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Abstract 

 The literature provides evidence that term spreads help predict output growth, inflation, 

and interest rates. This paper integrates and explains these predictability results by using an affine 

term structure model with observable macroeconomic factors for U.S. data. The results suggest 

that consumers are willing to pay a higher premium for a consumption hedge during a higher 

inflation regime. This causes term spreads to react to inflation shocks, which proves useful for 

prediction. We also find that term spreads using the short end of the yield curve have less 

predictive power than many other spreads. We attribute this to monetary policy inertia. 

 

JEL classification: E43; E52  

Keywords: Term structure, Monetary policy, VAR 

                                                   
☆ I am especially grateful to my dissertation advisor, James D. Hamilton for his valuable support and 
comments. I would like to thank Marjorie Flavin, Bruce Lehmann, Alan Timmermann, Keiichi Tanaka, 
Nobuyuki Oda, Akira Ieda and participants in the presentations at UCSD and the Bank of Japan. I am also 
grateful to Monica Piazzesi for answering my questions on her papers. The views expressed here are those of 
the author, and not necessarily of the Bank of Japan. 
∗ Address: 2-1-1 Nihonbashi-Hongokucho Chuo-ku Tokyo 103-8660 Japan 
Tel.: +81-3-3279-1111 (Bank of Japan), Fax: +81-3-5255-6758, E-mail address: hibiki.ichiue@boj.or.jp 



2 

1. Introduction 

Many studies in the literature provide evidence that interest rate term spreads contain 

information about three different future economic variables: output growth, inflation, and interest 

rates, for various sample periods and countries. But the literatures examining the predictability of 

these three variables have been quite distinctive. Studies of the predictability of interest rates 

have been mainly conducted by financial economists testing a popularly-held classic theory, 

namely the expectations hypothesis1. According to this theory, the long rate is equal to the 

average of expected future short rates plus a time-invariant term premium. However, in spite of 

its popularity, this hypothesis has typically been rejected. Many economists argue the 

expectations hypothesis fails because of the assumption of a time-invariant term premium2. The 

literature on the predictability of inflation also has a long history following Fama’s (1975) classic 

study3. On the other hand, the history of the literature studying the predictability of output growth 

is relatively recent. After Stock and Watson (1989) found that the term spread plays an important 

role in their index of economic leading indicators, many researchers investigated this predictive 

relationship4. 

 Although there is an extensive literature providing evidence and explanations for each of 

the predictive relationships between term spreads on the one hand, and on the other, output 

growth, inflation, and interest rates, no paper has yet tried to analyze the interaction between 

these three relationships. The main purpose of this paper is to integrate these predictability results 

in an attempt to answer to an important question: why can the term structure predict future 

movements in economic variables? This study will help us understand the information contained 

in the term structure of interest rates, and the relationship between the term structure and business 

                                                   
1 For empirical results of tests of the expectations hypothesis, see, for example, Campbell and Shiller (1991), 
Hardouvelis (1994), Rudebusch (1995), Campbell, Lo and MacKinlay (1997), Roberds and Whiteman (1999), 
Bekaert, Hodrick and Marshall (2001), and Cochrane (2001). 
2 The literature provides evidence that the term premium is in fact time-varying. See, for example, Mankiw 
and Miron (1986), Engle, Lilien and Robins (1987), Engle and Ng (1993), Dotsey and Otrok (1995), and 
Balduzzi, Bertola and Foresi (1997). 
3 For empirical results on the predictability of inflation, see, for example, Mishkin (1988, 1990a, b, 1991), 
Fama (1990), Jorion and Mishkin (1991), Estrella and Mishkin (1997), and Kozicki (1997). 
4 For empirical results on the value of term spreads for predicting output growth or recessions, see, for 
example, Estrella and Hardouvelis (1991), Plosser and Rouwenhost (1994), Haubrich and Dombrosky (1996), 
Bonser-Neal and Morley(1997), Dueker (1997), Estrella and Mishkin (1997), Kozicki (1997), Bernard and 
Gerlach (1998), Dotsey (1998), and Hamilton and Kim (2002). 
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cycle. 

 We use an affine term structure model (ATSM) with observable economic factors as our 

main tool, basing our investigation on U.S. data. There have been a number of studies following 

Ang and Piazzesi’s (2003) introduction of this type of model to investigate the relationship 

between macroeconomic variables and the term structure, for example, Dewachter and Lyrio 

(2002), Hordahl, Tristani and Vestin (2002), and Wu (2002). These studies depend much on 

macroeconomic theories to restrict their models so that the results can be interpreted more easily. 

Furthermore, these models typically use latent variables other than observable variables, and 

interpret the latent factors as variables such as the monetary policy authority’s inflation target. 

 Conversely, Ang, Piazzesi and Wei (2003) use only observable variables, and they do not 

use macroeconomic theories other than the no-arbitrage assumption to restrict their model. This 

type of model can be interpreted either as a VAR with no-arbitrage restrictions or as an ATSM 

with observable factors that follow a VAR process. In this paper, we call this type of model a 

VAR-ATSM for convenience. Ang, Piazzesi and Wei use their VAR-ATSM to examine the 

predictability of output growth using term spreads. We follow this basic idea, which we extend to 

include the predictive relationships with inflation and short rates5. Although their basic idea is 

very useful for investigating these predictive relationships, some of their assumptions and aspects 

of their estimation method are not suitable to our purpose here. Ang, Piazzesi and Wei try to 

identify good forecasting models by comparing the predictive powers, specifically the rolling 

out-of-sample forecasting performances, of various combinations of regressors. Their 

parsimonious VAR(1) model and computationally fast, though less efficient, estimation method 

may be appropriate for such an exercise. Our aim, however, is to shed light on the source of the 

predictability by analyzing the relationship between impulse response functions and R2s. Thus we 

adopt VAR with more lags and a more efficient estimation method, and these contribute to the 

reliability of the impulse response functions. 

 We have three main findings. First, the time-varying market price of output growth risk, 

                                                   
5 Before Ang, Piazzesi and Wei (2003), several papers use term structure models with only latent factors for 
analyzing predictability using term spreads. For example, Roberds and Whiteman (1999), Dai and Singleton 
(2002), and Duffee (2002) examine whether empirical results on the predictability of interest rates can be fitted 
using ATSMs. Hamilton and Kim (2002) use the Longstaff and Schwarz’s (1992) term structure model to 
explain the predictability of output growth. Since these models use only latent factors, however, they have only 
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which is sensitive to the inflation rate, plays a key role in the predictive relationships. When the 

inflation rate is higher, consumers are willing to pay a higher premium for a consumption hedge, 

which may be explained by a simple model with money in the utility function and a monetary 

policy rule. This causes term spreads to be sensitive to inflation shocks. Since the inflation shock 

has persistent effects not only on inflation but also on output growth and interest rates, the 

response of term spreads to the inflation shock helps predict these variables. Second, we also find 

that term spreads using the short end of the yield curve have less predictive power than many 

spreads between longer rates. This fact is attributable to the inertial character of monetary policy. 

Third, it is hard to predict output growth with term spreads at short horizons, because the 

monetary policy shock affects output growth with a lag while the term structure responds to the 

shock immediately. 

 The rest of this paper is organized as follows. Section 2 presents stylized facts from 

simple OLS results. In Section 3, in order to understand the basic properties of ATSMs, we 

consider some simple representative models. This section will help to prepare for the more 

complicated VAR-ATSM introduced in Section 4. Estimation methods and results are considered 

in Section 5. Here we discuss the relationship between time-varying market prices of risk and the 

information included in the term structure. In Section 6, we use impulse response functions and 

model-implied R2s, which can be obtained from the estimated VAR-ATSM, to explain why term 

spreads predict well. Section 7 concludes. 

 

 

2. Simple OLS Results 

The empirical studies in the literature examine the predictive power of term spreads for 

future output growth, inflation, and interest rates using a common econometric method, 

regressions on the term spreads. However, these regressions do not have exactly the same form. 

For example, Estrella and Hardouvelis (1991) examine output growth predictability by regressing 

cumulative output growth, up to h quarters ahead, on a fixed term spread between ten-year and 

                                                                                                                                                                     
limited value for analyzing the relationships between the term structure and macroeconomic variables. 
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three-month interest rates: 

(40) (1)( )t t h t t t hg r rα β ε→ + += + − +      (1) 

where 
1 2t tg →  is the output growth rate from 1t  to 2t , and )(n

tr  is the n-period nominal 

discount rate on Treasury bills or bonds at the end of t. On the other hand, Mishkin (1990a) 

examines inflation predictability by regressing the difference between h-quarter and 1-year 

cumulative inflation rates on term spreads of matching maturity: 

  ( ) (4)
4 ( )h

t t h t t t t t hr rπ π α β ε→ + → + +− = + − +     (2) 

where 
1 2t tπ →  is the inflation rate from 1t  to 2t . Campbell and Shiller (1991), meanwhile, 

provide evidence for short rate predictability by using the most popular expectations hypothesis 

test, regressions of average future short rate changes on term spreads of matching maturity: 

1
(1) (1) ( ) (1)

1
0

1 ( ) ( )
h

h
t i t t t t h

i
r r r r

h
α β ε

−

+ + −
=

− = + − +∑ .    (3) 

All three types of study find that the slope coefficient β  is significantly different from zero in 

many cases, which means that term spreads have predictive power for forecasting movements in 

macroeconomic variables. Typically they report substantial t-stats and R2s for these regressions. 

As one can easily see, these empirical regressions do not have the same form. For 

example, (1) and (2) do not use the same regressor. Regression (1) uses a fixed regressor, while 

the regressor in (2) depends on the forecasting horizon h. In order to analyze the interaction 

between the predictive relationships, therefore, we need to put the empirical results for predicting 

the different variables on a consistent basis. For this purpose, we use the regressions below, 

( ) ( )( )n m
t h t t t hg r rα β ε+ += + − + ;     (4) 

( ) ( )( )n m
t h t t t hr rπ α β ε+ += + − + ;     (5) 

(1) ( ) ( )( )n m
t h t t t hr r rα β ε+ += + − + ;     (6) 

for various combinations of h, n, and m (h = 1,2,…,12; n, m = 2, 4, 8, 12, 16, 20, and n > m), 

where tg  is the real GDP growth rate from t-1 to t, and tπ  is the inflation rate of GDP deflator 
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from t-1 to t. We use discount rate data from CRSP6. U.S. quarterly data are used, so we interpret 

one period as one quarter. tg , tπ , and )(n
tr  are all defined as rates per quarter. The sample 

period is 1964:1Q-2001:4Q, following Fama and Bliss (1987) who comment that long rate data 

before 1964 may be unreliable. There are two other properties of the set of regressions (4)-(6) 

worth commenting on. First, regressands are continuously compounded marginal rates or 

one-period short rates. Since cumulative rates are the averages of marginal rates, marginal rates 

are more convenient for specifying which part of the future the term spreads can predict well. 

Second, we use various forecasting horizons h and term spreads )()( m
t

n
t rr − , so we can specify 

which components of the yield curve predict at which future horizons. 

 Figures 1 and 2 display the t-stats and R2s of OLS regressions (4)-(6) for selected term 

spreads. The 20Q-1Q spread has significant predictive power for output growth, inflation, and 

short rates, at least for shorter horizons. This result is consistent with the literature, which argues 

that term spreads between 5-year (or 10-year) and 3-month rates predict well. But surprisingly we 

found that term spreads without the 1Q rate perform better than the 20Q-1Q spread in many cases. 

For example, Figure 2 shows that the performance of the 12Q-8Q spread is superior, except for 

predicting output growth rates at shorter horizons. On the other hand, spreads between short rates, 

such as the 2Q-1Q spread, are almost useless. Together, these facts seem to imply that term 

spreads using the short end of the yield curve have less predictive power. This is surprising 

because the existing literature pays little attention to spreads that exclude the short end of the 

yield curve, and several studies including Ang, Piazzesi and Wei (2003) argue that the best 

predictive performance is achieved by maximal maturity difference. Another notable feature of 

the graphs is the hump-shape traced out by the R2s of the output growth regressions. This 

suggests that it is difficult to predict the output growth rate at short horizons.  

 Why do term spreads have this kind of predictive power? Since the OLS results do not 

answer this question, we need a more structured model. A useful method for interpreting these 

                                                   
6 CRSP (Center for Research in Security Prices, Graduate School of Business, the University of Chicago: 
www.crsp.uchicago.edu. All rights reserved.) Monthly US Treasury Database is used with permission. We can 
construct discount rates for 1, 2, 4, 8, 12, 16, 20 quarters from the CRSP data. The 1 quarter (3 month) rate is 
obtained from average rates in the CRSP risk free rates file. The 2 quarter (6 month) rate is constructed by 
multiplying average-YTM by 12 (there is no data on 9/30/1987, so we interpolate with 3 and 12 month rates). 
The other rates are obtained from the Fama-Bliss discount bonds file. 
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OLS results is proposed by Ang, Piazzesi and Wei (2003). They introduce a VAR-ATSM to 

compare the predictive powers of various combinations of regressors. We follow their basic idea, 

but extend their analysis so as to include all three predictive relationships, between term spreads 

on the one hand, and on the other each of output growth, inflation, and short rates. Although their 

VAR-ATSM is very useful for examining the relationships between macroeconomic variables and 

the yield curve, some of their assumptions and aspects of their estimation method are not suitable 

to our purpose. We therefore modify them in Sections 4 and 5. Then, in Section 6, we try to shed 

light on the source of the predictability by using impulse response functions and R2s, which can 

be calculated from the estimates of the VAR-ATSM. 

 

 

3. Simple Affine Term Structure Models with Observable Factors 

Before introducing our VAR-ATSM in the next section, let’s consider two simpler 

ATSMs. Since the complexity of the VAR-ATSM defies easy interpretations, these simpler 

models provide a useful starting point. A particular complication arises as a result of time-varying 

market prices of risk, which many classic term structure models assume constant. Since, however, 

these affect the relationship between short and long rates, i.e. movements in term spreads, they 

are very important for examining the predictive power of term spreads. 

 

3.1. An ATSM with One Short Rate Factor 

 Suppose that quarterly data on the short (3-month) rate )1(
tr  are characterized by an 

AR(1) process: 

(1) (1)
1 , 1t r r t r r tr c r uφ σ+ += + + ,      (7) 

where , 1 ~ (0,1)r tu N+  i.i.d., and 0rσ > . Table 1 reports the OLS estimates for (7), which 

demonstrate the persistence of the short rate ( 0.9037rφ = ). Suppose that the stochastic discount 

factor 1+tM  follows a conditional log-normal distribution: 
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(1) 2
1 , , , 1

1exp
2t t r t r t r tM r uλ λ+ +

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

,    (8) 

where 

)1(
, trrtr rδγλ += .       (9) 

In this model, therefore, the market price of risk trλ ,  is time-varying, depending on the factor 

)1(
tr . In other words, the stochastic discount factor 1+tM  is affected not only by the exogenous 

shock , 1r tu +  but also by the level of the factor )1(
tr  through the time-varying market price of risk. 

Thus the effects of the factor on the yield curve are complicated. Note that if 0=rδ , i.e. trλ ,  is 

time-invariant, this is just the classic Vasicek (1977) model. 

 Let’s assume there is no arbitrage opportunity in the Treasury market. Since this market 

is one of the largest and most highly liquid markets in the world, the no-arbitrage assumption is 

extremely reasonable. Under the no-arbitrage assumption, we can use the fundamental asset 

pricing equation for bond prices, 

  ( ) ( 1)
1 1[ ]n n

t t t tq E M q −
+ += ,      (10) 

for n = 1, 2, …, and all t, where ( )n
tq  is the n-period bond price with (0) 1tq = . Note that (8) and 

(10) lead to  

(1) (1)exp( )t tq r= − .       (11) 

This is exactly the definition of the relationship between the 1-period bond price and the 

continuously compounded discount rate. In fact, 1+tM  is chosen so that (11) holds.  

By using the fundamental asset pricing equation (10), we can derive closed forms for the 

discount rates ( )n
tr  as affine functions of the factor )1(

tr : 

( ) ( ) ( ) (1)ˆ n n n
t tr a b r= + , n = 1, 2, …    (12) 

where 

( ) ( ) ( ) ( )/n n n na A n, b B /n= − = − ,      (13) 



9 

( 1) ( ) ( ) 2 ( )21
2

n n n n
r r r rA A B (c γ ) Bσ σ+ = + − + ,     (14) 

( 1) ( ) 1n n
r r rB B ( δ )φ σ+ = − − ,     (15) 

0)1( =A , (1) 1B = − 7.      (16) 

In (12), the factor loading on the short rate factor ( )nb  can be interpreted as the 

sensitivity of longer rates ( )n
tr  to the short rate )1(

tr . From (13), (15), and (16), we can obtain a 

closed form for ( )nb : 

  
1

( )

0

1 )
n

n j
r r r

j

b ( δ
n

φ σ
−

=

= −∑ .      (17) 

Note that rγ  does not appear in (17). Since the movement of short rates is less volatile than that 

of long rates for U.S. data, it is reasonable that the absolute value of ( )nb  decreases as n 

increases. To satisfy this, we need parameter values such that  

| | 1r r rδφ σ− < .        (18) 

 Suppose 0r r rδφ σ− > , which guarantees ( ) 0nb > . From (17), we can say that the 

sensitivity of long rates to the short rate is weaker when rδ  is higher. We can relate this claim to 

the expectations hypothesis. From (7), (12), and (17), we can obtain the term premium: 

11 1 1
( ) (1) ( ) (1)

0 0 0 0

1 1 1[ ] [( ) ]
jn n n

n n i j j
t t t j r r r r r r t

j j i j
r E r a c r

n n n
φ φ σ δ φ

−− − −

+
= = = =

− = − + − −∑ ∑∑ ∑ .  (19) 

The term premium is therefore constant, i.e. the expectation hypothesis holds, only when 0=rδ . 

In this case, movements in long rates ( )n
tr  depend only on movements in average expected short 

rates 11 (1)
0

[ ]n
t t jj

n E r−−
+=∑ . Since )1(

tr  follows a persistent AR(1) process, an increase in )1(
tr  raises 

( )n
tr . However, when 0rδ > , a rise in )1(

tr  also has a negative effect on ( )n
tr  through a decrease 

in the term premium. Therefore, positive rδ  weakens the relationship between short and long 

                                                   
7 Since this is one of the simplest special cases of VAR-ATSM, it is sufficient to check the proof for the general 
model introduced in Section 4. For the proof, see Ang and Piazzesi (2003). 



10 

rates. Then the sensitivity of the term spread to the factor )1(
tr  is stronger when rδ  is larger. 

 

3.2. C-CAPM with money in the utility (MIU) function 

 Let’s consider a C-CAPM, in which the stochastic discount factor follows  

1 1
1 1

( , ) exp( )
( , )

C t t
t t

C t t

u C mM
u C m

δ π+ +
+ += − ,     (20) 

where δ  is the subjective discount factor, tC  is consumption and tm  is the real money 

holding at t. Suppose that the form of the utility function is 

  1( , )t t t tu C m C mρ θ−= ,      (21) 

where 0 1ρ< <  and 0 1θ≤ < . Then if t tC Y= 8 in equilibrium, (20) can be rewritten as 

1
1 1

1

1 1 1

1 1 1 , , 1 , 1 , , 1

exp( )

exp( )
exp(log( ) [ ] )

t t
t t

t t

t t t

t t t t g g t t t

Y mM
Y m

g
E g u u

ρ θ

ε µ ε π π

δ π

δ ρ θµ π
δ ρ θµ π ρσ θε σ

+
+ +

+

+ + +

+ + + + + +

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= − + −

= − − + − + − , (22) 

where 1tµ +  is the real money growth rate from t to t+1, , 1 1 1[ ]t t t tEµε µ µ+ + += − , 

, , 1 1 1[ ]g g t t t tu g E gεσ + + += − , , , 1 1 1[ ]t t t tu Eε π πσ π π+ + += − , , 0gεσ > , , 0ε πσ > , , 1 ~ (0,1)g tu N+ , and 

, 1 ~ (0,1)tu Nπ + . For simplicity, let’s assume , 1g tu +  and , 1tuπ +  are uncorrelated, as we often 

observe empirically.  

First, let’s consider a simple case in which 0θ = , i.e. utility is independent of money 

holding. Since 0ρ > , a positive output growth shock has a negative effect on 1+tM . This is 

consistent with a role for bonds as a consumption hedge. That is, when the future output growth 

rate is higher, consumers feel that future cash flows are less important. Note that both market 

                                                   
8 We assume this just for simplicity. We can also generalize this model to be consistent with the literature, 
which shows that the dynamics of the consumption growth rate are smoother than those of the output growth 
rate, by assuming that the consumption growth rate follows an affine function of the output growth rate with a 
positive slope coefficient of less than unity. Even in this generalized form, the main properties of the model do 
not change. 
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prices of risk, corresponding to the output growth shock , 1g tu +  and the inflation shock , 1tuπ + , are 

constant ( ,gερσ  and ,ε πσ  respectively). 

 Next, let’s consider a general case in which 0θ >  and , 1tµε +  can be represented as a 

linear combination of , 1g tu +  and , 1tuπ +  with time-varying weights: 

  , 1 , , 1 , , 1t g t g t t tw u w uµ π πε + + += + ,     (23) 

where the weights ,g tw  and ,twπ  are affine functions of tg  and tπ : 

  ,g t g gg t g tw g πω ω ω π= + + ,      (24) 

,t g t tw gπ π π ππω ω ω π= + + .      (25) 

The idea behind (23) is similar to Taylor’s rule. But (23) uses the real money growth rate instead 

of the target short rate, and has time-varying weights. The time-varying weights can be 

interpreted, for example, as follows. Suppose that the monetary policy authority (the Fed) can 

perfectly control the real money growth rate 1tµ +  (i.e. , 1tµε + ) and can observe , 1g tu +  and , 1tuπ +  

before making their policy decision. In response to a surprise increase in the output growth rate 

( , 1 0g tu + > ), the Fed may accommodate any increase in money demand caused by the output 

growth shock by allowing the real money growth rate to rise. Conversely, the Fed may suppress 

the real money growth rate in response to the shock, if they consider that this output growth 

shock may cause serious inflation in the future. These two plausible stories imply that the weight 

on the output growth shock ,g tw  can be either positive or negative. We can also discuss the 

weight on the inflation shock ,twπ  in a similar way. 

With (23)-(25), (22) can be rewritten as  

1 1 1 1

, , 1

, , 1

exp(log( ) [ ]
[( ) ]

[( ) ] )

t t t t t

g g gg t g t g t

g t t t

M E g
g u

g u
ε π

ε π π π ππ π

δ ρ θµ π
ρσ θω θω θω π

σ θω θω θω π

+ + + +

+

+

= − − +

− − − −

− − − − .  (26) 

Now, in contrast with the simple C-CAPM with 0θ = , the market prices of risk corresponding 

to , 1g tu +  and , 1tuπ +  are time-varying, depending on tg  and tπ . From (10), (11) and (26), we 
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can obtain  

(1)
1 1 1

2 2
, ,

1log( ) [ ]

[( ) ] [( ) ]
2

t t t t t

g g gg t g t g t t

r E g

g gε π ε π π π ππ

ρ θµ π
δ
ρσ θω θω θω π σ θω θω θω π

+ + += + − +

− − − + − − −
− . (27)

  

 Although this type of MIU function is often used in the literature, the validity of this 

theoretical model has been the subject of criticism. Specifically, the utility function may not 

depend on money directly. Also, the time-separable utility function may be unreasonable due to, 

for example, habit formation. In Section 4, we will introduce a more general and less restricted 

model, which nests both models discussed in Section 3. 

 

 

4. The VAR-ATSM 

Now let’s introduce the VAR-ATSM used for later analyses. This type of model is used by 

Ang, Piazzesi and Wei (2003) to examine the predictive power of terms spreads for the output 

growth rate. We use the VAR-ATSM to examine the predictability not only of output growth, but 

also of inflation and short rates. The VAR-ATSM can be interpreted as either a VAR model with 

no-arbitrage restrictions or an ATSM with observable factors that follow a VAR process. Let’s 

start by considering the factor VAR. 

We use four variables as factors: the output growth rate tg , the inflation rate tπ , the 

short rate )1(
tr , and a benchmark term spread ts . For ts , we use the term spread between 

ten-year Treasury bond YTM at the end of quarter t and )1(
tr . These four macroeconomic 

variables are assumed to follow a VAR(4) process, 

1 1 2 2 3 3 4 4t t t t t t− − − −= + + + + +x c Φ x Φ x Φ x Φ x ε ,   (28) 

where (1)( , , , ) 't t t t tg r sπ=x  and , , , ,( , , , ) 't g t t r t s tπε ε ε ε=ε . Following the VAR literature, let’s 

interpret )1(
tr  as a proxy for the monetary policy instrument. Ang, Piazzesi and Wei (2003) use a 

simpler model than ours. They use a three variable VAR with only one lag, and do not include the 
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inflation rate. The VAR literature, however, usually uses at least four lags for quarterly data, and 

indicates that the inflation rate plays an important role. Our generalization of Ang, Piazzesi and 

Wei’s model is in line with this literature. 

To give a structural interpretation to the VAR, we need identifying assumptions. We use 

a recursive structure with the variables ordered as (1)( , , , )t t t tg r sπ . That is,  

t t=ε Σu         (29) 

where exogenous shocks , , , ,( , , , ) ' ~ ( , )t g t t r t s tu u u u Nπ=u 0 I  i.i.d., and Σ  is lower-triangular 

with positive diagonal elements. Since significant responses of tg  and tπ  to contemporaneous 

interest rates are implausible, our ordering places them before )1(
tr  and ts . The order of tg  

and tπ  should not seriously affect the empirical results, since the correlation between ,g tε  and 

,tπε  is small as shown later. The correlation, however, between ,r tε  and ,s tε  is too large to be 

ignored. For identifying the last two exogenous shocks ,r tu  and ,s tu , typically we need to adopt 

one of two assumptions: the short rate (the monetary policy authority) does not respond to the 

term spread (bond market) contemporaneously, or vice versa. Since we often observe long rates 

moving immediately after changes in monetary policy, the second assumption seems 

unreasonable. In addition, there is no clear evidence supporting a contemporaneous monetary 

policy response to the bond market. In fact, the literature provides evidence that the Fed’s 

behavior is inertial: the Fed’s responses to new information tend to be delayed. Thus we adopt the 

first assumption9. As will be seen in Section 6, the impulse responses seem to be reasonable, and 

support our recursive assumption. With this ordering, each component of tu  can be interpreted 

as the exogenous shock to the corresponding variable. We call them output growth, inflation, 

monetary policy, and spread shocks, respectively. Now we may interpret the first three rows of 

system (28) as an IS curve, a Phillips curve, and a monetary policy rule, respectively. The last 

row can be interpreted as an endogenous response function for the bond market. 

 We can rewrite the VAR in (28) into companion form, 

                                                   
9 Most studies in the VAR literature using both short and long rates choose the first assumption. For example, 
Leeper, Sims, and Zha (1996) discuss this issue in detail, and conclude that the first assumption is less harmful 
than the second. 
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11 2 3 4

1 2

2 3

3 4

t t t

t t

t t

t t

−

− −

− −

− −

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

x xc Φ Φ Φ Φ Σ 0 0 0 u
x x0 I 0 0 0 0 0 0 0 0
x x0 0 I 0 0 0 0 0 0 0
x x0 0 0 I 0 0 0 0 0 0

. (30) 

or 

 1t t t−= + +X c ΦX Σu� �� � ,      (31) 

where (1) (1)
3 3 3 3( , , , , , , , , ) 't t t t t t t t tg r s g r sπ π− − − −=X …  is the 16×1 state vector. 

The stochastic discount factor is defined as  

(1)
1 1

(1)
, , 1 , , 1 , , 1 , , 1

1exp ' '
2
1exp '
2

t t t t t t

t t t g t g t t t r t r t s t s t

M r

r u u u uπ πλ λ λ λ

+ +

+ + + +

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠
⎛ ⎞= − − − − − −⎜ ⎟
⎝ ⎠

λ λ λ u

λ λ ,  (32)
 

where , , , ,( , , , ) 't g t t r t s tπλ λ λ λ=λ  are the market prices of risk. The vector tλ  is an affine function 

of the current economic variables (1)( , , , ) 't t t t tg r sπ=x : 

t t= +λ γ δx ,       (33) 

for a 4×1 vector γ  and a 4×4 matrix δ .  

 By using the fundamental asset pricing equation (10), we can obtain closed forms for 
)(n

tr
10: 

t
nnn

t ar Xb 'ˆ )()()( += ,  n = 1, 2, …    (34) 

where    

nnAa nn
n

n /,/ )()()( Bb −=−= ,     (35) 

                                                   
10 We derive the closed forms for discount rates so that the restriction (1) (1)

t̂ tr r=  holds. Since we can calculate 

YTMs from the discount rates, we could also restrict the model-implied spread ˆ
ts  to be equal to ts . But 

since there may be a large measurement error for ts , we do not use this restriction. 
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( 1) ( ) ( ) ( ) ( )1'( ) ' '
2

n n n n nA A+ = + − +B c Σγ B ΣΣ B� � �� � ,    (36) 

')~~~('' 3
)()1( eδΣΦBB −−=+ nn ,     (37) 

(1) 0A = , '' 3
)1( eB −= ,       (38) 

⎥
⎦

⎤
⎢
⎣

⎡
=

0
γ

γ~  and 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

δ 0
δ

0 0
� ,      (39) 

je  is the j th column of the 16×16 identity matrix. 

From (35), (37) and (38), we can obtain 

∑
−

=

−=
1

0
3

)( )~~~('1'
n

j

jn

n
δΣΦeb  .     (40) 

This is a quite similar form to (17), and again the term premium is constant only when =δ 0 .  

 

 

5. Estimation 

5.1. Estimation methods 

 The VAR-ATSM has 98 parameters consisting of 78 from the VAR ( c , 

1 2 3 4[ ]≡Φ Φ Φ Φ Φ , and Σ ) and 20 in market prices of risk ( γ  and δ ). We use GMM to 

estimate all parameters simultaneously11. Moment conditions are constructed by assuming that 

the three types of error are orthogonal to their instruments. The first of these are the VAR errors, 

1 1 2 2 3 3 4 4( )t t t t t t− − − −= − + + + +ε x c Φ x Φ x Φ x Φ x ,   (41) 

                                                   
11 Ang, Piazzesi and Wei (2003) use two-step estimation, in which the VAR parameters are estimated by OLS, 
and then, given these point estimates, γ  and δ  are estimated by minimizing the sum of the squared pricing 
errors of the discount rates. This estimation method has the advantage of having a smaller computational 
burden than our one-step estimation. On the other hand, since their estimation method does not use efficient 
weights on the moment conditions, it is less efficient than ours. In particular, their estimates for VAR 
parameters are unable to attain any of the efficiency gains from the no-arbitrage assumption. Since our later 
analyses are based on impulse response functions calculated from the estimates of VAR parameters, these 
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where the instruments are a constant, 1t−x , 2t−x , 3t−x , and 4t−x . The second type is the error of 

the covariance matrix of the VAR, 

vech( ' ')t t t= −ξ ΣΣ ε ε .      (42) 

We assume that the sample mean of tξ  is exactly equal to zero. Note that the moment conditions 

corresponding to (41) and (42) are exactly the same as in OLS. The third type consists of the 

discount rate pricing errors 

  ]'[ )20()16()12()8()4()2(
ttttttt νννννν=ν      (43) 

where 

)'(

ˆ
)()()(

)()()(

t
nnn

t

n
t

n
t

n
t

ar

rr

Xb+−=

−=ν

.     
(44) 

We use as instruments a constant, 1t−x , and 2t−x  for this type of moment. Now we have 132 

moment conditions, which are sufficient for identifying 98 parameters. We use the sample period 

1964:1Q-2001:4Q, the same as was used for the OLS regressions in Section 2. 

 We restrict the parameter space with two types of restriction. First, the moduli of the 

eigenvalues of Φ~  are restricted to be less than unity. Since the state vector tX  follows the 

VAR(1) process described in (31) with an autocorrelation coefficient matrix Φ~ , this restriction 

guarantees the stationarity of tX . In fact, estimation results show that this restriction does not 

bind. Second, the moduli of the eigenvalues of −Φ Σδ�� �  are restricted to be less than or equal to 

unity. From (40), the factor loading ( )nb  can be considered as the average of 3 '( ) j−e Φ Σδ�� � ; j = 

0, 1,…, n-1. So this second restriction guarantees that, with maturity n, the factor loading does 

not diverge. Note that this restriction is the generalization of (18). In our estimation results, only 

one of the restrictions binds12. 

                                                                                                                                                                     
efficiency gains are crucial. 
12 When a restriction binds, the spectral density matrix at frequency zero is not guaranteed to be the optimal 
weighting matrix in GMM. To solve this problem, we use the binding restriction to substitute out a parameter in 
advance. Inference will then be correct when we use the obtained non-restricted GMM to estimate parameters. 
The estimate and standard error of the substituted parameter are obtained by substituting out another parameter 
and re-estimating. 
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5.2. Estimation results 

The VAR estimates achieve significant efficiency gains from the no-arbitrage 

assumption, although point estimates are not so different from the results without the assumption. 

42 out of 68 estimates for c  and Φ  (not reported) are significantly different from zero at a size 

of 5%, while OLS without the no-arbitrage assumption gives only 17 significant estimates. These 

efficiency gains contribute to the reliability of the impulse response functions used later. 

 The estimate of Σ  is reported in Table 2. The diagonal elements of Σ  are much 

higher than the others in general, which implies that correlations among the reduced VAR errors 

are small, but the contemporaneous effect of the short rate shock ,r tu  on the term spread ts  is 

too large to be ignored. The output growth shock has the largest volatility, and this is about three 

times as large as the second largest volatility, that for the inflation shock. 

 Table 3 reports the estimates for γ  and δ . Seven out of 16 estimates of δ  are 

significantly different from zero at size of 5%. This result supports the idea that the market prices 

of risk are indeed time-varying, depending on economic variables. Among these significant 

parameters, the (1,1) and (1,2) elements of δ , 11δ  and 12δ  have the most influence on the term 

structure. The reason for this is as follows. Given the factors tX , the term structure depends only 

on the factor loadings ( )nb , which depend on −Φ Σδ�� �  from (40). So the influence of δ  on the 

term structure depends on Σ�  (i.e. Σ ). As we can see in Table 2, the (1,1) element of Σ , the 

volatility of output growth shock, is much larger than the others. So the first row of δ  is the 

most influential. Among the estimates in the first row, only 11δ  and 12δ  are significantly 

different from zero. In fact, as we will discuss in the next section, 12δ  plays a key role in the 

predictive relationships, while 11δ  does not. 

The positive sign of 12δ  implies that, when the inflation rate tπ  is higher, tg ,λ  is 

higher and bond holders are willing to pay a higher premium for an output growth risk hedge, 

which results in a lower term premium. Why do they pay a higher premium during a higher 

inflation regime? A possible explanation can be obtained from theＣ-CAPM framework with 
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MIU function discussed in subsection 3.2. Although this C-CAPM contains only output and 

inflation shocks, we can generalize the model to be consistent with the VAR-ATSM by adding 

monetary policy and spread shocks in (23) and letting the time-varying weights on shocks depend 

on all four VAR variables. From (26), 12 gπδ θω= − . So since 0θ > , 12 0δ >  implies 0gπω < . 

This means that, when the inflation rate tπ  is high, the weight on the output growth shock ,g tw  

is small and the Fed is less accommodating toward the output growth shock. This result makes 

sense if the Fed considers an output growth shock during a high inflation regime likely to cause 

serious future inflation. In such a situation, when inflation is high, the Fed tends to suppress the 

real money growth rate in response to an output growth shock. This less accommodating Fed 

response reduces the correlation between the output growth shock , 1g tu +  and the real money 

shock , 1tµε + . This reduced correlation causes future marginal utility, 

  1 1 1 1( , ) (1 )t t t tu C m C mρ θρ −
+ + + += − ,     (45) 

to be more sensitive to the output growth shock, which is a desired property for a consumption 

hedge. Therefore, consumers are willing to pay a larger premium to hold bonds during a higher 

inflation regime. We can also discuss the positive sign of 11δ  in a similar way. 

Finally, the J-test supports our estimates with a high p-value of 1.000013. To get a further 

sense of the robustness of the estimation results, let’s compare the model-implied discount rates 
( ) ( ) ( )ˆ n n n

t tr a= +b X  and the sample rates ( )n
tr . Table 4 reports means and standard deviations of 

( )n
tr  and ( )ˆ n

tr , and correlations between them for n = 2, 4, 8, 16, 20. Since they have very similar 

values for means and standard deviations and the correlations are close to unity, we can conclude 

that ( )ˆ n
tr  approximates ( )n

tr  very well. 

 

 

 

                                                   
13 The p-value is calculated from the J-stat (3.2313) and the degrees of freedom (23 = 122 - 98 - 1). Note that 
since the one of the restrictions on the eigenvalues binds, 1 should be subtracted from the degrees of freedom. 
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6. Impulse Response Functions and the Predictive Power of Term Spreads 

In the previous section, we obtained estimates for our VAR-ATSM with great efficiency 

gains from the no-arbitrage assumption. Let’s use this model to examine the predictive power of 

term spreads. 

From the VAR-ATSM, we can calculate the optimal forecasts conditional on the 16 state 

variables in tX . However, our main interest lies not in forecasts conditional on this large number 

of variables, but in forecasts conditional on the term spread alone, in line with the regressions in 

(4)-(6). For our purpose, in subsection 6.1, we first consider the relationship between the impulse 

response functions of variables in regressions (4)-(6) and the R2s. Since both regressands and 

regressors can be represented as affine functions of tX , we can calculate the impulse response 

functions and the R2s from parameters in the VAR-ATSM. The relationship between the impulse 

response functions and the R2s will be used to shed light on the source of the predictive power of 

term spreads in subsection 6.2. 

 

6.1. Impulse response functions and model-implied R2s 

Since (1)( , , , ) 't t t t tg r sπ=x  follows the VAR process specified in (28), we can calculate 

the corresponding impulse response functions, and represent the system in VMA(∞ ) form with 

identified exogenous shocks. For example, tg  can be represented as  

  , , , , , , , ,
0 0 0 0

t gg j g t j g j t j gr j r t j gs j s t j
j j j j

g g u u u uπ πψ ψ ψ ψ
∞ ∞ ∞ ∞

− − − −
= = = =

= + + + +∑ ∑ ∑ ∑ , (46) 

where g  is the unconditional mean of tg , and impulse response functions ,gg jψ , ,g jπψ , ,gr jψ , 

and ,gs jψ  are functions of Φ  and Σ . So future output growth t hg +  can be represented as 

1 1 1 1

| , , , , , , , ,
0 0 0 0

ˆ
h h h h

t h t h t gg j g t h j g j t h j gr j r t h j gs j s t h j
j j j j

g g u u u uπ πψ ψ ψ ψ
− − − −

+ + + − + − + − + −
= = = =

= + + + +∑ ∑ ∑ ∑  (47) 

where  
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 | , , , , , , , ,ˆ t h t gg j g t h j g j t h j gr j r t h j gs j s t h j
j h j h j h j h

g g u u u uπ πψ ψ ψ ψ
∞ ∞ ∞ ∞

+ + − + − + − + −
= = = =

= + + + +∑ ∑ ∑ ∑  (48) 

is the optimal forecast of t hg +  conditional on tX . 

 Since discount rates ( ) ( ) ( ) 'n n n
t tr a= +b X  and term spreads ( ) ( )n m

t tr r−  are affine 

functions of 1 2 3( ', ', ', ') 't t t t t− − −=X x x x x , we can also calculate corresponding impulse response 

functions, and represent them in VMA(∞ ) form. For example, ( ) ( )n m
t tr r−  can be represented as  

( ) ( ) ( ) ( ) ( , ) ( , ) ( , ) ( , )
, , , , , , , ,

0 0 0 0

n m n m n m n m n m n m
t t g j g t j j t j r j r t j s j s t j

j j j j

r r r r u u u uπ πκ κ κ κ
∞ ∞ ∞ ∞

− − − −
= = = =

− = − + + + +∑ ∑ ∑ ∑ , 

           (49) 

where ( ) ( )n mr r−  is the unconditional mean of ( ) ( )n m
t tr r− , and impulse response functions ( , )

,
n m

g jκ , 

( , )
,
n m

jπκ , ( , )
,
n m

r jκ  and ( , )
,
n m

s jκ  are functions of Φ , Σ , and δ . 

 Since ~ ( , )t Nu 0 I  i.i.d., we can calculate the unconditional variances of the VAR 

variables, optimal forecasts for them, and term spreads. From (46), (48) and (49), 

  

2

2 2 2 2
, , , ,

0 0 0 0

var( )g t

gg j g j gr j gs j
j j j j

g

π

σ

ψ ψ ψ ψ
∞ ∞ ∞ ∞

= = = =

≡

= + + +∑ ∑ ∑ ∑ ,   (50)
 

  

2
ˆ , |

2 2 2 2
, , , ,

ˆvar( )g h t h t

gg j g j gr j gs j
j h j h j h j h

g

π

σ

ψ ψ ψ ψ

+

∞ ∞ ∞ ∞

= = = =

≡

= + + +∑ ∑ ∑ ∑ ,   (51)
 

  

( , ) 2 ( ) ( )

( , )2 ( , )2 ( , )2 ( , )2
, , , ,

0 0 0 0

( ) var( )n m n m
t t

n m n m n m n m
g j j r j s j

j j j j

r r

π

σ

κ κ κ κ
∞ ∞ ∞ ∞

= = = =

≡ −

= + + +∑ ∑ ∑ ∑ .  (52)
 

Similarly we can calculate the correlations among these variables. The correlation between 

future output growth t hg +  and the current term spread ( ) ( )n m
t tr r−  can be represented as 
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( ) ( )

( , ) ( , ) ( , ) ( , )
, , , , , , , ,

( , ) ( , ) ( , ) ( , )
0 0 0 0

corr( , )n m
t h t t

n m n m n m n m
gg j h g j g j h j gr j h r j gs j h s j

n m n m n m n m
j j j jg g g g

g r r

π πψ κ ψ κ ψ κ ψ κ
σ σ σ σ σ σ σ σ

+

∞ ∞ ∞ ∞
+ + + +

= = = =

−

= + + +∑ ∑ ∑ ∑
.

 (53) 

Since the forecasting error of the optimal forecast |ˆt h t h tg g+ +−  is unable to be predicted by any 

variable known at time t, such as ( ) ( )n m
t tr r− ,  

  ( ) ( ) ( ) ( )
|ˆcorr( , ) corr( , )n m n m

t h t t t h t t tg r r g r r+ +− = − .   (54) 

By squaring the correlation, we can obtain the R2. For example, the R2 for regression (4) can be 

represented as 

  2( , ) ( ) ( ) 2
, |ˆcorr( , )n m n m

g h t h t t tR g r r+= − .     (55) 

Since the R2s are functions of parameters in our VAR-ATSM, we can calculate them from the 

estimates of the parameters. We call these the model-implied R2s. Equation (54) implies that if 
( ) ( )n m

t tr r−  is a good predictor for future output growth t hg + , ( ) ( )n m
t tr r−  should respond to 

exogenous shocks in a similar way to |ˆt h tg + . We investigate this by looking at the variance 

decomposition of |ˆt h tg +  in the next subsection. Finally, as we can see from (53)-(55), the R2s 

depend on the sum of products of the impulse response functions for regressands and regressors. 

Note that, in (53), indexes for ψ ’s start from t+h, not t, because future shocks 1, ,t t h+ +u u…  are 

unpredictable. This implies that since the ψ ’s typically decay with the horizon j, ( ) ( )n m
t tr r−  is a 

good predictor if it is responsive to recent shocks, i.e. κ ’s are large for smaller j. 

 

6.2. Why do term spreads have predictive power? 

 Figure 3 displays the model-implied R2s from regressions (4)-(6) for three selected term 

spreads, and is the model-calculated analog of Figure 2. The results show that the model-implied 

R2s replicate three properties of the sample R2s in Figure 2 very well. First, the 12Q-8Q spread 

performs better than the 20Q-1Q spread, except for output growth predictions at shorter horizons. 

Second, the 2Q-1Q spread is almost useless. Finally, it is difficult to predict output growth at 1Q 

ahead. It is therefore reasonable to try to explain the sample R2s in Figure 2 in terms of the 
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factors that determine the model-implied R2s in Figure 3. Since the model-implied R2s are 

functions of the parameters in our VAR-ATSM, we can analyze how these parameters affect the 

R2s. 

 Figure 4 shows the impulse response functions of the VAR variables tg , tπ , (1)
tr , and 

ts  to one unit exogenous shocks. These are based on the estimates from the restricted GMM 

estimation of the VAR-ATSM. In general, these results are consistent with those in the VAR 

literature. For example, (4-a) and (4-b) show that the short rate, the instrument of the monetary 

policy authority, responds positively to output growth and inflation shocks. Panel (4-c) 

demonstrates that the estimated monetary policy shock sharply reduces output growth. This shock 

also suppresses inflation rates in the long run. These reasonable results imply that estimates of the 

monetary policy shock are reasonable. Further support is provided by Panel (4-d). As we 

discussed in Section 3, the most questionable part of our identification strategy may come from 

the contamination between the monetary policy shock and the spread shock. Panel (4-d) indicates 

that the estimated spread shock raises output growth and suppresses inflation. Since output 

growth and inflation should respond to a monetary policy shock in the same direction, the results 

in (4-d) suggest that the spread shock is not measuring a change in monetary policy. 

Figure 5 shows variance decompositions of the optimal forecasts, where the variances of 

forecasts such as (51) are normalized to unity. As discussed in the previous subsection, this 

indicates which exogenous shocks should be useful for prediction. Panel (5-a) shows that the 

output growth shock dominates predictions of output growth at one quarter ahead. Then around 

2-4 quarters ahead, the monetary policy shock is the most important. The importance of the 

inflation shock increases with the forecasting horizon, and this shock finally becomes most 

influential at 12 quarters ahead. These results are consistent with the impulse response functions 

in Figure 4. The output growth shock causes a sharp jump in output growth, but only in the short 

run. The monetary policy shock has a negative effect on output growth, but with 2-4 quarter lags. 

In the long run, the rise in the short rate induced by the inflation shock is persistent, and this acts 

to suppress output growth. Panels (5-b) and (5-c) show that the inflation shock is most important 

for predicting inflation and short rates at most horizons. Accordingly, the response of the term 

spread to the inflation shock is crucial for specifying the source of its predictive power, especially 

at longer horizons. Note that, as Figure 4 implies, the effects of exogenous shocks decay with the 
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horizon. So we can also say that good predictors should respond to recent shocks rather than old 

shocks. 

 Figure 6 shows impulse response functions of selected discount rates. There are three 

notable features. First, the effect of the inflation shock on the levels of the discount rates is highly 

persistent. In fact, the discount rates do not return to zero even after 40 quarters. Since good 

predictors should respond to recent shocks rather than old shocks, this is an important reason why 

levels of yield curves do not have great predictive power. 

Second, discount rates with different maturities display different responses to recent 

shocks, while they respond to old shocks in similar ways. This implies that most movements in 

term spreads are due to recent shocks, because old shocks result in almost parallel shifts of the 

yield curve. In fact, the upper graphs of Figure 7 illustrate the considerable dependence of both 

the 20Q-1Q and 12Q-8Q spreads on recent shocks. This is one reason why term spreads have 

predictive power. 

Why do discount rates respond like this? We find that the time-varying market price of 

risk plays the following important role. As discussed in Section 5, it is the parameters 

corresponding to the effects of the output growth and inflation rates on the market price of output 

growth risk, 11δ  and 12δ , that have the most influence on movements in long rates. Of these, 

only 12δ  has a supportive role to play in the predictive relationship. As shown in Figure 5, the 

inflation shock is the crucial element in the predictive relationship, and a positive 12δ  causes the 

market price of output growth risk to respond positively to the shock. In contrast to this, a 

positive 11δ  reduces predictive power. As shown in (4-b), a positive inflation shock causes a 

decrease in the output growth rate, which has a negative effect on the market price of output 

growth risk. Since the effect from 12δ  dominates the effect from 11δ , the market price of output 

growth risk responds positively and so the term premium responses negatively to the inflation 

shock. 

In evaluating the effect from 12δ , we calculated the impulse response functions of 

discount rates when 12 0δ =  and other parameters are unchanged in Figure 8. The main change 

in the impulse response functions appears in (8-b), which is totally different from (6-b). In (6-b), 
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the responses of longer rates are smaller than those of the short rate, and the difference between 

their responses almost disappears around 20 quarters ahead. On the other hand, in (8-b), the 

responses of longer rates are stronger than those of the short rate, and this disparity does not 

disappear even around 40 quarter ahead. Why are their responses so different? The expectations 

hypothesis states that the long rate is the average of expected short rates plus a constant term 

premium. Whether we look at (6-b) or (8-b), the inflation shock continues to raise the short rate 

up to around 20 quarters ahead. So, according to the hypothesis, the initial responses of long rates 

with maturities up to 20 quarters should be stronger than the response of the short rate, as 

illustrated in (8-b). Since 12δ  is positive, however, the inflation shock raises the market price of 

output growth risk, and so reduces the term premium. This is why long rates respond less 

strongly than the short rate in (6-b). The difference between the responses in (6-b) and (8-b) has a 

significant effect on the predictive power of term spreads. Figure 9 gives model-implied R2s for 

the case when 12 0δ = . Surprisingly, the R2s almost disappear. This enables us to conclude that a 

positive 12δ , which can be interpreted in terms of consumers’ willingness to pay a higher 

premium for an output growth risk hedge during a higher inflation regime, is a key explanation 

for the predictive power of the term spread. 

 The last notable feature of Figure 6 is the lagged response of the 1Q rate (the monetary 

policy authority) to output growth and inflation shocks. Panel (6-a) shows that the immediate 

response of the 1Q rate to an output growth shock is the smallest among the discount rates, 

although the response of the 1Q rate is largest several quarters ahead. Panel (6-b) shows that the 

immediate response of the 1Q rate to an inflation shock is smaller than that of the 2Q rate, and 

almost coincides with the response of the 8Q rate. These results are consistent with inertial 

behavior by the monetary policy authority, as empirically shown by, among others, Clarida, Gali, 

and Gertler (2000). The lower graphs in Figure 7 show the impulse response functions of 20Q-1Q 

and 12Q-8Q spreads to output growth and inflation shocks. The immediate response of the 

20Q-1Q spread is much weaker than that of the 12Q-8Q spread because of the slow response of 

the 1Q rate. Since recent shocks are very important for predictive purposes, we can conclude that 

this is the reason behind the inferior performance of the 20Q-1Q spread compared to the 12Q-8Q 

spread. That is, the monetary authority’s inertial behavior disturbs the responses of term spreads 

using the short end of the yield curve to output growth and inflation shocks.  
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Further support for this view is provided by the correlations between future predicted 

variables and current term spreads. Since model-implied R2s are squares of these model-implied 

correlations, we can use the correlations to analyze why we found the R2s shown in Figures 2 and 

3. Equation (53) has four summed terms, each of which can be interpreted as the contribution of 

the corresponding exogenous shock to the predictive relationship. Figure 10 shows the 

contributions of exogenous shocks to the absolute values of the correlations with the 20Q-1Q and 

12Q-8Q spreads. The output growth and inflation shocks contribute to the correlations with the 

12Q-8Q spread rather than with the 20Q-1Q spread. These differences explain why the 12Q-8Q 

spread is useful for prediction. This result is consistent with our discussion of the lower graphs in 

Figure 7. 

Another notable feature of Figure 10 is the hump-shaped contribution of monetary 

policy shocks to output growth predictions. So we can conclude that the hump-shape of the R2s 

for the output growth predictions is attributable to the monetary policy shock. That is, the 

monetary policy shock affects output growth with a lag, while the term structure responds to the 

shock immediately. This difference in timing makes it harder for term spreads to help forecast 

output growth at short horizons. 

Finally, Figure 11 shows the contributions in the case where 12 0δ = . Obviously the 

sharp drops of R2s are attributable to the different sign of the contribution of the inflation shock, 

which is caused by the strong long rate response to the shock. 

 

 

7. Conclusion 

 Why do term spreads predict output growth, inflation, and short rates? In answering this 

question, we used a VAR-ATSM model with four lags and four variables, which is less restricted 

than similar affine term structure models with observable factors in the existing literature. We 

succeeded in estimating this model using an efficient method. 

We have three main findings. First, the time-varying market price of output growth risk, 

which is sensitive to the inflation rate, plays a key role in explaining why the term spread helps 
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forecast output growth, inflation, and interest rates. This finding can be interpreted as follows. 

When the inflation rate is higher, consumers are willing to pay a higher premium for an output 

growth risk hedge, possibly because, within this higher inflation environment, the Fed’s response 

to an output growth shock is less accommodating and so marginal utility is more sensitive to the 

shock. This causes term spreads to react to recent inflation shocks, which also proves useful for 

forming longer-run forecasts. Second, we also found that term spreads using the short end of 

yield curve have less predictive power than many spreads between longer rates. This fact is 

attributable to the inertial character of monetary policy. Finally, it is hard to predict output growth 

with term spreads at short horizons, because monetary policy shocks affect output growth with a 

lag while the term structure responds to the shock immediately. 
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Table 1: Estimated parameters of AR(1) model for the short rate factor 

rc  rφ  rσ  

0.1499 
(0.0621) 

0.9037 
(0.0362) 

0.0057 

 
The AR(1) model for the short rate (7) is estimated by OLS. Standard errors are in parentheses. The sample 
period is 1964:1Q-2001:4Q. 

 

 

 

Table 2: Estimates of Σ  

  Shocks 

  
,g tu  ,tuπ  ,r tu  ,s tu  

tg   0.0076 0 0 0 

tπ   -0.0001 0.0025 0 0 
(1)

tr   0.0007 0.0004 0.0023 0 

ts   -0.0002 -0.0002 -0.0014 0.0012 

 
Σ  is estimated by GMM, as introduced in Section 5. The sample period is 1964:1Q-2001:4Q. 
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Table 3: Estimates of γ  and δ  
 

  γ  δ  
   

tg  tπ  (1)
tr  ts  

 
,g tλ  

  
-0.50 
(0.43) 

 
140* 
(22) 

 
78* 
(32) 

 
-26 
(26) 

 
-43 
(63) 

 
,tπλ  

  
-0.89 
(0.90) 

 
-99* 
(48) 

 
62 

(57) 

 
-60 
(51) 

 
-177 
(114) 

 
,r tλ  

  
0.25 

(0.25) 

 
-23* 
(10) 

 
-13 
(11) 

 
-30* 
(12) 

 
-45* 
(17) 

 
,s tλ  

  
0.67* 
(0.31) 

 

 
-46 
(29) 

 
28* 
(14) 

 
-30 
(16) 

 
-114* 
(26) 

 
mean of factor    

0.0080 
 

0.0102 
 

0.0159 
 

0.0026 
 

s.d. of factor    
0.0089 

 

 
0.0061 

 
0.0065 

 
0.0032 

 
γ  and δ  are estimated by GMM, as introduced in Section 5. The estimates with * are significantly different 
from zero at 5%. Standard errors are in parentheses. Last two rows report means and standard deviations of tg , 

tπ , )1(
tr , and ts . The sample period is 1964:1Q-2001:4Q. 

 
 
 
 
 
 

Table 4: The comparison between model-implied rates and sample rates 
 

maturity (n)  2 4 8 12 16 20 
( )ˆ n

tr   0.0166 0.0172 0.0177 0.0181 0.0184 0.0186 mean 
( )n

tr   0.0166 0.0172 0.0177 0.0181 0.0184 0.0185 

( )ˆ n

tr   0.0064 0.0062 0.0060 0.0059 0.0059 0.0058 s.d. 
( )n

tr   0.0065 0.0063 0.0062 0.0060 0.0059 0.0058 

correlation  0.9927 0.9869 0.9885 0.9902 0.9926 0.9928 

 
Means and standard deviations of model implied rates ( )ˆ n

tr  and sample rates ( )n

tr  are reported, as well as 
correlations between them. The sample period is 1964:1Q-2001:4Q. 
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Figure 1: The t-stats of OLS regressions 
 

(1-a) Output growth regression  

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 3 4 5 6 7 8 9 10 11 12

 
 

(1-b) Inflation regression 
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(1-c) Short rate regression 
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The t-stats of OLS regressions (4)-(6) are reported. The horizontal axes correspond to forecasting horizons 
(quarters). Thick, broken, and thin lines correspond to 20Q-1Q, 2Q-1Q, and 12Q-8Q term spreads respectively. 
The sample period is 1964:1Q-2001:4Q. 
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Figure 2: The sample R2s of OLS regressions 
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(2-b) Inflation regression 
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(2-c) Short rate regression 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5 6 7 8 9 10 11 12
 

 
The sample R2s of OLS regressions (4)-(6) are reported. The horizontal axes correspond to forecasting horizons 
(quarters). Thick, broken, and thin lines correspond to 20Q-1Q, 2Q-1Q, and 12Q-8Q term spreads respectively. 
The sample period is 1964:1Q-2001:4Q. 
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Figure 3: The model-implied R2s 
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(3-b) Inflation regression 
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(3-c) Short rate regression 
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The model-implied R2s of regressions (4)-(6) are reported. The horizontal axes correspond to forecasting 
horizons (quarters). Thick, broken, and thin lines correspond to 20Q-1Q, 2Q-1Q, and 12Q-8Q term spreads 
respectively. The sample period is 1964:1Q-2001:4Q. 
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Figure 4: The impulse response functions of VAR variables 
 

 
(4-a) Output growth shock 
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(4-b) Inflation shock 
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(4-c) Monetary Policy shock 
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(4-d) Spread shock 
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The impulse responses of VAR variables to one-unit exogenous shocks are reported. Broken, thick, thin, and 
dotted lines correspond to the responses of output growth, inflation, short rates, and term spread respectively. 

The horizontal axes correspond to horizons (quarters). The sample period is 1964:1Q-2001:4Q. 
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Figure 5: The variance decompositions of the optimal forecasts for VAR variables 
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The variance decompositions of the optimal forecasts of VAR variables, in which the variances of the forecasts 
are normalized to unity, are reported. Broken, thick, thin, and dotted lines correspond to output growth, 
inflation, monetary policy, and spread shocks respectively. The horizontal axes correspond to forecasting 
horizons (quarters). The sample period is 1964:1Q-2001:4Q. 
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Figure 6: The impulse response functions of discount rates 
 

 
(6-a) Output growth shock 
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(6-c) Monetary Policy shock 
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The impulse responses of selected discount rates to one-unit exogenous shocks are reported. Thin, dotted, 
broken, and thick lines correspond to 1Q, 2Q, 8Q, and 20Q rates respectively. The horizontal axes correspond 
to horizons (quarters). The sample period is 1964:1Q-2001:4Q. 
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Figure 7: The impulse response functions of term spreads 
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(7-b) The impulse response functions of  

the 12Q-8Q spread 
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The impulse responses of 20Q-1Q and 12Q-8Q spreads to one-unit exogenous shocks are shown in the upper 
graphs. The scales are normalized so that variances of spreads equal unity. Lower graphs show magnified 
impulse responses to output growth and inflation shocks. Broken, thick, thin, and dotted lines correspond to 
output growth, inflation, monetary policy, and spread shocks respectively. The horizontal axes correspond to 
horizons (quarters). The sample period is 1964:1Q-2001:4Q. 
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Figure 8: The impulse response functions of discount rates in the case of 12 0δ =  
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(8-c) Monetary Policy shock 
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(8-d) Spread shock 
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The impulse responses of discount rates to one-unit exogenous shocks are reported. Thin, dotted, broken, and 
thick lines correspond to 1Q, 2Q, 8Q, and 20Q rates respectively. The horizontal axes correspond to horizons 
(quarters). The sample period is 1964:1Q-2001:4Q. 
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Figure 9: The model-implied R2s in the case of 12 0δ =  
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(9-b) Inflation regression 
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(9-c) Short rate regression 
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The model-implied R2s of regressions (4)-(6) are reported. The horizontal axes correspond to forecasting 
horizons (quarters). Thick, broken, and thin lines correspond to 20Q-1Q, 2Q-1Q, and 12Q-8Q term spreads 
respectively. The sample period is 1964:1Q-2001:4Q. 
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Figure 10: Decompositions of correlations between future VAR variables and term spreads 
 

 
(10-a) Output growth and 20Q-1Q spread 
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(10-b) Inflation and 20Q-1Q spread 
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(10-c) Short rate and 20Q-1Q spread 
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(10-d) Output growth and 12Q-8Q spread 
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(10-e) Inflation and 12Q-8Q spread 
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(10-f) Short rate and 12Q-8Q spread 
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The contributions of shocks to the correlations between future VAR variables and current term spreads are 
shown. Since the correlations of term spreads with the inflation rate and the short rate are negative, the graphs 
are flipped for (10-b), (10-c), (10-e), and (10-f). Broken, thick, thin, and dotted lines correspond to output 
growth, inflation, monetary policy, and spread shocks respectively. The horizontal axes correspond to 
forecasting horizons (quarters). The sample period is 1964:1Q-2001:4Q. 
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Figure 11: Decompositions of correlations between future VAR variables and term spreads 
in the case of 12 0δ =  
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(11-b) Inflation and 20Q-1Q spread 
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(11-c) Short rate and 20Q-1Q spread 
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(11-d) Output growth and 12Q-8Q spread 
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(11-e) Inflation and 12Q-8Q spread 
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(11-f) Short rate and 12Q-8Q spread 
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The contributions of shocks to the correlations between future VAR variables and current term spreads are 
shown. Since the correlations of term spreads with the inflation rate and the short rate are negative, the graphs 
are flipped for (11-b), (11-c), (11-e), and (11-f). Broken, thick, thin, and dotted lines correspond to output 
growth, inflation, monetary policy, and spread shocks respectively. The horizontal axes correspond to 
forecasting horizons (quarters). The sample period is 1964:1Q-2001:4


