximated by a generalized 
Pareto distribution.”26 

Instead, we first considered different threshold values without insisting on a statistical 
justification, and second, used a distribution for the tail other than the generalized 

                                                 
25 See footnote 8.   
26 To apply extreme value theory (POT approach) strictly, it is necessary to verify whether the data above 
the threshold, i.e. the data that rank in the top )1(100 p−  % if the threshold is set at the p100 % point 
from the bottom of the data, take a generalized Pareto distribution.  Then, if such a condition is satisfied, 
first, a generalized Pareto distribution is assumed for those data that rank in the top )1(100 p− %, and 
second, another distribution is used for the remaining data (below the p100 % from the bottom).  The 
parameter of each distribution is then estimated, and these are combined to form a single severity 
distribution, based on which the risk is measured. 
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Pareto distribution.   

It is worth assuming a different distribution for different loss amounts to estimate the 
parameters for each distribution as a practical experiment.  This is because there are 
different causes of high-frequency low-severity losses and low-frequency high-severity 
losses.27 

The parameter estimation results for the tail obtained from a compound distribution are 
shown in [Table 5].28 

 
[Table 5] Results of Parameter Estimation in the Tail When a Compound Severity 

Distribution is Assumed 

Lognormal Distribution 
Tail 

MM MLE OLS 
Threshold μ  σ  μ  σ  μ  σ  

90% 5.51 1.98 4.41 1.96 4.41 2.02 
95% 6.49 1.81 5.21 2.19 5.21 2.34 
99% 8.66 1.38 7.72 1.77 7.72 2.19 

Weibull Distribution 
Tail 

MM MLE OLS 
Threshold θ  p  θ  p  θ  p  

90% 106.27 0.267 231.07 0.426 218.11 0.571 
95% 418.59 0.309 560.57 0.419 543.01 0.501 
99% 6864.16 0.478 6018.15 0.477 7020.14 0.420 

Generalized Pareto Distribution 
Tail 

PWM  MLE OLS 

Threshold β  ξ  β  ξ  β  ξ  

90% 130.80 0.925 44.16 2.40 62.91 1.36 
95% 380.68 0.888 74.69 2.93 151.09 1.54 
99% 5334.73 0.643 567.35 2.99 1355.95 1.30 

 

5.2.2. Results of Risk Measurement  
The risk amounts quantified at confidence intervals of 99% and 99.9% when a 
compound distribution is used are shown in [Table 6].  As for the case of a single 
distribution, the estimated amount of risk based on the nonparametric method is used as 
a benchmark and is shown in the table.  We do not report the results obtained from a 
generalized Pareto distribution under MLE because the estimates were implausibly large.  

                                                 
27 See the Study Group for the Advancement of Operational Risk Management [2006]. 
28 In all cases, we used the values calculated based on using the lognormal distribution and MM 
( 47.2,17.2 == σμ ) for the parameters in the body of the distribution.   
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For this distribution, at the 99% and 99.9% confidence interval, the maximum 
likelihood estimates were between 1,000 and 10,000 times larger than those obtained 
when using PWM.  This is because the estimate of the shape parameter for the 
generalized Pareto distribution exceeded unity (which implies an extremely heavy 
tail).29 

                                                 
29 See [Appendix 2] 1.  for the parameters and characteristics of a generalized Pareto distribution. 
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(Conditions) 
・Data: the high-severity loss portion of the sample data (at or in excess of the 90%, 95%, 
and 99% points) is assumed to be the tail.   
・The tail (distribution): The lognormal distribution, the Weibull distribution, and the 
generalized Pareto distribution. 
(The parameter estimation technique): MM (PWM for the generalized Pareto 
distribution), MLE, OLS. 
・The body (distribution): the lognormal distribution.  
(The parameter estimation technique): MM  
・Number of simulations: 100,000  
 
 
 

  Estimated at a confidence interval of 99% Estimated at a confidence interval of 99.9% 

Threshold Threshold Distribut
ion in the 

tail  

Parameter 
estimation 
technique  90% 95% 99% 

Single 
distributi

on  
90% 95% 99% 

Single 
distributi

on 

MM 93.1 100.9 120.4 74.9 297.7 316.1 314.0 272.6

MLE 29.7 76.9 107.9 2.5 92.0 300.2 395.0 4.4

Lognorm
al 
Distribut
ion  OLS 35.5 115.9 262.2 1.8 114.8 527.0 1,412.2 2.8

MM 120.7 126.2 140.1 105.8 346.2 328.7 318.9 351.7

MLE 22.8 41.3 124.1 3.9 40.2 80.7 284.9 5.0

Weibull 
Distribut
ion 

OLS 9.1 22.2 213.1 1.6 13.1 37.7 563.1 1.8

PWM 61.1 77.1 120.0 26.8 453.4 556.0 505.6 255.4

MLE n.a. n.a. n.a. 54.1 n.a. n.a. n.a. 686.1

Generali
zed 
Pareto 
Distribut
ion 

OLS 345.4 782.5 257.6 1.8 7,513.0 22,953.3 4,396.5 5.5

Nonparametric Method 100.0 189.4

 
・Amount of Risk (single distribution; the relative value indexed to the value based on the nonparametric method  
(at 99% confidence), which represents 100) 

Boundary point 90% 95% 99%     

Value of the boundary point  0.04 0.10 0.85     

Number of data pieces in the body 696 735 766     

Number of data pieces in the tail 78 39 8     

 

 

Compared with the single distribution analyzed in the previous subsection, a compound 
distribution yielded smaller variations in the amount of risk depending on the 

The difference in the 
volume of risk is small 

[Table 6] Amount of Risk Assuming a Compound Loss Amount Distribution 

At the confidence interval of 99%: the 
same risk amount as MM.  
At the confidence interval of 99.9% 
MM produced a risk amount equal to 
approx. 1.5 times the risk amount 
produced by the nonparametric 
method.  



 21

distribution assumed and on the parameter estimation technique chosen, regardless of 
the threshold specified.  Above all, the effect on the amount of risk calculated of the 
distribution decreased more under MM than under any other parameter estimation 
method. 

The higher the threshold is, the higher the amount of risk tends to be.  This may be 
because the higher the threshold is, the fewer data points there are above the threshold, 
and consequently, the larger is the impact on the estimates of the high-severity loss data 
points at the top of the distribution.   

When MM is used for parameter estimation, the effect of the threshold on the estimated 
amount of risk decreases.  For example, when a lognormal distribution or a Weibull 
distribution was assumed, MM yielded similar estimated amounts of risk for different 
thresholds, whereas differences were greater under MLE and OLS.  In addition, for the 
generalized Pareto distribution, PWM yielded similar estimated amounts of risk for 
different thresholds.  Under OLS, differences were quite large. 

 

5.2.3. Assessment and Discussion of the Results  

Using a compound distribution to estimate risk is better than using a single distribution 
because the choice of distribution and estimation technique has less effect on the 
quantified amount of risk.   

When a lognormal or a Weibull distribution is used for the tail and when MM is used for 
parameter estimation, the estimated amount of risk is comparable to the benchmark: at 
the 99% confidence interval, amounts are similar to the benchmark, and at the 99.9% 
confidence interval, they are approximately 1.5 times the benchmark.   

In contrast, caution should be exercised when using a generalized Pareto distribution. 
Using MLE to estimate a generalized Pareto distribution yielded implausibly large 
estimated amounts of risk of more than 10,000 times the benchmark (based on the 
nonparametric method).  As when using a single distribution, a generalized Pareto 
distribution yields very different results under different parameter estimation techniques, 
even when using a compound distribution.   

As we did for the single distribution, for the compound distribution and the parameter 
estimation method chosen, we use PP and QQ plots, with the threshold at the 90% point, 
for the lognormal distribution as an example (see [Figure 7] to [Figure 9]). 
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It is demonstrated that the range of deviation in the tail part (which has a greater effect 
on the result) is smaller when the moment method is used than in cases where the 
maximum likelihood method or the least square method is used. 

＜PP Plot＞     ＜QQ Plot＞ 
(including the body for all intervals)   (the tail only*) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*For the data in excess of the threshold, deviation between the “estimates on the distribution 
estimated based on the amount in excess of the threshold” and the “amount of the data over the 
threshold” (also for the QQ plot of the compound distribution shown in Table 9).   

[Figure 7] Fitness Assessment by PP / QQ Plot When a Compound 
Distribution is Assumed (Threshold Set at 90% point)  

Deviation 
range is large 

Deviation 
range is large 

Deviation 
range is small 

・ Real Data 
―― Estimates
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If the scope is limited to the portion in excess of 90%, a compound distribution improves the 
fitness, even when a parameter estimation technique is used, compared to cases where a single 
distribution is used. 

 

Single distribution                    Compound distribution  
 (assumes a log-normal distribution)               (assumes a log-normal distribution for 

both the body and the tail)   

 

 

 

[Figure 8] Comparison of Fitness by PP Plot in the Tail (points equal to or over 90%)

・  Real Data 
―― Estimates 
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Additional comparison is made for the degree of fitness by using a QQ plot for cases where a 
compound distribution is applied.  It is clearly shown that the fitness of the right hand side of 
distributions varies depending on the differences in the parameter estimation methods.   
 

Single distribution            Compound distribution (the tail only) 
(all intervals including the body)  
 

  

 

 

 

[Figure 9] Comparison of Fitness by QQ Plot in the Tail (points equal to or over 90%) 
 

・  Real Data
―― Estimates
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1) Application of the Compound Distribution 

The range above and including the 90% point suggests that, regardless of the parameter 
estimation technique used, the estimated compound distribution fits better than does a 
single distribution.  That different parameter estimation techniques produce less 
variation in the quantification results confirms this. 

2) Parameter Estimation Technique  

Differences between estimated amounts of risk for different distributions are smaller 
under MM than under MLE and OLS.  There are two possible reasons for this.  First, 
as is the case when a single distribution is used, when a compound distribution is used, 
the difference between the distribution in the high-severity loss portion above the 
threshold and the distribution of the data has a smaller range when MM is used than 
when MLE or OLS is used.  Second, the amount of risk is disproportionately affected 
by the tail of the distribution, relative to the overall distribution. 

In addition, because the range of the deviation between these distributions depends on 
the distribution assumed, the effect is apparently reflected in the differences in the 
estimated amounts of risk. 

As far as our sample data are concerned, to estimate the severity distribution, it is better 
to use MM, which fits better in the tail, than to use MLE or OLS, both of which fit 
better in the body.   

 

5.2.4. Issues to be Considered 
We discuss two important issues in the context of using a compound distribution: 1) the 
choice of threshold; and 2) caveats when using a generalized Pareto distribution. 

1) Choosing a Threshold  

For the calculation method used in this paper, we could not find an effective way of 
choosing a threshold for a compound distribution based on statistical criteria.  Hence, 
we discuss an alternative method. 

One option is to choose a threshold based on the stability of risk quantification.  This 
involves minimizing the impact on risk quantification of changes to the data arising 
from future loss observations.  In other words, it is reasonable to choose the percentile 
point for the threshold that minimizes the changes in quantified risk arising as new 
observations on future losses are added to the data set.  It should be noted that the 
value of threshold is sensitive to the addition or deletion of data points, even if the 
percentile point for the threshold remains constant. 

Thus, we tried to choose the percentile point for the threshold that produced relatively 
small changes in the results when the threshold was changed slightly.  

We used this approach because the sample period, and hence the number of data points, 
was not sufficient.  Had this not been the case, it would have been possible to change 
the sample period and determine an appropriate threshold by assessing changes in the 
amount of risk. 
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More precisely, the method we used involved the following.  First, we chose a 
parameter estimation technique that did not produce significant changes in the amount 
of risk when the threshold was changed.  Second, the different risk amounts estimated 
under different thresholds were used to identify the range of threshold values over 
which the estimated amounts of risk were relatively invariant.  Third, the threshold 
was chosen from this range.   

As an example, we applied the method in the case shown in [Table 10]. In this example, 
we chose thresholds from a finer scale (90%, 91%, ..., 99%) than those used elsewhere 
in the paper (90%, 95%, and 99%).  Then, we chose thresholds from the range over 
which differences in the amounts of risk were minimized as much as possible.30 As a 
result, the 92% point (at the 99% confidence interval) and the 93% point (at 99.9% 
confidence interval) were chosen as thresholds.  

                                                 
30 If the amount of risk at a threshold of p % is pC , then the difference is defined as:  

( )pppp CCCC −+− +− 112
1

. 
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 [Table 10] Amount of Risk When a Threshold is Set in Stages 

Confidence Interval  
99.0% 99.9% Threshold 

(%)  Amount 
of Risk Difference

Amount 
of Risk Difference 

90 93.1   297.7   
91 94.5 1.2 307.3 9.1 
92 95.5 1.1 298.8 5.8 
93 96.7 1.4 295.6 2.0 
94 98.4 2.1 296.5 10.2 
95 100.9 2.7 316.1 10.3 
96 103.8 2.3 317.1 7.3 
97 105.5 3.2 303.6 18.5 
98 110.2 7.5 327.1 18.3 
99 120.4   314.0   

Notes: 

1) The amount of risk is the relative value indexed to the value based on the nonparametric method (at 
99% confidence), which represents 100. 

2) Distribution in the tail is the lognormal.  

3) Parameter estimation technique is MM. 

4) Threshold: set in increments of 1% within the range 90% to 99%. 

5) The number of simulations performed is 100,000. 

 

2) Issues to Consider when Using a Generalized Pareto Distribution 

If a generalized Pareto distribution is used for the severity distribution, under MLE and 
OLS, the estimated amounts of risk may be implausibly large depending on the 
distribution of the data.  For this reason, even if a generalized Pareto distribution is 
appropriate on theoretical grounds, 31  and on the basis of the suitability of the 
distribution, implausibly high estimates of risk may be obtained depending on changes 
in the data.

                                                 
31 For example, this is the case when the amount above the threshold, for the portion of data that exceeds 
the threshold, takes a generalized Pareto distribution when a statistical technique such as the average 
excess plot is used (see Morimoto [2000]). 
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6. Conclusion  
In this section, we summarize the practical implications and remaining issues regarding 
the measurement of operational risk. 

Using sample data collected from financial institutions, in this paper, we quantified 
operational risk by using the loss distribution approach (parametric method) with 
different combinations of distributions and parameter estimation techniques and 
evaluated the advantages and disadvantages of each measurement technique. 

This analysis confirms two points.  First, when choosing a measurement method, 
trying various distributions and different parameter estimation techniques, and then 
analyzing the differences yields information on how well the assumed severity 
distributions fit the data.  The significant effect on the quantified amount of risk of the 
parameter estimation technique used suggests that the severity distributions used did not 
fit the loss data.   

Second, for our sample data, a compound distribution fit the data better than did single 
distributions, which have tails that are heavier than those of the lognormal distribution. 

Three issues regarding our analysis remain.  First, we were unable to identify a 
distribution or parameter estimation technique that is generally optimal.   

Second, it is difficult in practice to set thresholds for the body and the tail of the 
distribution in a statistically convincing way.  Instead, we proposed a method for 
setting a threshold based on the stability of the estimated measures of risk when using a 
compound distribution. 

Third, when quantification is based purely on actual loss data, as is the case in this paper, 
it is difficult in practice to obtain sufficient data for estimating the amount of risk at 
confidence intervals as high as 99% and 99.9%.32  For this, data on low-frequency 
high-severity losses, which are likely to occur approximately every 100 or 1,000 years, 
are required.33 

Three issues not discussed in this paper are important.  

1) How can one ensure the completeness of the scenario’s low-frequency high-severity 
losses, in particular, when a scenario analysis is introduced as an effective tool for 
supplementing the low-frequency high-severity loss data, which may not adequately be 
represented by the actual loss data? 

2) How can selection criteria such as event types and business lines for 
risk-quantification units be established in a rational manner?34  In addition, how does 

                                                 
32 To address this issue, as is the practice of financial institutions, it is important to supplement the data 
with external data and perform scenario analyses.   
33 This can be derived from the relationship between the confidence interval and the range in loss severity 
distributions that may affect the risk quantification (to what extent high-severity loss events, which rarely 
occur, should be taken into consideration). (See [Supplementary Discussion 1] for details.)  Judging 
from this result, there is a possibility that the calculations based on the nonparametric method, which are 
used as a benchmark in this paper, resulted in underestimation. 
34 See footnote 7.   
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one incorporate the correlation between these units in the amount of risk?35 

3) How can the stability of the amount of risk be ensured against time-period 
variations?36 

Thus, a number of issues remain in the field of operational risk measurement.  We 
intend to continue our analysis and exchange views with experts in this field.  We hope 
that this paper stimulates discussion in this area. 

 
 
 

                                                 
35 Some financial institutions quantify their operational risks based on a more precise measurement unit 
such as business lines or event types; from the viewpoint that the characteristics of operational risk they 
face may be different depending on the business line or event type.  However, in reality, no solid model 
has yet been developed for correlations and dependencies between measurement units.  
36 Because the internal loss data of any financial institution change over time, it is possible that the loss 
severity distribution assumed by the operational risk measurement model no longer fits the loss data.  
However, no consensus has yet emerged on how to verify the model’s ongoing usability. 
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[Appendix 1] The Relationship between Confidence Intervals in Risk Measurement 
and the Range of Loss Data that May Affect the Risk Amount   
In Section 1 of this Appendix, we discuss the possibility that the nonparametric method 
gives understated results, after showing the range of loss data required for calculating 
the risk amount.  First, we show this possibility by deriving a relationship between the 
confidence interval and the range of the data in the severity distribution that affects the 
risk amount (to what extent large losses, which rarely occur, should be taken into 
account in the quantification) based on an example in which a simple nonparametric 
method is used.  Second, we show analytically that a similar relationship exists for the 
loss distribution approach in general. 

In Section 2, the method for estimating operational risk amounts using a closed-form 
approximation, rather than using a Monte Carlo simulation (hereinafter referred to as 
simulation), is introduced.  In Section 3, the closed-form approximation solution is 
compared with the simulation results. 

 

1. The Relationship between Confidence Intervals and the Range of Severity 
Distributions that May Affect the Risk Amount   

1.1. Simplified Numerical Examples 
In the following examples, the risk amount is calculated for the loss data comprised of 
two types of loss events (low-frequency high-severity losses and high-frequency low-
severity losses) at a number of confidence intervals.  That is, the risk amount is 
calculated through a simulation by using a model with a nonparametric severity 
distribution for the sample data set that has high-severity loss events with a low 
frequency that is either once in 100 years or once in 1,000 years.37 

Structure of the Model: 

1) Large Losses that Occur with a Frequency of Once in 100 Years 

For the purpose of simplification, all losses other than large losses are assumed to be 
small and are assumed to occur 100 times in one year.  Large losses are assumed to 
occur once in 100 years.  The severities of large and small losses are assumed to be 
100,000 and 1, respectively.  Because large and small losses respectively occur once and 
10,000 times in 100 years, the parameter (the annual average number of loss events) of 
the loss frequency distribution (Poisson distribution) is:   

01.100=λ  

The function X, which represents the loss amount, is defined as follows (where p  
represents the probability, 10 << p ):  
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37 To verify these results through simulation, it is necessary to perform a sufficient number of trial 
simulations.   
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2) Large Losses that Occur at a Frequency of Once in 1,000 Years  

Everything is assumed as specified in 1) above except for the frequency (once in 1,000 
years) and the severity (1,000,000) of large losses. Since large and small losses 
respectively occur once and 100,000 times in 1,000 years (as in 1), the parameter (the 
annual average number of loss events) of the loss frequency distribution (the Poisson 
distribution) is:   

001.100=λ  
The function X, which represents the loss amount, is defined as follows (where p  
represents the probability, 10 << p ) :  
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The results: 
Given the above assumptions, the risk amount was calculated at four confidence 
intervals: 99%, 99.1%, 99.9%, and 99.91%.  The results are shown in [Table A].   

 

[Table A] Results of Measurement (Comparison of Risk Amounts)   

  Occurrence Frequency of Low-frequency 
Large Losses  

    (i) Once in 100 
years  

(ii) Once in 1,000 
years  

99.00% 138 124
99.10% 100,086 125
99.90% 100,114 149

Confidence 
Intervals  

99.91% 100,115 1,000,088
(Number of trials is 100,00038)    

When deriving the risk amount at confidence intervals slightly higher than 99% and 
99.9% (99.1% and 99.91%, respectively) from the results above, even large loss events, 
which occur once in every 100 or 1,000 years, are reflected in the risk amount.  This 
shows that it is necessary to include large loss events that occur once in around every 
100 or 1,000 years in the loss data for consideration when the risk amount is being 
calculated at a confidence interval of 99% or 99.9%.  This is because it is assumed that 
even such large loss events are reflected in the risk amount. 

Next, the relationship between the confidence interval and the range of the severity 
distribution that affects the risk amount, which is suggested by the above simulation, is 
assessed analytically. 

 

                                                  
38 An increased number of trials will give essentially the same result. See the analytical proof given in 1.2 
of this Appendix. 
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1.2. Relationship between the Confidence Interval and the Frequency of 
Occurrence Required for the Large-loss Data  
The relationship between the confidence interval and the range of the frequency of large 
loss data that may affect the risk amount is shown analytically.  Note that the 
relationship was confirmed numerically in 1.1 with regard to loss events that occur once 
in every 100 or 1,000 years. 

For the purpose of generalization, the question is formulated by assuming a frequency 
for large losses (with the amount of loss denoted by NL ) of once in N  years ( 1>N ) 
and a frequency for small losses (with the amount of loss being )1(1 NL< ) of m  times 
per year ( 1>m ).39  The annual average number of loss events (λ ) and the ratio of 
number of large losses to the total number of losses in N  years ( R ) can be defined by 
the following equations:  

)1(10,1,1
><<=+= λ

λ
λ NR

N
R

N
m Q  

In addition, the function X , which represents the loss amount, is defined as follows, 
using R (the ratio of number of large losses to the total number of losses in N  years) 
(where p  represents the probability, 10 << p ):  
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⎨
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The probability of observing at least one large loss in the amount of total annual losses, 
represented by P , can be calculated as follows (where )(xPλ  represents the probability 
distribution of the Poisson distribution):   
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39 There remains a small possibility that the amount of total annual losses comprising only small losses is 
equal to or greater than the amount of high-severity losses )( sP .  Therefore, the amount of the high-

severity loss is set so that this probability )( sP  is sufficiently small.  In concrete terms, the probability 

)( sP  is assessed from the estimated Poisson distribution, and the high-severity loss represented by NL  
is determined so that the sum total of this probability and the probability of including at least one high-
severity loss represented by )(P  (which is estimated as NN P 1

1
1 <<+ ; see pp. 31–32 for proof) is less 

than N
1 .  In this way, if the occurrence frequency of the high-severity loss data is once in N  years, the 

probability that the total annual loss is equal to or greater than the high-severity loss, represented by 
)( sN PPP += , can be estimated as NNN PP 1

1
1 <<<+ .   

In addition, the amount of the high-severity loss NL  is determined so that the lower is the frequency of 

occurrence, the higher is the severity.  ( NL  is an increasing function of N  (the reciprocal of the 
occurrence frequency of high-severity losses)).   
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The probability P  satisfies the following inequality, which depends only on the 
frequency of occurrence of large losses, and is independent of the annual average 
number of loss events (λ ): (A proof follows.) 

N
P

N
1

1
1

<<
+

 

Accordingly, under the conditions described in footnote 39, if the frequency of 
occurrence is once in N  years for large loss data, the probability that the amount of 
total annual losses is at least as high as the large loss )( NP  satisfies NNN P 1

1
1 <<+ , 

independently of the annual average number of loss events.  Similarly, if the frequency 
of the occurrence of a large loss is once in )1( −N  years, the probability )( 1−NP  is 

1
1

1
1

−− << NNN P .   

The following equation can be derived from the above equations:  

)1(1111 11 −− <<−<−<− NNNN P
N

PP
N

P  

This shows that while the risk amount estimated at a confidence interval of 
%100)1( 1 ×− N  exceeds the amount of large losses that occur once in )1( −N  years, this 

will not exceed the amount of large losses that occur once in N  years.  In other words, 
the risk amount estimated at such a confidence interval is between the large loss that 
occurs once in )1( −N  years and the large loss that occurs once in N  years (see the 
figure below).   

 

 

  

 

 

 

 

 

 

 

 

 

Therefore, this suggests the following three points be considered in estimating the risk 
amount at a confidence interval of %100)1( 1 ×− N . First, large loss events that occur at a 
frequency of once in )1( −N  years should be considered. Second, the large loss events 
which occur at a frequency of less than once in N  years do not affect the result.  Third, 
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large loss events that occur at a frequency between once in )1( −N  years and once in N  
years should be taken into account as there is a possibility that such losses affect the 
result (thus, along with the second point, it is sufficient to take into consideration large 
loss events that occur at a frequency of no less than once in N  years).40 

This suggests, for example, that to estimate the risk amount at confidence intervals of 
99% and 99.9%, it is at least necessary to take into consideration large loss events that 
occur at a frequency of no less than once in 99 or 999 years.  It also suggests that large 
loss events that occur at a frequency of no more than once in 100 or 1,000 years have no 
impact on the risk amount when estimating that amount at confidence intervals of 99% 
and 99.9%.  This is consistent with the measurement results shown in [Table A].   

Financial institutions in general are unlikely to accumulate data on the occurrence of 
such large loss events.  Therefore, when calculating the risk amount by using the 
nonparametric method on loss data, and in particular when calculating the risk amount 
at a confidence interval of 99.9% or higher, it is possible that such a value will be 
understated.   
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(ii) Proof of PN <+1

1  

                                                  
40 This may be true if the VaR is adopted as an indicator of the risk amount.  However, if some other 
indicator is used (such as an expectation shortfall), low-frequency high-severity loss events may have a 
substantial impact on the amount of risk. 



 35

If we set NN e
NN

e
N

PNG
11

1
1

1
1

1)1(
1

1)( −− −+
+

−=
+

−−=
+

−= . 

Then, 0)( >NG  is proved as follows:  

⎭
⎬
⎫

⎩
⎨
⎧ +−

+
=−

+
=′ −− NN e

NN
e

NN
NG

11 2
222 )11(1

)1(
11

)1(
1)(  

The underlined part of the right-hand side of the first equation is defined as:  

NeNg N

121 )1(1)( −+−= , and let Nt 1= , )10( << twhere . Then: 

)10(0)1()(
)1(1)(

2

2

<<<−−=′∴

+−=
−

−

ttetg
ettg

t

t

Q
 

Therefore, )1(0)( NforNG <<′ . 

Then, as 0)(lim,0)1( 1
2
1 =>−=

∞→
NGG

Ne , )1(0)( NforNG <> . 

PR
x

e
N x

x
x

=−−<
+

∴ ∑
∞

=

−

0

})1(1{
!1

1 λλ  

From (i) and (ii) above, we obtain 

)1(1
1

1 NP NN <<<+                                    ■ 

 

1.3. The Relationship between the Confidence Interval and the Range of the 
Severity Distribution that May Affect the Risk Amount   
The relationship between the confidence interval and the frequency of occurrence 
required for the large-loss data is not limited to particular cases such as the examples 
given in 1.1 and 1.2 above (for the nonparametric method, which assumes only two 
types of loss value); it is applicable to any loss distribution approach in general.  In 
other words, to measure the risk amount at a confidence interval of %100)1( 1 ×− N  on 
an annual basis, it is at least necessary to make precise estimates up to the 

%100)1( )1(
1 ×− − λN  point from the bottom of the severity distribution.  Points down to 

the %1001 ×λN  point or above from the top have no impact on the risk amount (see 
[Figure A]).41, 42 

                                                  
41 As in the cases of 1.1 and 1.2, in which only two types of severity were assumed, this relationship holds 
true when the probability is sufficiently small that the amount of total annual losses that include at least 
one high-severity loss event (the right-hand side of the λN

1  part from the top of the severity distribution in 
[Figure A]) is smaller than the amount of total annual losses that include no high-severity loss. 
42 However, in the case of the parametric method, even if the range of the severity distribution that affects 
the risk amount is specified, the data required to undertake parameter estimation of the severity 
distribution are not limited to this range.  Rather, it is necessary to estimate the parameters by including 
high-severity loss data. 
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 [Figure A] The Range of the Severity Distribution That Affects the Risk Amount 
(Graphic Image) 

 

 

 

 

 

 

 

 

 

 

 

 

2. Operational Risk Measurement Based on a Closed-Form Approximation  

In the previous subsection, we identified the range of severity distribution that affects 
the calculation of the risk amount derived from the relationship between confidence 
intervals and the occurrence frequency of losses.  Based on a similar concept, Böcker 
and Klüppelberg [2005] developed a method of approximating the risk amount at a 
particular point on the loss distribution (the value of one loss event).  According to them, 
if the severity distribution function is subexponential,43 the risk amount )(αVaR  at a 
confidence level of α100 %, given an average total annual number of events of λ  and 
using the severity distribution function F , can be approximated by:  

)11()( 1

λ
αα −

−= −FVaR  

If we set α−= 1
1N , this equation can be written as:  

                                                  
43  The distribution function is subexponential when the distribution function )(⋅F  and its n -fold 

convolution *)( nF ⋅ satisfy the following: 
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This means that if x  is large enough, the probability that the value of total losses (the amount of risk) 
exceeds x  (the probability that the total amount of losses extracted independently n  times from the 
same distribution exceeds x ) can be approximated by the probability that the amount of loss extracted 
once from such a severity distribution exceeds x , multiplied by n .  See Embrechts et al. [1997] for 
details.   
The lognormal distribution, the Weibull distribution, and the generalized Pareto distribution (if the shape 
parameter ξ  is positive), which are adopted as parametric severity distributions in this paper, are all 
subexponential. 
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)11()( 1

λ
α

N
FVaR −= −  

This means that when N  represents the reciprocal value of the occurrence frequency of 
large losses (in other words, if a large loss occurs once in N  years as defined in Part 1 
of Appendix 1), the risk amount can be approximated as the amount of loss at the 
percentile point that ranks λN

1  from the top of the severity distribution.  For example, to 
approximate the risk amount at confidence intervals of 99% and 99.9%, a single statistic 
is needed: the amount of the loss event that occurs at a frequency of once in every 100 
or 1,000 years when a nonparametric distribution is assumed.   

In summary, Böcker and Klüppelberg argue that when the confidence interval is 
sufficiently high and when the severity distribution is subexponential, the upper limit of 
the range of the severity distribution that affects the risk amount, as shown in 1 of 
Appendix 1, can be deemed to be the approximate value of the risk amount.   

This suggests that, when estimating the risk amount through simulation, when the 
confidence interval is high enough, and when the severity distribution is subexponential, 
the tail (at around the abovementioned upper limit, in particular) has a large impact on 
the estimation results and plays an important role. (Other parts of the distribution have 
little impact.)   

 

3. Comparison of the Approximated VaR (by Closed-form Approximation) and the 
Simulated VaR (by Monte Carlo Simulation) 

In this subsection, we assess the approximation accuracy of the risk amount obtained 
from the closed-form approximation solution proposed by Böcker and Klüppelberg 
[2005] by comparing it with our simulation results (see [Table B] on the next page).  

First, in general, when the same distribution is assumed, the accuracy of the closed-form 
approximation tends to improve as the risk amount calculated increases (i.e., as the rate 
of deviation decreases). This may be because, when the tail is relatively heavy in the 
estimated distribution, the approximation for the VaR will be more accurate; by contrast, 
if the tail is relatively thin, the approximation for the VaR will be less accurate.44   

                                                  
44 To use the closed-form approximation solution, as a prerequisite, the following approximate expression, 
shown in footnote 43, must exist for the total value of the losses calculated ( x ): 
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As explained in footnote 43, all parametric distribution used in this paper for estimation of the severity 
distribution are subexponential.  Although it is certain that when ∞→x , the above approximate 
expression is appropriate, it may not be appropriate in the vicinity of the total amount of losses 
represented by x .   

This means that the probability that the value of the total amount of loss (the volume of risk) exceeds x  
(the probability that the total value of the losses extracted independently n  times from the same loss 
distribution exceeds x ) may no longer be approximated by the probability that the amount of loss 
extracted once from the severity distribution exceeds x , multiplied by n .  For example, it may be 
impossible to ignore the probability that the total amount of loss (the volume of risk) exceeds x , 
although the amount of all n  loss events extracted from the severity distribution is no more than x . 
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Furthermore, in all cases, the closed-form approximation has a smaller value than that 
resulting from simulation. Thus, the closed-form approximation may be understated 
compared to the risk amount that is calculated from the estimated severity distribution.  

As explained above, when the tail in the estimated distribution is not very heavy, the 
accuracy of the closed-form approximation may decline. Moreover, the approximation 
may understate the risk amount. Accordingly, when using the closed-form 
approximation for operational risk quantification, it is necessary to check the accuracy 
of the approximation. 

 

[Table B] Comparison of Closed-Form Approximation Solutions and Simulation 
Results 
 

 
 

                                                                                                                                                  
This is more likely if the total amount of loss (the volume of risk) is relatively low (i.e., if there is 
relatively little tail heaviness in the estimated severity distribution).  Therefore, if there is relatively little 
tail heaviness, the closed-form approximation solution may be less accurate.   
45 These represent the scaled values based on the volume of risk at a confidence interval of 99%, with the 
values obtained by using the nonparametric method representing 100. 
46 This is the rate of deviation of the closed-form approximation solution from the simulation result, 
which is defined as:  

Closed-form approximation solution—Simulation result 
Simulation result 

Closed-Form 
Approximation 

Solution45 
 

Simulation 
Result (see 

[Table 3] in the 
main text)  

Rate of 
Deviation46 

Distribution 
Parameter  

Confidence Intervals  

Distribution  
Parameter 
Estimation 
Technique  

99.0% 99.9% 99.0% 99.9% 99.0% 99.9% 
Scale Shape

MM 62.0 243.8 74.9 272.6 -17.3% -10.6% 2.17 2.47
MLE 1.3 3.2 2.5 4.4 -47.4% -27.0% 1.48 1.61

Lognormal 
Distribution 

OLS 0.8 1.8 1.8 2.8 -55.1% -35.4% 1.48 1.47
MM 92.2 321.5 105.8 351.7 -12.9% -8.6% 0.70 0.18
MLE 1.5 2.5 3.9 5.0 -62.1% -49.4% 10.85 0.43Weibull 

Distribution 
OLS 0.3 0.4 1.6 1.8 -81.5% -76.8% 10.90 0.63

PWM 24.6 232.1 26.8 255.4 -8.5% -9.1% 4.57 0.98

MLE 50.1 630.4 54.1 686.1 -7.5% -8.1% 3.44 1.10

Generalized 
Pareto 

Distribution 
OLS 1.1 4.5 1.8 5.5 -37.3% -17.8% 3.84 0.60
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[Appendix 2] Technical Terms Used and Remaining Issues 

1. Distribution Used for Severity and their Characteristics  

The generalized Pareto distribution has the following characteristics, depending on the 
value of ξ .  First, if 0<ξ , there exists some L  such that the probability of the amount 
of loss exceeding L  is zero.  Second, if r

1>ξ , no r th-order moment exists for the 
distribution.  In particular, if 1>ξ , the distribution has more tail heaviness with no 
average value (or first-order moment).   

                                                  
47 This represents a parameter that is held constant through the use of scale conversion.  (All data are 
multiplied by a fixed number other than zero.)   

 Characteristics / Shape  Probability Density Function  Parameter 
Lognormal 
Distribution 

The natural logarithm of 
the loss value x  follows a 
normal distribution. (The 
probability distribution is 

Yex = , where Y  follows 
a normal distribution: 

),( 2σμN .)  Defined 
within the range of 0>x , 
the tail becomes heavier as 
x  increases.  
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μ : Average of the 
natural logarithm of 
x  (scale 
parameter)  
σ : Standard 
deviation of the 
natural logarithm 
of x  (shape 
parameter)47 

Weibull 
Distribution 

Defined within the range of 
0>x ; if the parameter p  

is smaller than 1, the tail 
becomes heavier as x  
increases. 
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p : Shape 
parameter  
θ : Scale parameter 

GPD: 
Generalized 
Pareto 
Distribution 

Defined within the range of 
0>x , the tail becomes 

heavier as x  increases. 
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ξ : Shape 
parameter   
(the larger is ξ , the 
heavier is the tail)  
β : Scale 
parameter 
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2. Parameter Estimation Techniques and their Characteristics 

  
 Concept Methodology Characteristics 

M
et

ho
d 

of
 M

om
en

ts
 (M

M
) Simultaneous equations are 

developed for a moment (e.g., 
a parameter relating to an 
average or variance) and the 
solution is calculated to obtain 
an estimate of the parameter.  

Based on loss data, the first- and second-order 
moments are calculated as follows:   

∑∑
==

==
N

i
i

N

i
i x

N
Mx

N
M

1

2
2

1
1

1,1
 (1) 

Then the formulas for 1M , 2M  expressed using the 
parameters for the assumed distribution are prepared 
(They vary depending on the distribution assumed) 
(2).  
Then simultaneous equations of (1) and (2) are 
solved to obtain the parameters. 

In calculating the 
moment, this method 
tends to emphasize the 
portion with relatively 
large values of x  
(low-frequency, high-
severity part,  which 
represents the tail of 
the distribution).  

Pr
ob

ab
ili

ty
-w

ei
gh

t M
om
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t 

M
et

ho
d 

(P
W

M
) 

A weight is assigned to each 
data point in order to calculate 
the moment; the larger the 
value of the data point, the less 
weight is assigned. This 
method is applied to a 
distribution with quite a heavy 
tail for which no moment such 
as an average or variance may 
exist, depending on the value 
of the parameter.   

Based on loss data, the transformed moment is 
calculated as:   

),1,0(]))(1([ L=−= rXFXEw r
r  (1) 

)(XF : distribution function. 

Then the formulas for rw  expressed using the 
parameters for the assumed distribution are prepared 
(These vary depending on the distribution assumed) 
(2). 
Then simultaneous equations of (1) and (2) are 
solved to obtain the parameters. 

This method is used 
instead of MM for a 
distribution with quite 
a heavy tail, such as 
the generalized Pareto 
distribution. 
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The parameter is set so that 
the likelihood (expressed as 
the product of the occurrence 
probability density of the loss 
data that represent the sample) 
is maximized.  Specifically:  
 
1) The loss data are assigned 
to the probability density 
function of the assumed 
distribution to obtain a 
function of the parameter.  
2) The product of the values 
(function) obtained in 1) 
above is calculated to obtain 
the likelihood function.  
3) Determines the parameter 
so that the value of the 
likelihood function is 
maximized.  

Based on loss data, the log likelihood function is 
calculated as:  
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is solved to derive the parameter jθ .   

For the log normal distribution, two parameters 

21,θθ  represent the sample average and the sample 
variance, respectively, of the log value of the loss 
data.   

In the calculation of 
the log likelihood 
function, this method 
tends to estimate 
parameters that 
emphasize the fitness 
of the high-frequency 
low-severity part, 
which has more data. 
The maximum 
likelihood estimator is 
usually the 
asymptotically 
efficient estimator (the 
variance of the 
estimator is 
minimized as the 
number of 
observations 

∞→n ). 
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The sum of the squares of the 
differences between the loss 
data and the estimate (the 
point on the estimated 
distribution function) is 
computed and the value of the 
parameter is determined so 
that the value calculated 
represents the minimum value. 

For the combination of data converted so that the 
loss data and the estimate have a linear relationship 

),( ii xy , the parameter is determined so that 
2)}({ baxy ii +−∑  is minimized.  For example, 

if a log normal distribution is assumed for the 
severity distribution, iy  is the monotonically 
increasing sequence of the log value of the loss data, 
and ix  is the monotonically increasing sequence 
when the log value of the loss data exactly matches a 
standard normal distribution. 

As with MLE, there is 
a tendency to 
emphasize the fitness 
in the high-frequency 
low-severity portion 
of the distribution, 
which has more data.. 

 

3. Visual Validation Methods for Fitness of Distribution (PP and QQ Plots)  
Name Concept Points when used for verification of the 

fitness of the loss distribution. 
PP Plot 
(percentile–
percentile plot) 

For the assumed distribution and the 
distribution of the loss data, the status 
of deviation on the probability point 
of each datum (which represents the 
position in terms of percentage from 
the lowest value in the range 0–1) is 
shown; x -axis: the estimate on the 
estimated distribution; y -axis: the 
value based on the loss data.   

The closer are the points to the 45-degree 
line, the better is the fit of the model.  It is 
also possible to visually identify any under- 
or overestimation of the loss data (any 
points above the 45-degree line understate 
the loss data, while those below the line 
overstate it). 

QQ Plot 
(quantile–quantile 
plot)  

For the assumed distribution and the 
distribution of the loss data, the status 
of deviation of each loss value is 
shown with modifications and 
adjustments added as appropriate to 
facilitate visualization; x -axis: the 
estimate on the estimated 
distribution; y -axis: the value based 
on the loss data.   

In a QQ plot, it is easier to comprehend the 
deviation between the loss data and the 
estimates in the high-severity portion 
visually, as the axes are modified based on 
the severity. On the other hand, in a PP plot, 
it is difficult to visually distinguish the 
deviation  in the large loss portion.   
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4. Quantitative Methods for Verification of Fitness of Severity Distributions and 
How they are Appraised  

 

Name Concept Method used in this paper  
Reasons for difficulties in using the 
method for evaluating the goodness 

of fit of severity distributions   

K
ol

m
og

or
ov

–S
m

irn
ov

 S
ta
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tic

s 
(K

–S
 S

ta
tis

tic
s)

 

At every point 
of the loss data, 
the (absolute 
value of the) 
difference 
between (a) the 
distribution of 
the loss data and 
(b) the 
estimated 
distribution is 
calculated and 
the maximum 
value is taken as 
the value of the 
statistic.   

)()(max
1 iiNNi

xFxSK −=
≤≤

 

K : K–S statistic value;  
)( iN xS : The distribution function 

of the loss data distribution, etc (the 
percentage point when the data is 
arranged in ascending order);  

)( ixF : Estimated distribution 
function for N , the number of data 
points;  

ix : Value of each datum. 

The deviation in the high-frequency 
low-severity portion is emphasized 
(because the distribution function of 
the low-frequency high-severity 
portion is close to the value of unity 
for both distributions, and the 
deviation does not become too large).  
For this reason, it is difficult to assess 
appropriately the deviation in the 
low-frequency high-severity portion, 
which is expected to have a large 
effect on the risk amount. 
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A revised 
version of the 
K–S statistic.   
The statistic’s 
value is the sum 
of the square of 
the differences 
between the 
distribution 
function of the 
loss data and the 
distribution 
function of the 
estimated 
distribution 
multiplied by 
the weighting 
function )(xψ .   
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2A ：A–D Statistic value  
N ：Number of data points 

It is generally recognized that the 
statistic value is sensitive to the 
deviation in the tails on both the left 
and right sides of the distribution 
(because high weights are placed on 
the tails at both ends of the 
distribution by the weighting function 

)(xψ ).   
However, as in the case of the K–S 
statistic’s value, it is difficult to 
appropriately assess the deviation in 
the low-frequency, high-severity 
portion, because the deviation for the 
tail on the left, i.e., for the high-
frequency low-severity portion, is 
adopted as the  value of the statistic 
(the distribution function of the low-
frequency high-severity portion is 
close to unity for both distributions, 
the deviation does not become too 
large). 
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