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Abstract

We construct Bayesian vector autoregressive (BVAR) models opti-
mized by the Posterior Information Criterion (PIC), in which hyper-
parameters are data-determined in the same way as the lag length and
trend order. We also assess the performance of the selected models by
one-step ahead forecasts using historical data and Monte Carlo exper-
iments. The results suggest that the selected models have a superior
performance in forecasting as compared with ordinary VAR models.
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1 Introduction

Bayesian vector autoregressive (BVAR) models are used for forecasting em-
pirical time series1. Bayesian VAR models reduce the tendency of unre-
stricted VAR models to be over-parameterized, by placing prior distributions
over the parameters of the unrestricted VAR models. Litterman(1980,1986)
introduced a class of priors for VAR models that induce a random walk
mean for the coe�cients and have a parsimonious set of hyperparameters,
so-called tightness parameters, that govern their variance2. These priors are
known as Minnesota priors.

BVAR models are closely related to reduced rank regression models
(RRR, or Vector Error Correction Models), which are popular models in
cointegration analysis. This is because RRR models, formulated in terms
of levels and di�erences, are theoretically based on VAR models in terms of
simple levels in the same way as are BVAR models3.

BVAR models with Minnesota priors are not fully data-determined mod-
els. These models require the prespeci�cation of several parameters, includ-
ing the lag length of the VAR, the degree of any deterministic trend that is
to be included, and the setting of the hyperparameters that govern the Min-
nesota prior variances4. We determine the values of the hyperparameters
using the Posterior Information Criterion (PIC), which is an information
criterion such as AIC5 and BIC6. When the data are stationary and er-
godic, PIC is asymptotically equivalent to BIC7. However, when the data
are nonstationary, PIC imposes a greater penalty than BIC on the presence
of additional nonstationary regressors. Phillips and Ploberger(1994) show
that PIC generally outperforms BIC for both stationary and nonstationary

1Bayesian VAR models are also frequently used by economists of central banks (see
Crone and McLaughlin (1999), Sims and Zhao (1998), Stark (1998), and Wong and Jolly
(1994)).

2See Sims (1980), Doan, Litterman and Sims (1984) and Sims (1993) for some appli-
cations of Bayesian VAR models.

3We do not adopt RRR models. This is because rank tests tend to have low power, as
shown in Kasuya and Ueda (2000), and we avoid the possible bias of rank tests.

4One option for selecting tightness hyperparameters is to use root mean square errors,
or Theil-U statistics, of inter-sample forecast, as suggested by Litterman(1986). However,
absolute accuracy of inter-sample forecast is only weakly associated with the validity of the
models. We also conducted Monte Carlo experiments for assessing this method, the results
of which show the models optimized by PIC have a superior performance in forecasting
as compared with the models selected by the inter-sample forecast method.

5See Akaike(1969,1977).
6See Schwarz(1978).
7See Phillips and Ploberger(1994) and Philips and Ploberger (1996) for PIC.
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data by Monte Carlo experiments 8 9.
We construct Bayesian vector autoregressive (BVAR) models optimized

by PIC, in which the hyperparameters are data-determined in the same way
as the lag length and trend order. We assess the performance of the selected
models by one-step ahead forecasts using historical data, and by Monte Carlo
experiments. The results suggest that the selected models have a superior
performance as compared with ordinary VAR models.

The paper is organized as follows. In Section 2, we construct Bayesian
VAR models of the Japanese economy, using PIC. In Section 3, we assess
the performance of the Bayesian VAR by one-step ahead forecasts using
historical data and Monte Carlo experiments. Section 4 concludes.

2 Bayesian VAR model

Consider a vector autoregression model with k lags and a deterministic trend
of degree l:

yt = �k
i=1Aiyt�i +�l

j=0cjt
j + �t; (1)

where yt and �t are m-vector processes, t is a time variable, Ai and cj are
parameters, and �t � iidN(0;�) is a zero mean stationary process. When
l = �1 there is no intercept in the model, when l = 0 there is a �tted
intercept, and when l = 1 there is a �tted linear trend.

We can rewrite equation (1) in terms of levels and di�erences as follows:

�yt = �1yt�1 +�k
i=2�i�yt�i+1 +�l

j=0djt
j + �t; (2)

where �1 = �k
i=1Ai � I and �i = ��

k
j=iAj(i � 2), that is,

�yit = c0ixt + �it; var(�it) = �2i (i = 1; :::;m): (3)

Let �(ci) � N(�ci; Vci) be a prior density for the elements of ci. The
posterior distribution of ci is N(~cin; ~Vnci) with mean vector

~cin = [V �1
ci

+ ��2
i X 0

nXn]
�1[V �1

ci
�ci + (��2

i X 0

nXn)ĉin]; (4)

8PIC uses the sample Fisher information matrix as a penalty rather than a simple
parameter count such as BIC. BIC may be regarded as a specialization of PIC to the case
of stationary regressors. See Phillips and Ploberger (1996) for details.

9AIC and BIC cannot determine the hyperparameters. However, Phillips(1996) pro-
posed the modi�ed PIC for Bayesian VAR (PICBVARM ) that can select hyperparame-
ters. We use this criterion. See Phillips(1992,1994,1995b) for some applications of single-
equation Bayesian models optimized by PIC. See Phillips(1995a) for an applications of
Bayesian VAR models with Minnesota priors, optimized by PIC. See Kawasaki (1992) for
an application of Bayesian VAR models of the Japanese economy with Minnesota priors.
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and covariance matrix

~Vnci = [V �1
ci

+ ��2
i X 0

nXn]
�1; (5)

where
ĉin = (X 0

nXn)
�1X 0

n�yi (6)

is the MLE/OLS estimator of the unrestricted vector of coe�cients c, X 0

n =
[x1; :::; xn] and �y = vec(�Y 0).

The Minnesota priors have mean �c = 0 10. The covariance matrix Vc of
the Minnesota prior for c is diagonal, with elements constituted as follows:

var[(�a)ij ] = (�=a)2 if i = j; (7)

= (���̂i=a�̂i)
2 if i 6= j;

for the lag a coe�cient matrix �a(a = 1; :::; k); and

var[(db)i] =1 (8)

for the trend degree b deterministic coe�cient (b = 0; :::; l)11.
With this prior, the inverse of the variance matrix Vc is:

V �1
ci

= diag(:::; (1=var[(�a)ij ]); ::; :::; (1=var[(db)i]); :::): (9)

Then we select (k; l;�; �) to optimize the PIC:

PICBV ARM(k;l;�;�) = lnj~�nM j+ (1=n)ln
�
j ~BnM j=j ~Bn0M j

�
; (10)

where
~BnM = V �1

cM +��1
nM 
X 0

nXn; (11)

V �1
cM = diag(V �1

c1
; :::; V �1

cm ); (12)

with
(~�nM )ij = (1=n)�n

t=1(�yit � ~c0inxt)(�yit � ~c0jnxt): (13)

The data we use are eight quarterly time series of the Japanese economy
from 1973/2Q to 1999/3Q: real GDP, GDP deator, M2+CD, CPI, nominal

10This is because the �rst lag coe�cient of unity is already in the di�erenced dependent
variable �y.

11The framework here, as in Phillips(1996), is a little di�erent from that of Litter-
man(1986) because the model is formulated in terms of levels and di�erences rather than
simply levels.
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exchange rates, government bond yields, real �xed investment, and unem-
ployment rates12. All series except for nominal exchange rates and interest
rates are seasonally adjusted. Estimation is based on 99 observations from
1974:1 to 1999:3, with 7 presample observations used for determining the
optimum lag length of the testing method13 14(see Appendix A for details.).

The �rst 64 of 99 observations are used for initial estimation. We es-
timate Bayesian VAR models and make one-step ahead ex post forecasts
recursively by increasing the observations from 65 to 99. The values of
(k̂; l̂; �̂; �̂) may be revised on a period-by-period basis as new data become
available.

Figures 1-8 show the actual data, forecasts by BVAR.

3 Forecast Performance

In order to assess forecast performance of Bayesian VAR models, we also es-
timate the ordinary VAR and make one-step ahead ex post forecasts15 in the
same way as Bayesian VAR models. Table 1 suggests that root mean square
errors (RMSE) of one-step ahead forecasts by Bayesian VAR models are
about 5% lower than those of the ordinary VAR models. Although this pro-
cedure is a popular method for evaluating forecast performance, the absolute
accuracy of inter-sample forecast is only weakly associated with the valid-
ity of the models. This is because mis-speci�ed models could forecast well
or good models could forecast poorly16. Therefore, we also provide Monte
Carlo experiments to evaluate the Bayesian models. By using a estimated
data generating process, random samples of 207 observations are created
for yit, with �t normally distributed. The �rst 107 observations are used to
initialize the process, leaving 99 observations for experiments in estimation,
and the last observation for forecasting. The number of observations for

12The selection of economic variables in this paper follows that of Sims(1993), except
for the stock price index. Omitting the Japanese stock price index is because it has a
volatile phase, a so-called bubble process, in the late 1980s. However, we also constructed
a nine-variable model such as Sims(1993), the results of which suggest the Bayesian VAR
model optimized by PIC has a better performance than the ordinary VAR model.

13All variables are transformed to natural logarithms. Although interest rates are not
transformed to logarithms in the usual procedure, we transformed government bond yields
to logarithms. This is because of stabilizing variance and avoiding negative estimates of
government bond yields. In the late 1990s, interest rates of Japan continued to be very
low.

14We set the maximum lag length = 6, and the maximum trend degree = 1.
15We determined the lag length by likelihood ratio tests.
16See Chong and Hendry(1986) for a critique of evaluation methods.
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estimation is the same as the data used in our analysis. The Monte Carlo
experiments consist of estimating the Bayesian VAR and forecasting the last
observation for 5000 trials of the process.

Results of forecast experiments are shown in Figures 9-16, in which fore-
cast errors of the Bayesian VAR models have smaller variances than those
of the ordinary VAR models. Table 2 shows standard errors in forecasts by
the Bayesian and ordinary VAR models.

4 Implications

We construct Bayesian vector autoregression (BVAR) models optimized by
the Posterior Information Criterion (PIC), in which the hyperparameters are
data-determined in the same way as the lag length and trend order. We also
assess the performance of the selected models by one-step ahead forecasting
and Monte Carlo experiments. The results suggest that the selected models
have a better forecasting performance than the ordinary VAR models.

According to the generalized Rissanen's theorem proved by Ploberger
and Phillips(1998,1999), if the other conditions are the same, the estima-
tion of models with stationary regressors would lead to a smaller loss of
information than stochastic trend estimation, and would be better from the
viewpoint of parsimony and forecasting. Neither the Bayesian nor classical
techniques can be exceptions to this theorem. Model selection by PIC takes
into account the penalty of the presence of nonstationary regressors. In this
sense, the method may also be regarded as accommodating the theorem.

6



References

[1] Akaike, H. (1969). \Fitting autoregressive models for prediction," An-
nals of the Institute of Statistical Mathematics, Vol.21, pp.243-247.

[2] Akaike, H. (1977). \On entropy maximization principle," in P. R. Kr-
ishnarah ed., Applications of Statistics, Amsterdam: North-Holland,
pp.27-41.

[3] Chong, Tock Y. and David F. Hendry (1986). \Econometric Evalua-
tion of Linear Macro-Economic Models," Review of Economic Studies,

Vol.80, pp.671-690.

[4] Crone, Theodore M. and Michael P. McLaughlin (1999). \ A Bayesian
VAR Forecasting Model for the Philadelphia Metropolitan Area,"
Working Paper No. 99-7, Federal Reserve Bank of Philadelphia.

[5] Doan, T., R. Litterman and C. Sims (1984). \Forecasting and Con-
ditional Projection using Realistic Prior Distributions", Econometric

Reviews, Vol.3, pp.1-144.

[6] Kasuya, Munehisa and Kozo Ueda (2000). \Testing the Purchasing
Power Parity Hypothesis: Re-examination by Additional Variables,
Tests with Known Cointegrating Vectors, Monte Carlo Critical Values,
and Fractional Cointegration," Research and Statistics Department
Working Paper 003, Bank of Japan.

[7] Kawasaki, Yoshinori(1992). \Bayesian Vector Autoregression," Bank
of Japan, Institute for Monetary and Economic Studies, vol.10, pp.79-
101.

[8] Litterman, Robert B. (1980). \A Bayesian Procedure for Forecast-
ing with Vector Autoregression," Working paper, Department of Eco-
nomics, Massachusetts Institute of Technology.

[9] Litterman, Robert B. (1986). \Forecasting with Bayesian Vector Au-
toregressions: Five Years of Experience," Journal of Business and Eco-
nomic Statistics, Vol.4, pp.5-15.

[10] Phillips, Peter C. B. (1992). \Bayes Method for Trending Multiple
Time Series with an Empirical Application to the U.S. Economy,"
Cowles Foundation Discussion Paper No. 1025, Yale University.

7



[11] Phillips, Peter C. B. (1994). \Bayesian Models and Forecasts of Aus-
tralian Macroeconomic Time Series," in Colin P. Hargreaves ed., Non-
stationary Time Series and Cointegration, Oxford: Oxford University
Press.

[12] Philips, Peter C. B. (1995a). \Automated Forecasts of Asia-Paci�c
Economic Activity," Asia-Paci�c Economic Review, Vol.1, No. 1,
pp.92-102.

[13] Philips, Peter C. B. (1995b). \Bayesian Model Selection and Predic-
tion with Empirical Applications," Journal of Econometrics, Vol. 69,
pp.289-331.

[14] Phillips, Peter C. B. (1996). \Econometric Model Determination,"
Econometrica, Vol.64, pp.763-812.

[15] Phillips, Peter C. B. and W. Ploberger (1994). \Posterior Odds Test-
ing for a Unit Root with Data-based selection," Econometric Theory,

Vol.10, pp.774-808.

[16] Phillips, Peter C. B. and W. Ploberger (1996). \An Asymptotic The-
ory of Bayesian Inference for Time Series," Econometrica, Vol.84,
p.381-412.

[17] Ploberger, Werner and Peter C. B. Phillips (1998). \Rissanen's The-
orem and Econometric Time Series," Cowles Foundation Discussion
Paper No.1197, Yale University.

[18] Ploberger, Werner and Peter C. B. Phillips (1999). \Empirical Limits
for Time Series Econometric Models," Cowles Foundation Discussion
Paper No. 1220, Yale University.

[19] Schwarz, G. (1977). \ Estimating the Dimension of a Model," Annals

of Statistics, Vol. 12, pp.1425-1433.

[20] Sims, Christopher A.(1980). \Macroeconomics and Reality", Econo-
metrica, Vol.48, No.1, pp.1-48.

[21] Sims, Christopher A. (1993). \A Nine Variable Probabilistic Macroeco-
nomic Forecasting Model," in Stock, James H. and Mark W. Watson,
eds., Business Cycles, Indicators, and Forecasting , NBER Studies in
Business Cycles, Vol.28, Chicago and London: University of Chicago
Press, pp.179-204.

8



[22] Sims, Christopher A. and Tao Zha (1998). \Bayesian Methods for
Dynamic Multivariate Models," International Economic Review, Vol.
39, No. 4, pp.949-968.

[23] Stark, Tom (1998). \ A Bayesian Vector Error Correction Model of
the U.S. Economy," Working Paper No. 98-12, Federal Reserve Bank
of Philadelphia.

[24] Wong, J. K. and P. L. Jolly (1994) \A Bayesian Vector Autoregression
Model of Ination", New Zealand Economic Papers, Vol.28, No. 2,
pp.117-131.

9



A Data

CPI : Consumer Price Index; excluding freshfood; seasonally adjusted;

M2CD : Nominal money supply; seasonally adjusted;

GDP : Real GDP; seasonally adjusted;

DEF : GDP deator; seasonally adjusted;

RBND : Government bond yields(10 year bonds);

NOMEX : Nominal exchange rate;

IFA : Real �xed investment; seasonally adjusted:

U : Unemployment rate:

(notes)
(1)period: 1973/2Q-1999/3Q
(2)BOJ, Statistics Bureau and Statistics Center, Economic Planning

Agency.
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Table 1: Root Mean Square Error
model GDP M2CD CPI DEF RBND NOMEX IFA U

BVAR 0.90 0.52 0.26 0.21 192.74 40.37 8.05 17.73
VAR 0.98 0.53 0.32 0.24 197.86 42.85 8.22 20.96

[Notes]

CPI : Consumer Price Index(excluding perishables);

M2CD : Nominal money supply;

GDP : Real GDP;

DEF : GDP deator;

RBND : Government bond yields(10 year bonds);

NOMEX : Nominal exchange rate;

IFA : Real �xed investment;

U : Unemployment rate:
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