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Abstract

Typically, when using econometric techniques to forecast economic
variables, estimation is carried out on a forecasting model that is built
upon some assumed economic structure, based upon a priori knowledge
and economic principles. However, such techniques cannot avoid running
into the possibility of misspecification, which will occur should there be
some error in the assumptions underlying this economic structure. Even
when diagnostic tests have been easily cleared, a small change in the
way this structure is set up can induce large differences in the forecast
value. In other words, the researcher’s subjective choices in setting up
the model can have a substantial influence on the estimated forecast.

In this paper, in which we concentrate upon inflation forecasting, we
present a statistical forecasting method (SFM) that stresses statistical
relationships among time series data, and that makes no structural as-
sumptions, other than to set up the underlying variables. When putting
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college, University of London), with some modifications of our own. It remains only to em-
phasize that the opinions expressed in this paper are our own and do not reflect the public
position of the Bank of Japan or of the Research and Statistics Department.
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1



together a forecast, this SFM first builds a number of VAR models from
combinations of the underlying variables; it then automatically ranks
these, based upon their performance. Furthermore, it has the additional
property that it produces forecasts not merely by looking at the move-
ments of the forecast themselves over time, but by taking into account
the uncertainty in both the model and the forecast value captured in the
forecast distribution (and illustrated in the fan charts). We also carry
out analysis that looks just at the question of whether future inflation
will move upwards or downwards, attempting to produce a qualitative
forecast of this movement.

Use of this SFM, in addition to establishing a more objective setting
and enabling us to produce forecasts which take uncertainty into account,
also gives better results when forecasting these qualitative movements
in inflation. Although a further extended comparison between forecast
and actual values is still required to confirm the practical value of this
SFM, at this juncture we can state the following: not only does the
SFM offer useful forecasting information that cannot be extracted when
using just a single structural-type estimating model, but it can also play
a valuable role in providing a cross-check for forecasts produced using
such structural-type models.

Keywords: Inflation, Forecast, Reduced Rank VAR, Nonparametric
test of predictive performance
JEL Classification : C32, C35, C53, E31
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1 Introduction

Typically, when using econometric techniques to forecast economic variables,
estimation is carried out on a forecasting model that is built upon some as-
sumed economic structure, based upon a priori knowledge and economic prin-
ciples. However, such techniques cannot avoid running into the possibility of
misspecification, which will occur should there be some error in the assump-
tions underlying this economic structure. Even when diagnostic tests have
been easily cleared, a small change in the way this structure is set up can
induce large differences in the forecast value. In other words, the researcher’s
subjective choices in setting up the model can have a substantial influence on
the estimated forecast.1

Given this, rather than using a model that relies on some specific hypoth-
esis above, it may be considered desirable to employ a forecasting technique
that is as objective as possible and based purely on statistical relationships
additionally.

Of course, however objective the methodology is, it is not feasible to com-
pletely remove the chance that some misspecification occurs in writing the
model. For this reason, in order to produce forecasts which reflect observed
reality as accurately as possible, it is necessary to make full use of all the
information we possess concerning the uncertainty inherent in both the model
and in the forecast value itself. In order to achieve this, in making our fore-
casts we do not look merely at the fluctuations observed in the forecast value
of some specific model, but instead take account of the uncertainty inherent
in the forecast errors and in the choice of model itself, admirably captured in
the forecast distribution (illustrated in the fan charts).

In full awareness of the above problems, the object of this paper is to use
our forecasting of the inflation rate as an illustration2 with which we present
our Statistical Forecasting Method (SFM hereafter). This SFM is one example
of a forecasting technique which scores highly on objectivity, and which takes
appropriate account of uncertainty. Specifically, we produce forecasts using

1Krolzig and Hendry (2001) introduce a process for selecting a model objectively based on
the Gets (General to Specific) concept. However, we do not cover this selection methodology
in this paper.

2Various papers dealing with inflation forecasting have been published by the Bank of
Japan’s Research and Statistics department, following sessions such as the “Workshop on
Inflation Forecasting Errors” (Sept. 2000) [cf. for example, Ban and Saito (2001), Kitagawa
and Kawasaki (2001), Kasuya and Shinki (2001), and Fukuda and Keida (2001) among
others]. Although the analysis in this paper is close to that of Kitagawa and Kawasaki
(2001), we differ from them in that we produce the forecast distributions (fan charts) which
take account of the uncertainty inherent in the forecast errors and the model selection.
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our SFM in accordance with the following process.
To begin with we construct a VAR forecasting model for the inflation rate.

Even for a reduced-form VAR model, which is highly objective, it is not possi-
ble to do away entirely with all traces of subjectivity.3 The forecast result will
inevitably depend to some extent upon the choice of data, the combination of
adopted variables, and the period for which estimation is carried out. Recog-
nizing that some bias may emerge as a result of our choice of data, or of some
particular combination of variables, we follow Stock and Watson (1999) and
Pesaran and Timmermann (1995) and carry out estimations of the model for
as many different combinations of variables as possible, in hope that by thus
constructing a large number of VAR forecasting models we may improve our
results. As our estimating methodology, we employ a VAR model that takes
account of rank restrictions amongst the variables, in other words a Reduced
Rank VAR model (RR-VAR model4 hereafter). As described above, in esti-
mating VAR models based on various different combinations of variables, it is
not unreasonable to assume that some quantity of redundant information will
be included in the matrix of parameters, since several of the variable combi-
nations are likely to display similar tendencies. In order to deal with this we
employ rank restrictions on the parameter matrix and are thus able to carry
out estimation using a more parsimonious5 model, which is likely to produce
improved results. On this point, by comparing the RR-VAR model with the
standard VAR model, Camba-Mendez, Kapetanios, Smith, and Weale (1999)
have demonstrated the performance of the former to be superior than the
latter for forecasting purposes.

Having reached this point, we then construct the forecast distribution, or
fan chart, which takes account of the uncertainty in both the model and the
forecast value. We produce three different constructions of the forecast distri-
bution: (1) the top model distribution; (2) the nonparametric distribution; (3)
the mixed distribution. (1) is the distribution we get when we make use of the
forecast error from the model which performs best out of all of the forecasting
models that we constructed. (2) is the estimate of future uncertainty that
we get when we depict a dispersion of the forecast values (point estimates)
obtained from each of our forecasting models. For (3) we take matters a step

3There are models other than VAR models that place their main emphasis on statistical
relationships; we might for example have chosen to adopt a method such as the Neural
Network Approach. However, in the analysis which follows we have restricted ourselves
to the VAR framework, attempting to produce inflation forecasts that take account of the
uncertainty inherent in the forecast errors and the model selection.

4For details, see Velu, Reinsel, and Wichern (1986), and Lütkepohl (1991).
5i.e., a model that obeys the principles of parsimony.
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further: each of the forecast values obtained from each of the forecasting mod-
els is assumed to be normally distributed according to parameters extracted
from the forecast errors of the respective model; then, using the “forecast
error reciprocals” from each of the distributions as the base for constructing
weights, we compose a distribution which is able to capture uncertainty.6 To
put it differently: we construct three different forecast distributions, where (1)
is based on parametric methodology, (2) on nonparametric methodology, and
(3) on semiparametric methodology.7 Lastly, by arranging these various con-
structed distributions into time-series, we illustrate the extent of uncertainty
in three fan charts.

In addition to the quantitative forecasting question “Roughly what per-
centage rate of inflation do we expect to see?”, we also consider the question
“Is future inflation more likely to move upwards or downwards?”, and we con-
struct a qualitative forecast (in other words, a simple up or down forecast) in
order to examine this.

2 Forecasting techniques and results

Forecasting in our SFM is carried out via three processes: (1) forecasts with
the RR-VAR models; (2) construction of forecast distributions and fan charts;
(3) the qualitative up-down directional forecast that makes use of the Pesaran-
Timmermann test (for an outline of techniques (1) and (2), cf. Chart 1). More
detail on each of these processes follows.

2.1 Forecasting with the RR-VAR model

Here, we first of all construct a large number of RR-VAR models from different
combinations of stationary data, and use these to calculate a correspondingly
large number of forecast values over several periods. Next, we arrange the

6Model uncertainty enters in three possible ways: (i) the average difference between the
real values and those forecast by the model (the forecast error); (ii) misspecification of
the estimating model; (iii) parameter uncertainty (i.e., how the parameters obtained via
estimation are distributed). When we carry out stochastic simulations for the parameters,
although it is possible to consider (iii), it is highly computationally demanding to do so.
Thus for our forecast distribution number (3) we in fact think only about the uncertainty
that arises from a mixture of concepts (i) and (ii).

7The mixed distribution technique may be thought of as one form of semiparametric
method (cf. Powell (1994) for details), and it may also be considered to follow the thinking
of the Forecast Combination method (for which see Clements and Hendry (1998), Diebold
(1998), and Granger and Newbold (1986)).
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forecasting models in order, based on their in-sample dynamic forecast8 per-
formance over the past two years (where performance is judged according to
Root Mean-Squared Error - RMSE hereafter), and we select the model that
performs best for each forecasting period (1 period ahead,..., 4 periods ahead).
Stringing together the out-of-sample dynamic forecasts obtained from these
best-performing models, we construct the “movement over time of the forecast
value obtained from the best performing forecasting model.” In this way we
manage to account for the possibility that, when we compare the performance
for each object forecasting period across models, the combination of variables
that produces the best forecasts for, for example, 1 period ahead (i.e., one
quarter from now) may be different from the combination of variables that
works best when forecasting 4 periods ahead (1 year from now).

Turning to the details, we see that there are seven specific steps involved
in calculating the forecast values. These are as follows:

(a) Choice of data series: Having selected the appropriate series of rep-
resentative macro-economic variables, we carry out the necessary seasonal
adjustment9 and take logs (cf. Chart 2 for data selection and seasonal adjust-
ment procedures).

(b) Ensuring data stationarity: We perform unit-root tests10 on each
data series, taking differences until stationarity is ascertained. Making use
of their means and standard deviations, we then standardize11 these now
stationary data series. Having discovered that the CPI, which we are looking
to forecast, follows an I(2) process, we employ the twice-differenced series,
namely “change in the inflation rate.12”

(c) Choice of explanatory variables: From the data series obtained in
(b), we select the arbitrary number of explanatory variables. Specifically:
From N data series we select m to M different combinations of explanatory

8Clements and Hendry (1998) observe the following: when for example carrying out a 4
periods ahead forecast, using only data which precedes the object forecasting period by at
least 4 periods to estimate the model directly can produce forecasts whose performance is
superior to dynamic forecasts. However we do not use this technique here.

9Monthly variables are reconstituted, after seasonal adjustment, in quarterly form.
10We use the ADF (augmented Dickey-Fuller) test here.
11We transform them into data series with means of 0 and standard deviations of 1.
12Since our data is in logs, the second difference gives the (magnitude of the) change

in the rate of change. Having taken differences to ensure stationarity, the combination of
the differenced explained variables and the differenced explanatory variables may become
difficult to explain from the standpoint of economic theory.
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variables which are assumed to be included in each model. The total number
of combinations of variables turns out to be K =

∑M
m=m

N !
m!(N−m)! .

In this paper there are 16 data series from which we select combinations
of 2 to 4 explanatory variables. Thus we produce a total of exactly 2,500
different models.

(d) Estimation of the RR-VAR models: We carry out estimation using
3 to 5 dimensional RR-VAR models, made up of the CPI which we are look-
ing to forecast and the explanatory variables selected in (c). Where yt is a
multivariate stationary time series made up of the group of variables included
in some given model k, the RR-VAR model is set up as follows. Note that
the lag length (L), which is to take one to four, is determined where the AIC
(Akaike Information Criterion) is the smallest. The example below illustrates
the case when the estimation period for the parameters is 83/Q1 - 99/Q4.

yt =
L∑

l=1

Blyt−l + ηt

= Bxt + ηt

= αβ′xt + ηt, t = 83/Q1,...,99/Q4.

Here Bl is an (m,m) matrix. α and βl are (m, r∗) matrices (r∗ ≤ m)
when they are of rank r∗. Also, β = (β′

1, ...,β
′
L)′, xt = (y′

t−1, ...,y
′
t−L)′, and

B = αβ′.
In carrying out estimation using the RR-VAR model, we first estimate the

matrix of parameters that we get using a standard VAR model; then, taking
the rank r∗ of this matrix as a base, we reduce the matrix into two more
parsimonious matrices without any loss of information (i.e., having estimated
the rank of the parameter matrix B, we then reduce this into the form of the
two matrices α and β).

We follow Bartlett (1947) in estimating the rank. Bartlett’s rank test is
presented below in the form of a likelihood ratio test.

H0 : rank(B) = r∗ against H1 : rank(B) = r > r∗,

lc(H0) − lc(H1) =
T

2

m∑
i=r∗+1

ln(1 + λ̂2
i )

d−→ χ2[(m − r∗), (mL − r∗)].
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lc are the concentrated log likelihoods,13 while λ̂i are the eigenvectors of
the matrix T−1Σ−1/2

η Y X ′(XX ′)−1XY ′Σ−1/2
η , where Y = [y1,y2, ...,yT ],

X = [x1,x2, ...,xT ]. Ση = E(ηη′) denotes the error variance-covariance
matrix, estimated by the quasi-maximum likelihood method.14

Under the null hypothesis H0, the concentrated log likelihood ratio lc(H0)−
lc(H1) is known to converge to the chi-squared distribution described above,
and comparing it with the significance points (corresponding to the adopted
significance level) for the chi-squared distribution determines the rank r∗.

Having calculated the rank in this way, we then use this to estimate the
RR-VAR parameter matrices (in other words α and β′) as15

α̂ = Σ1/2
η V̂ , β̂′ = V̂ ′Σ−1/2

η Y X ′(XX ′)−1.

Here v̂r is the standardized eigenvector corresponding to the rth largest
eigenvalue λ̂r(where r is the rank calculated above), and V̂ describes the
matrix

V̂ = [v̂1, v̂2, ..., v̂r∗ ].

(e) Calculation of the in-sample forecasts: For each of our 2500 models
we carry out a series of in-sample dynamic forecasts,16 ranging from 1 period
ahead forecasts to 4 periods ahead forecasts. The evaluation period for gauging
forecast performance stretches across two years of past data (98/Q1 - 99/Q4).
In other words, we produce forecasts recursively, shifting the starting period
for the dynamic forecast each time, and obtaining values for the 1 period

13In cases when the log likelihood is made up of several parameters, this is concentrated so
as to be able to express just the parameters of interest. Specifically, we concentrate the log
likelihood function by sequential replacement of the first order condition in the log likelihood
function for all parameters other than the parameters of interest.

14i.e., We calculate T−1
Y Y

′ − T−1
Y X

′(T−1
XX

′)−1(T−1
Y X

′)′.
15For more detail see Velu, Reinsel, and Wichern (1986), or Lütkepohl (1991).
16Here, having ranked models based on their in-sample dynamic forecast performance, we

produce out-of-sample dynamic forecasts. Since our interest lies ultimately in the out-of-
sample forecasts, there is an argument to suggest that we should also rank models based
on their out-of-sample forecast performance (e.g., Clark (2000)). However, for evaluations
based on out-of-sample forecasts, since the estimation period for performance evaluation is
set to be a certain number of periods (here 8 periods) prior to the first forecast period, we
become unable to use all the information potentially available to us when carrying out the
estimation. Here, therefore, we choose to evaluate forecast performance as we do, based
on the conjecture that the out-of-sample performance will be superior if we conduct our
estimations using all of the information available to us.
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ahead forecast (ŷτ |τ−1) to the 4 periods ahead forecast (ŷτ |τ−4), where τ is
taken across the 8 periods from 98/Q1 to 99/Q4 (see Chart 1-(2)).17 Since we
have 2500 models and we calculate forecast values for 1 to 4 periods ahead for
each of the 8 past periods, we produce a total of 80,000 forecasts (2500×4×8).

ŷτ |τ−h = [αβ′]hxτ−h, τ = 98/Q1,...,99/Q4, h = 1, ., 4.

(f) Calculation of the RMSE: We calculate the RMSE,18 which indicate
the relative performance of our respective inflation forecasts. However, since
for the CPI our estimate is of the change in the inflation rate,19 we produce
forecasts of the inflation rate itself by adding as appropriate the estimated
changes in the inflation rate to the inflation rate from the last estimating pe-
riod of the model. The RMSE are calculated based on the differences between
the actual values and the forecasts produced in this way.

In other words, denoting the actual value of the inflation rate in period τ
as Rπ

τ , and the forecast value as ŷπ
τ |τ−h, we get

RMSEh = T−1
T∑

τ=1

ε2
τ,h, τ = 98/Q1,...,99/Q4, h = 1, ., 4,

ετ,h = Rπ
τ − ŷπ

τ |τ−h.

Carrying out the above calculations for every model, we obtain {RMSEh,k}2500
k=1 .

(g) Calculation of the out-of-sample forecasts: Having obtained the
RMSEh,k, we use these to select, for each respective forecasting period, the

17Note that the estimation period itself remains unchanged throughout.
18As pointed out in Clements and Hendry (1998), there is potentially a problem here

since we do not consider possible serial correlation in the forecast errors when calculating
the RMSE. There are two possible ways that can be considered for dealing with this: (i)
we could set the forecasting periods so that there is no overlap between the forecasts (i.e.,
we could set the data frequency so that, for example, it is quarterly for a 1 period ahead
forecasting model or yearly for a 4 periods ahead forecasting model); or (ii) we could use
instrumental variables. However, whichever of these methods we use, we run into problems,
such as a loss of degrees of freedom or the difficulty of choosing the right instruments. For
this reason, although the RMSE represents extremely important information for constructing
the forecast distributions, we do not revise them to correct for the possibility that they are
excessive because of serial correlation in the forecast errors.

19Strictly speaking, since as we pointed out in 2.1.(b) the estimated forecast values are
normalized, we carry out these calculations after first reversing the normalization procedure.
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best-performing model (i.e., the model with the smallest RMSE). Having
transformed into inflation rates the out-of-sample dynamic forecasts (ŷτ |τ−h)
obtained from these best-performing models, we produce a time series for
our object forecast period (i.e., 4 periods into the future) by linking these
estimates together and constructing the “movement over time of the forecast
value obtained from the best-performing models.20”

ŷτ |τ−h = [αβ′]hxτ−h, τ = 00/Q1,...,00/Q4, h = 1, ., 4.

2.2 Construction of the forecast distribution and fan charts

The movements over time in the forecast values obtained from the best-
performing models and calculated in the preceding section may be considered,
in themselves, to be highly useful as forecasts based on a technique that is as
objective as possible. However, as discussed earlier, we are interested here in
capturing the uncertainty inherent in the forecast, and this is well accounted
for in the forecast distribution. Thus we now demonstrate how we produce
this forecast distribution, making use of the out-of-sample forecast values and
the forecast errors.

As shown in Charts 1-(3a), (3b), and (3c), the forecast distribution cap-
tures in distributional form the uncertainty inherent in the forecast value.
Setting the desired significance level for the forecast distribution at each point
in time, and then linking the resulting significance points as a time series give
us our fan charts (Chart 1-(4)).

Here, we depict first of all (1) the “top model distribution,” which uses
information from the best-performing models alone (their forecast values and
forecast errors). Next, we depict (2) the “nonparametric distribution,” which
makes use of the forecast values from the full set of models. Lastly, we pro-
duce (3) the “mixed distribution,” which makes use of the forecast values
and the forecasts errors from the full set of models. In contrast with the
“top model distribution,” which reflects only the information gleaned from
the best-performing model, the “nonparametric distribution” and the “mixed
distribution” capture uncertainty about the future: specifically, the former
does so through a dispersion of forecast values taken from the full set of mod-
els (i.e., it addresses the possibility of model misspecification); while the latter
take into account in addition the forecasting error inherent in each forecast
value (i.e., it addresses the issues of both forecasting errors and model mis-
specification).

20This is depicted as the central line (the line showing movement of the mean over time) in
the fan chart (Chart 3) for the “top model distribution” (see below for further explanation).
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2.2.1 Top model distribution

First, for the best-performing models selected above, we create, for each fore-
cast period, a normal distribution with the forecast value as its mean and the
RMSE as its standard deviation. We then produce fan charts with starting
periods of 2000/Q1 and 2001/Q1,21 by joining together as time series the sig-
nificance points attained for each 10% increment in the one-sided significance
level for this forecast distribution.

With regard to forecasts based on this top model distribution, when we
consider that there may not have been such large differences between the
RMSE of the top-ranking models, it may well be that we are relying too heavily
on just the information gleaned from one model, picked out from its peers on
the basis of infinitesimal differences. Putting it another way, when we take into
account the possibility that the model may have been misspecified, it brings
into question the appropriateness of evaluating our inflation rate forecasts in
light of only the forecasts and the expression of forecast uncertainty taken
from the top model distribution alone.

As econometric principles, sharpening up an existing model or search-
ing out the best possible model may be thought important. However here,
where interest lies in the construction of a practical forecasting model, we are
searching to find a forecasting technique that takes into account the forecasts
obtained from a number of models. Thus in what follows we no longer restrict
attention to the best-performing model, and instead focus on building forecast
distributions that make full use of the information contained in the forecasts
and concomitant forecasting errors from the other models.

2.2.2 Nonparametric distribution

Having produced forecasts from a variety of models for the inflation rate of
one particular period, it seems reasonable to assume that, should it be the
case that these forecast values are roughly the same whichever forecasting
model is used, then the actual value will also lie within this neighborhood.
For this reason, we regard a dispersion of the forecast values obtained from a

21The estimation periods for the parameters are as follows: for fan charts whose starting
period is 2000/Q1, the estimation period runs from 1983 through 1999; while for fan charts
starting in 2001/Q1, it runs from 1983 through 2000. Likewise, the forecast performance
evaluation periods are 1998 and 1999, and 1999 and 2000 respectively. The forecast distri-
bution is drawn based on the RMSE calculated during the evaluation period (i.e., the prior
two year period specified above), and in cases (such as 98-99) when movements in the actual
inflation rate for the relevant period are not easily explained by the model (in other words,
there is a large error), the spread of the forecast distribution tends to become wider. We
can attribute the wider spread of the fan chart in 2000, compared with that in 2001, to this.
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number of models as an indicator of the uncertainty that attends a forecast
of the future.

Turning to the risk of misspecification, it becomes important to make full
use of the information gained from several models and not just look at the
information contained in one particular model.

In addition, because we made the assumption of normality when looking at
the uncertainty in the top model distribution, it was not possible to represent
any skewness in the distribution. With the nonparametric distribution, it
becomes possible to represent asymmetry in the distribution of the inflation
rate with regard to its movement in an upward versus a downward direction.

In accordance with this line of thought, and following the two steps out-
lined below, in this subsection we first of all carry out the estimation of the
nonparametric distribution, which makes use only of the information con-
tained in the dispersion of forecast values.

(a) Estimation of the nonparametric distribution: The aim of pro-
ducing a fan chart with these nonparametric distributions22 is to construct
forecast distributions using just the information contained in the dispersion of
2500 forecast values23 we have for each period. What we are producing here
is not a forecast distribution built assuming some particular shape of prob-
ability distribution and using parameters calculated from the forecast values
themselves, such as their means and variances. Instead we elicit a proba-
bility distribution from the frequency distribution that derives from all 2500
forecast values, thus constructing our distribution in a nonparametric manner
(i.e., neither estimating any parameters, nor placing any a priori restrictions
upon the shape of the probability distribution). The nonparametric distribu-
tion is expressed using the Kernel density estimator below. κ(u) is the Kernel
weighting function (here a Gaussian Kernel), φ is the smoothing parameter
that determines bandwidth, and the formula for the probability density func-

22For detailed treatments of the nonparametric methodology in general, see Silverman
(1986), Härdle and Linton (1994), or Pagan and Ullah (1999).

23We could consider building the forecast distribution not from the full set of sample
values (2500 values), but from a subset of, say, the top 5% in terms of their performance
(125 values). Since such a forecast distribution could prove extremely useful, we would like
to examine, in the future, issues such as the most suitable sample size and so on, through
an extensive comparison with actual values. Of course, since here our primary point of
focus is the introduction of techniques, and since the only strategy that we can think of for
approaching the question of how to choose the sample size is an extensive comparison with
actual values to be carried out later, in our production below of the forecast distributions,
including the mixed distributions, we use the whole sample.
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tion (pdf) is written as follows24:

pdf(q) =
1

Kφ

K∑
k=1

κ(
q − yπ

k

φ
),

κ(u) =
1√
2π

e−
1
2
u2

,

φ = 0.9K− 1
5 min {S,A/1.34} .

Here, yπ = {yπ
1 , ., yπ

k , ., yπ
K} is the set of forecast values, K is the number

of forecast values (2500 of them), S is the standard deviation of yπ, A is the
interquartile range of yπ, and q denotes the estimation point of the density
function.

(b) Construction of the fan charts: For the forecast distributions esti-
mated for each period in (a), we set the significance level, which we vary in
one-sided 10% increments, and by joining together as time series the respec-
tive significance points attained for each significance level, we produce a fan
chart.

The forecast distributions produced in this way are illustrated in Chart 4.
In contrast to the top model distribution, because the fan chart is constructed
with reference to the forecast values from all 2500 models, it is not overly
affected by the movements in the explanatory variables of one particular model
(i.e., the best-performing model).

It is also noteworthy that, if we look at for example the forecasts for mid
2000, the upper half of the forecast distribution can be seen to have a long
tail. In other words, the mode is situated below the mean, reflecting the fact
that, restricting attention to frequency, there are a large number of forecasts
predicting inflation rates lower than the mean.

24According to Silverman (1986), there are two methods for calculating the bandwidth φ:
he refers to the method on which the expression used in the text is based as the “subjective
method”; the alternative “objective method” sets out to minimize the “cross validation”
criterion (an MSE estimator that measures the difference between the actual value and the
estimate obtained with a given φ). Although the latter method gets rid of some arbitrari-
ness, in cases such as in this paper, where we confirm the spread of the distribution in the
fan charts, it is not desirable to have a bandwidth that varies greatly depending on the
forecasting period. For this reason, placing emphasis on the goal of getting a rough idea of
the shape of the distribution, we use the former method here.
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2.2.3 The mixed distribution

In the technique based on the nonparametric distribution, we looked to ob-
tain the forecast uncertainty from the dispersion of forecast values. Of course
in this method we take no account at all of the uncertainty inherent in each
individual forecast value, not of the information gleaned about the relative per-
formance of models in the in-sample dynamic forecast. Thus it is possible that
we are not giving due weight to the forecast values from the top-performing
models. For this reason, in the development of the mixed distribution that
follows, we produce a forecast distribution that takes appropriate account of
such information.

To begin with, we construct a normal distribution for each forecast value
based on its RMSE. Then we take a weighted linear combination of these
normal distributions, with the respective weights in proportion to the inverse
RMSE of each forecast distribution.25 Although admittedly using the inverse
RMSE as weights is somewhat ad hoc, this is based on the notion that those
models whose performance has been good over the past two years may be
considered to provide relatively high forecast accuracy in the future as well.26

25Although the application of the weights is different, distributions that capture uncer-
tainty by compounding other distributions in this way can be found in the field of finance.
For an example of existing research in the area, we would suggest Melick and Thomas (1997).

26This is indeed just one example of a number of possible ways of applying weights.
Creating the same type of forecast distribution of the period for which we have actual values,
we also tried the grid search method, in which weights are chosen to bring the mean of the
forecast distribution closer to the actual value. However, even with this method, we are
ultimately unable to confirm whether or not we are extracting the appropriate information
from the forecast values. Among examples of the semiparametric methods, rather than
carrying out estimation of the distribution using weights fixed in advance as above, it is
common to estimate the weights, the mean, and the variance, by using the EM algorithm, or
something similar, to maximize log likelihoods based on a linear combination of distributions.
However, in this method we are unable to make use of the information contained in the
RMSE.

In addition to the above, there are further alternative methods, as introduced in Clements
and Hendry (1998): (i) the “regression method” in which, weights are calculated by regress-
ing the actual values on a number of the forecast values such that the forecast errors from
the combination forecasts is minimized; (ii) the “variance-covariance approach,” in which
the weights are calculated such that the forecast error variance is minimized. However, in
the case of the former, not only are we unable to secure a large enough sample to calcu-
late the requisite parameters for 2500 forecast values, but there are also a number of other
definitional problems that emerge, as summed up in Diebold (1998): whether to include a
constant term, whether to estimate time-variant weights, and whether to allow for serial
correlation in the errors in the constructed forecasts. For the latter method, it is unclear
whether, with a small sample, we would be able to obtain reliable estimates of the variances
and covariances.

For these reasons, we choose to adopt the inverse RMSE as weights here, as a straightfor-
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Specifically, the mixed distribution is constructed following the three steps
outlined below.

(a) Construction of a normal distribution for each forecast value:
For a forecast h periods ahead using model k, we construct a normal dis-
tribution with the forecast value µh,k as its mean, and a standard deviation
σh,k = RMSEh,k. The probability density function fh,k can then be written
as follows:

fh,k(zh,k;µh,k, σh,k) =
1√

2πσh,k

e
− (zh,k−µh,k)2

2σ2
h,k ,

∫
fh,k(zh,k)dzh,k = 1, 0 ≤ fh,k(zh,k).

We then convert the probability density function into a cumulative distri-
bution function:

Fh,k(zh,k;µh,k, σh,k) =
∫ zh,k

−∞
fh,k(ζh,k;µh,k, σh,k)dζh,k, 0 ≤ Fh,k(zh,k) ≤ 1.

(b) Constructing a weighted linear combination of cumulative dis-
tributions: The cumulative distribution function for h periods ahead is ex-
pressed as Fh, a weighted linear combination of K cumulative distribution
functions Fh,k. The weights wh,k are based on the inverse RMSE and are
constructed so as to sum to unity (thus the area under the weighted linear
combination of probability density function fh is also 1).

Fh(zh;µh, σh) =
K∑

k=1

wh,kFh,k(zh,k;µh,k, σh,k), 0 ≤ Fh(zh) ≤ 1,

K∑
k=1

wh,k = 1, 0 ≤ wh,k ≤ 1,

fh(zh;µh, σh) =
K∑

k=1

wh,kfh,k(zh,k;µh,k, σh,k), 0 ≤ fh(zh),

∫
fh(zh)dzh = 1.

ward and uninvolved method.
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(c) Construction of the fan chart: For the weighted linear combination
of cumulative density function estimated for each period in (b), we set the
significance level, which we vary in one-sided 10% increments, and we calculate
the resultant significance points. Joining these together as time series, we
produce a fan chart.

Comparing the fan chart constructed from the mixed distribution (Chart
5) with that constructed from the nonparametric distribution (Chart 4), we
observe that although the movement over time of the means of the forecast
distributions are very similar for each period, the spread of the distribution is
more pronounced in the former (i.e., there is more uncertainty). We can hy-
pothesize two reasons for this. First, (i) while the nonparametric distribution
focuses on “pin point” forecast values from each model, the mixed distribution
by contrast focuses on the distribution centered on the forecast value (i.e., a
spread), calculated from each model. In addition we may point out: (ii) while
in the nonparametric distribution all the forecast values are given the same
weight, so that forecasts from models that performed well during the period
over which RMSE were calculated are treated no differently from others, in
the mixed distribution on the other hand, greater importance is attached to
forecast values (and their concomitant distributions) taken from models that
performed relatively well over the same period. The result of this is that, in
cases when these better-performing forecast values lie apart from the majority
of the other forecasts, they may cause the spread of the forecast distribution
to widen.27

Although we are ultimately judging only from relative performances during
2000 and 2001, the mixed appears to offer the most insightful guide when we
are considering at roughly in what range the forecast value will fall.

2.3 Qualitative up-down forecast using the Pesaran-Timmermann
test

The aim of the forecast distribution is to obtain a measure of the forecast
value and the size of the associated uncertainty (i.e., a quantitative forecast).
However interest may lie in the question of “whether next period’s inflation
rate will be higher or lower than that observed in this period,” and when
thinking about the future inflation rate, this kind of forecast of the direction
of change (i.e., a qualitative forecast) may also be considered important. Thus
we look here to produce a simple up-down forecast of the direction of the

27For a discussion of issues underlying the wider base of the forecast distribution in 2000
compared to 2001, see note 21.
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inflation rate, using the large number of VAR models that we constructed
in section 2.1. We evaluate the respective performances of the qualitative
forecasts that emerge from each model using the Pesaran-Timmermann test,
but the qualitative forecast that makes use of all the models is produced by
following the two steps outlined below.

(a) Calculation of the Pesaran-Timmermann statistic for each fore-
cast value: The Pesaran-Timmermann test examines whether the direc-
tional movements of the real and forecast values are in step with one another,
or to put it another way, it checks how well rises and falls in the forecast value
follow actual rises and falls: the larger the Pesaran-Timmermann statistic, the
better the match.28

The way the test works can be simply explained via the following example.
Forecasting of coin tosses is carried out according to some model. Whenever
heads comes up (or is forecast to come up) the value of +1 is assigned, while
whenever tails comes up (or is forecast to come up) the value of -1 is assigned.
In each instance the resulting values from the actual coin toss and from the
forecast from the model are multiplied together. At this point, if, for example,
the mean of this product is close to unity, it suggests that the performance
of the forecasting model is high. The Pesaran-Timmermann statistic is a
statistic that indicates qualitative forecasting performance based on this line
of reasoning. Substituting a rise (+1) or a fall (−1) in the inflation rate for
the heads or tails of the coin toss, we can apply the Pesaran-Timmermann
test to our inflation forecasts.

More specifically, denoting the in-sample dynamic forecast calculated in
2.1 (e) (i.e., the forecast value of the magnitude of the change in the inflation
rate) as ŷt,29 and the actual value recorded for the change in the inflation rate
as Rt (i.e., ŷt = E(Rt|Ωt−1), where Ωt−1 sums up all the information available
at t − 1), we first of all define the following quantities:

28It takes no account, however, of the differences between the respective magnitudes of
rises and falls.

29As explained in note 19, strictly speaking, the estimated value has been normalized, so
that we need first to reverse this process.
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Xt = 1 if Rt > 0
= 0 otherwise,

Yt = 1 if ŷt > 0
= 0 otherwise,

Zt = 1 if Rtŷt > 0
= 0 otherwise.

Now the Pesaran-Timmermann statistic Sn defined below follows, asymp-
totically, a standard normal distribution, under the null hypothesis that Rt

and ŷt are independent random variables.30

Sn =
P̂ − P̂∗

[V̂ (P̂ ) − V̂ (P̂∗)]
1
2

d−→ N(0, 1),

P̂X =
n∑

t=1

Xt/n, P̂Y =
n∑

t=1

Yt/n, P̂ =
n∑

t=1

Zt/n,

P̂∗ = P̂X P̂Y + (1 − P̂X)(1 − P̂Y ).

Here, V̂ (P̂ )and V̂ (P̂∗) denote the variances of P̂ and P̂∗ respectively and
defined as follows:

V̂ (P̂ ) = n−1P̂∗(1 − P̂∗),

V̂ (P̂∗) = n−1(2P̂Y − 1)2P̂X(1 − P̂X) + n−1(2P̂X − 1)2P̂Y (1 − P̂Y )

+ 4n−2P̂Y P̂X(1 − P̂Y )(1 − P̂X).

Having calculated the Pesaran-Timmermann statistic for each model from
the forecast values and real values for the change in the inflation rate over
the object forecasting period (1 to 4 periods ahead), we go on to select those
models that reject the null hypothesis described above at the 5% significance
level31(i.e., those models for which the Pesaran-Timmermann statistic lies in
the right-side critical region).

30For more detail, see Pesaran and Timmermann (1995). We should note that, although
the test is based on asymptotic theory, the sample size in the example in this paper is small.

31Models that clear a left-sided 5% significance test may contain important information
regarding, for example, inverse correlation. However, since here we are looking to pick out
those models whose directional movements are in step with actual movements in the inflation
rate, we only select those models that clear a right-sided 5% significance test.
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(b) Construction of the qualitative up-down Forecast: Using the
models selected in (a) above, we now calculate out-of-sample dynamic fore-
casts for the object forecasting period. Construction follows that of the fan
charts above in that forecasting of the 4 periods from 2000/Q1-Q4 is carried
out using data from an estimation period that goes up to 1999/Q4; while
the estimation period for forecasting of the 4 periods 2001/Q1-Q4 goes up to
2000/Q4.

Having produced these forecasts, we then examine, for each period, the
proportion of models that produce positive forecasts of the change in the
inflation rate relative to those that produce negative forecasts. We note down
which is greater with the requisite sign.

The results are shown in Chart 6, where, comparing the respective signs
of the forecasts versus the realized values, we see that rises or falls in the
inflation rate are correctly predicted in 5 out of 8 periods. In particular, it is
worth noting the consistent accuracy of the qualitative forecast in periods in
which there is a conspicuous difference in the proportion of models registering
either negative or positive changes32 (i.e., 2000/Q1, Q3, Q4; 2001/Q2).

While the relative success of this qualitative up-down forecast clearly still
requires some verification through many more examples in terms of its practi-
cal applicability, it may nevertheless be deemed useful as a supplement to the
information provided by the forecast distribution and associated fan charts.

3 Conclusion

In this paper, using forecasting of the inflation rate as an illustration, we
present our SFM as an example of a technique for producing forecasts that
not only scores highly on objectivity, but also takes account of uncertainty.
The construction process can be outlined as follows. First of all, we build a
large number of VAR forecasting models; we then arrange these in order of
forecasting performance (in sample), select the model that performs best for
each of our objective forecasting periods, and carry out (out-of-sample) fore-
casting accordingly. This technique is then supplemented by the production
of fan charts that consider the uncertainty embodied in the forecast errors
and indeed inherent in the choice of model itself. We also suggest a way of
producing a qualitative up-down forecast.

The three forecast distributions that we produce (the top model distribu-

32In a related point, for the 3 periods in which the forecast was out, it is worth mentioning
that the proportions of models predicting positive versus those predicting negative values
were almost the same.
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tion, the nonparametric distribution, and the mixed distribution) offer infor-
mation that may be deemed valuable when thinking quantitatively about the
extent of the uncertainty involved in inflation forecasting. In addition, our
qualitative up-down forecast roughly follows rises and falls in the actual infla-
tion rate. Although we still need to confirm the practical value of our SFM
by carrying out further comparison between forecast and actual values, it is
nevertheless fair to say that this SFM both offers valuable forecasting informa-
tion that it would be impossible to extract from a single structural forecasting
model, and that it can also play a useful role in providing a cross-check on the
forecasts produced using such structural models.

Without a more comprehensive set of forecast and real values, we cannot
judge which of our three forecast distributions is to be preferred.33 For this
reason, at the present time, our SFM comes into its own when we are looking
to evaluate the extent to which a given inflation forecast from some structural
model may actually be realized in future. In such a case, we can put to work
both the fan charts, produced using three different techniques, and the results
of the qualitative up-down forecast, and in approaching the task of evaluation
from several directions at once, demonstrate the value of our SFM as a tool
for practical forecasting.

33In other words, we are unable to rank in any simple way the parametric, nonparametric,
and semiparametric methodologies.
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[9] Härdle, W., and Linton, O. (1994), “Applied Nonparametric Methods,”
in Engle, R.F., and McFadden, L. (eds.), The Handbook of Econometrics,
Vol.IV, New York, North-Holland, 2295-2339.

[10] Kasuya, M., and Shinki, K. (2001), “Bukka hendo no tenkanten yosoku
nitsuite (Forecasting turning points in price movements),” Bank of Japan
Research and Statistics Department Working Paper 01-20 (in Japanese).

[11] Kitagawa, G., and Kawasaki, Y. (2001), “Jikeiretsu moderu niyoru infure-
ritsu yosoku gosa no bunseki (Analysis on the inflation rate forecasting

21



errors from a time series model),” Bank of Japan Research and Statistics
Department Working Paper 01-13 (in Japanese).

[12] Krolzig, HM., and Hendry, D.F. (2001), “Computer automation of
general-to-specific model selection procedures,” Journal of Economic Dy-
namics and Control, 25, 831-866.

[13] Lütkepohl, H. (1991), Introduction to Multiple Time Series Analysis, New
York: Springer-Verlag.

[14] Melick, W.R., and Thomas, C.P. (1997), “Recovering an Assets Implied
PDF from Option Prices: An Application to Crude Oil during the Gulf
Crisis,” Journal of Financial and Quantitative Analysis, 32(1), 91-115.

[15] Pagan, A.R., and Ullah, A. (1999), Nonparametric Econometrics, Cam-
bridge: Cambridge University Press.

[16] Pesaran, M.H., and Timmermann, A. (1992), “A Simple Nonparamet-
ric test of Predictive Performance,” Journal of Business and Economic
Statistics, 10(4), 461-465.

[17] Pesaran, M.H., and Timmermann, A. (1995), “Predictability of Stock
Returns: Robustness and Economic Significance,”Journal of Finance, 50,
1201-1228.

[18] Powell, J.L. (1994), “Estimation of Semiparametric Models,” in Engle,
R.F., and McFadden, L. (eds.), The Handbook of Econometrics, Vol.IV,
New York, North-Holland, 2443-2521.

[19] Silverman, B.W. (1986), Density Estimation for Statistics and Data Anal-
ysis, London: Chapman and Hall.

[20] Stock, J.H., and Watson, M.W. (1999), “Forecasting Inflation,” Journal
of Monetary Economics, 44, 293-335.

[21] Velu, R.P., Reinsel, G.C., and Wichern, D.W. (1986), “Reduced Rank
Models for Multiple Time Series,” Biometrika, 73, 105-118.

22



s
sk

                                                                                        (Chart1)

An Outline of the Forecasting Method
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(Chart 2)

0  Seasonally adjusted; 

 (excluding fresh food, "package tours to overseas," personal computer)  consumption tax adjusted
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11  Hourly contractual cash earnings

 ( = contractual cash earnings/ total number of working hours)
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13
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 Government bond yield (10-year)

 TOPIX (average closing)

 Monetary aggregate (M2+CDs) (average outstanding)

 SNA exports of goods and services (in real terms)

 Rate of unemployed in labor force

 Tankan diffusion index of employment conditions

 Industrial production index (value-added weights)

 Index of tertiary industry activity

 SNA private consumption (in real terms)

 SNA non-residential investment (in real terms)

 SNA public investment (in real terms)

 Import penetration of consumption goods  (imports of 

 consumption goods / aggregate supply of consumption goods)

 Nominal effective exchange rate

 Seasonally adjusted

 Seasonally adjusted

 Seasonally adjusted

 Seasonally adjusted

 Seasonally adjusted

 Seasonally adjusted

 Seasonally adjusted

 Seasonally adjusted

 Seasonally adjusted

Data Method of adjustment

 consumption tax adjusted

 Import price index

 Domestic wholesale price index

 Consumer Price Index

 Data Series used in Performing Estimation

Sources:  Cabinet office, "National Accounts"; Ministry of Health, Labor, and Welfare, “Monthly Labor Survey";
Ministry of the Economy, Trade, and Industry,"Indices of Industrial Production,""Indices of Industrial Domestic
Shipments and Imports,""Indices of Tertiary Industry Activity"; Bank of Japan "Balance of Payment
Monthly,""Wholesale price index," "Tankan ,  Short-term Economic Survey of Enterprises in Japan,""Money
Supply," etc.

Notes:
Seasonal adjustment of the CPI is carried out after exclusion of (a) fresh food,
(b) package tours to overaseas, and (c) personal computers.
This is because each items:
(a) is subject to large seasonal variability depending on climage change;
(b) is subject to large seasonal fluctuations, however, since this is newly adopted
    from the 2000 base, sample size of this item is insufficient for seasonal adjustment;
(c) has exhibited downward trend movement since 2000, because of the new adoption
    from the 2000 base and as a result these items have been factors causing disturbance in the overall CPI time series.



(Chart 3)
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Note:
The thinner line depicts the actual value, and the thicker line the mean of the forecast
distribution.
The fan charts illustrate 10% increments in the width of the band around the mean using
gradations in the shading.



(Chart 4)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

97 98 99 00 01
CY

Fan Charts based on the Nonparametric Distribution

+40 %
+30 %
+20 %
+10 %
-10 %
-20 %
-30 %
-40 %

Note:
The thinner line depicts the actual value, and the thicker line the mean of the forecast
distribution.
The fan charts illustrate 10% increments in the width of the band around the mean using
gradations in the shading.

estimation period:
83/Q1-99/Q4

estimation period:
83/Q1-00/Q4

(s.a.;ann.; q/q% chg.)



(Chart 5)
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(Chart 6)

00/1Q 2Q 3Q 4Q 01/1Q 2Q 3Q 4Q
(1) + 66% 57% 29% 12% 53% 12% 42% 51%
(2) - 34% 43% 71% 88% 47% 88% 58% 49%
(3) forecast value + + - - + - - +

(4) actual value + - - - + - + -

A Qualitative Up-Down Forecast based on
the Pesaran-Timmermann Test

Note:
Out of the group of models for which the Pesaran-Timmermann statistic lay in the right-side 5% critical
region, (1) describes the proportion for which the forecast value was positive (i.e., the inflation rate
rose) in that respective period; while (2) describes the proportion for which the forecast value was
negative (i.e. the inflation rate fell). By illustrating the case when a larger proportion of models have
positive than have negative values with a plus sign, and the reverse case with a minus sign, we express
in (3) whether a relatively larger number of the forecasts of the inflation rate from the selected models
suggest a rise or a fall. In (4), for the respective period we look at the sign of the change in the actual
value of the inflation rate from the value recorded in the previous period: we illustrate a rise with a plus
sign, and a fall with a minus sign.
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