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Abstract 

 This paper derives analytical solutions for interest rate term structures in a new 

Keynesian framework. Theoretically, we consider the conditions for the positive average 

slope of nominal term structure, and show that the slope of a real one is positive. We then  

calibrate the model to find the following results. First, term premia represents compensation 

for risk of time-variation in IS shock rather than cost-push and monetary policy shocks. 

Second, a small slope of the Phillips curve is needed for a positive slope of the term 

structure. Third, the term structure of the inflation premium is downward on average. 

Finally, a less aggressive response to output gap in the monetary policy rule leads to lower 

term premia. The implication for the recent low long rate is also discussed. 
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1. Introduction 

 The term structure of interest rates has been widely studied in the finance literature. 

The pioneer in this field is Vasicek (1977), which was followed by a large number of 

models. The literature succeeded in finding models with good empirical performance while 

keeping tractability, often obtaining closed form solutions even for complicated derivative 

security prices. However, as a caveat, many of the models have no macroeconomic 

interpretations. Typically, even the dynamics of the short rate are taken to be exogenous. 

 The monetary economics literature has rapidly developed over the past decade, 

particularly in applications of the new Keynesian framework. This research employs 

dynamic general equilibrium models to find that the monetary policy rule—in which the 

short rate reacts to the output gap and the inflation rate, is crucial for determining the 

dynamics of the short rate and macroeconomic variables. Recently, several studies have 

begun to try to integrate the finance and new Keynesian literatures for investigating the 

relationship between the interest rate term structure and the monetary policy rules. 

 The pioneers of this kind of study are Piazzesi (2005) and Ang and Piazzesi (2003), 

both of which examine the properties of the term structure when the short rate is 

determined by monetary policy rules. That investigation was followed by several studies, 

such as Wu (2001), Rudebusch and Wu (2003), Hordahl, Tristani and Vestin (2004), and 

Bekaert, Cho and Moreno (2005). Although those studies succeeded in finding interesting 

empirical facts, a sufficiently clear understanding on the relationship between 

macroeconomic variables and interest rate term structure has not yet been obtained. 

Because these papers emphasized the fit to the data, the models are too large and 
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complicated to obtain clear intuition, or the internal consistency based on the 

microfoundation is ignored, in particular the stochastic discount factor for calculating the 

term structure is not consistent with the Euler condition for obtaining the IS curve. Using 

large and complicated models prevents us from obtaining closed-form solutions, which 

powerfully contribute to clear intuition. On the other hand, the internally inconsistent 

models are hard to interpret. 

 In contrast with these studies, the current paper uses a very simple new Keynesian 

model, in which the term structure and the IS curve are internally consistent based on the 

microfoundation. Although some ability to fit the data is sacrificed, the simple model 

enables us to obtain closed form solutions of the term structure, which is convenient for 

examining our main interest: how the parameter values in the monetary policy rule affect 

term premia.  

Theoretically we derive two propositions. Proposition 1 considers why the nominal 

term premium is observed to be positive on average, and whether bondholders receive a 

positive premium for compensation for risk of time-variation of each shock. Proposition 2 

implies that the real term premia are guaranteed to monotonically increase with maturity. In 

fact, the sign of the slope of the real term structure is still controversial in the literature. 

Den Haan (1995), among many studies, demonstrates the positive average slope of real 

term structure, while Ang and Bekaert (2004) argue that the real term structure is almost 

flat. Our results support the former study. 

We also calibrated the model to investigate quantitative implications. The findings 

are as follows. First, the IS shock explains most of the term premia. On the other hand, the 

cost-push shock contributes to reduce the premium, and the monetary policy shock has only 
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a tiny effect. Second, the slope of the Phillips curve would have to be small relative to the 

ones reported in the literature to be consistent with the term structure data. Finally, a less 

aggressive response to the output gap in the monetary policy rule leads to a lower term 

premium. This result, interestingly, suggests a possibility for the policy authority to control 

the term premium. 

 The subsequent sections are organized as follows. Section 2 reviews a simple new 

Keynesian model as derived from a microfoundation. Section 3 derives analytical solutions 

for the nominal term structure, which is internally consistent with the new Keynesian model. 

The properties of the model are then discussed. Section 4 considers the real rate and the 

inflation premia. Section 5 calibrates the model and identifies which parameters are 

important for the term structure. We also discuss the implication of the model for 

Grrenspan’s conundrum, in which the long rate remains low even after the Fed has 

repeatedly raised the short rate in the recent years. Section 6 concludes. 

 

 

2. A Simple New Keynesian Model 

 This section introduces the simplest type of new Keynesian model, with three 

variables, three shocks, and three equations. The model is derived from the 

microfoundation as shown in Appendix A. The model is then solved to obtain a close form 

solution for the dynamics of the three variables. The simplicity of the model represents a 

great advantage for obtaining intuition for later analyses. 
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2.1. Three Key Equations in the New Keynesian Model 

 The key variables in the basic new Keynesian models are output gap tx , inflation 

rate tπ , and short rate ti . The dynamics of these three variables are determined by the 

three key equations, the IS curve, the Phillips curve, and the monetary policy rule as 

  1 1
1 ˆ ˆ( )t t t t t t tx E x i E π ξ
γ+ += − − −      (1) 

  1ˆ ˆt t t t tE x uπ β π κ+= + +       (2) 

  ˆ ˆt x t t ti x πφ φ π ω= + +       (3) 

where ˆt tπ π π= −  and t̂ ti i i= −  are defined as the deviations from the steady state 

values π  and i . The parameters satisfy 0 1β< < , 0γ > , 0κ > , 0xφ >  and 1πφ > . 

γ  and β  stand for the coefficient of relative risk aversion and the subjective discount 

factor of the representative household respectively, while κ  is the slope of the Phillips 

curve, which is determined by the degree of the nominal rigidity. The model has three 

exogenous shocks, which are assumed to obey AR(1) as 

  1 ,t t tξ ξ ξξ ρ ξ σ ε−= +       (4) 

  1 ,t u t u u tu uρ σ ε−= +       (5) 

  1 ,t t tω ω ωω ρ ω σ ε−= +       (6) 

where 0 1sρ≤ < , 0sσ >  and , ~ (0,1)s t Nε  i.i.d. for { , , }s uξ ω= . These shocks are 

called the IS shock, the cost-push shock, and the monetary policy shock, respectively. A 

positive IS shock can be interpreted as a positive preference shock or a negative technology 

shock. 
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 The IS curve (1) and the Phillips curve (2) can be derived from microfoundations. 

In particular, the microfoundation for the IS curve is important for discussing the internal 

consistency between the IS curve and the interest rate term structure, as shown in Section 3. 

See Appendix A for the microfoundation.  

Monetary policy rule (3) is the famous (though ad hoc) Taylor rule. On the other 

hand, inertial policy rules, in which the current short rate depends on the lag of the short 

rate, are also popular in the literature, since an inertial rule is theoretically optimal in the 

sense that the expected utility of households is maximized. We do not adopt the inertial rule 

for the following three reasons. First, Rudebusch (1995, 2002) found that the non-inertial 

policy rule is consistent with term structure data, while the inertial one is not. Second, the 

optimal rule is difficult to practically implement, and many authors consider simple rules 

like the Taylor rule as possible alternatives1. Third, analytical solutions for term structure 

cannot be obtained with the inertial rule. 

 

2.2. Dynamics of the Model 

 The restrictions on the response coefficients in the monetary policy rule 0xφ >  

and 1πφ >  are actually sufficient conditions for determining a unique stationary 

equilibrium, 

  
(1 ) ( ) (1 )

ˆ [ (1 )]
ˆ

t u u t

t x u u t

t u t

x
u

i b b b

ξ ξ π ω ω

ξ ω

ξ ω

βρ φ ρ βρ ξ
π κ φ γ ρ κ

ω

⎛ ⎞− Ω − − Ω − − Ω⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= Ω + − Ω − Ω⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (7) 

where  

                                                      
1 See Gali (2003) for discussion on this issue. 
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[(1 ) ]
[ (1 ) ]

[ (1 )(1 ) ]

x

u u x u u

b
b
b

ξ ξ π ξ

π

ω ω ω ω ω

βρ φ κφ
ρ φ γ ρ φ

γ ρ βρ κρ

− + Ω⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟≡ = + − Ω⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− − − Ω⎝ ⎠ ⎝ ⎠

b ,    (8) 

and 

  1
(1 )[ (1 )] ( )s

s x s sπβρ φ γ ρ κ φ ρ
Ω =

− + − + −
.    (9) 

The model with purely forward-looking behavior as (1) and (2) results in a simple 

form of dynamics (7), in which the three variables are represented as affine functions of the 

three shocks. Although this parsimonious model will not do as well at fitting data as the 

larger models often used in the literature, the simple dynamics—which have no state 

variable other than the three shocks—have a great advantage for providing clear intuition 

for the relationship between the term structure and macroeconomic variables. 

Since sΩ  is positive, bξ  and ub  are guaranteed to be positive. bω  is also 

positive if and only if 

  (1 )(1 )ω ω

ω

γ ρ βρκ
ρ

− −
< .      (10) 

If this inequality fails, a positive monetary policy shock lowers the short rate. That is, the 

direct upward effect of the positive policy shock on the short rate is weaker than the 

indirect downward effect of the reflections to the reduced output gap and inflation rate. 

This is because a large slope of the Phillips curve, a large intertemporal elasticity of 

substitution, or a persistent monetary policy shock makes the transmission mechanism of 

the monetary policy too strong, and weakens the reacts of the short rate to the policy shock. 
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We basically regard this odd case as unreasonable and focus on the case in which (10) 

holds. Thus >b 0  and the short rate is procyclical to all shocks.  

 We obtained the dynamics of three key variables, which are consistent with the 

microfoundation. The next section considers the term structure of nominal rates. 

 

 

3. Term Structure of Nominal Rates 

This section considers the nominal term structure. First, we show that the model is 

mathematically identical to the three-factor Vasicek term structure model, although our 

model has macroeconomic interpretations in contrast with purely financial models like 

Vasicek’s. Then, we derive the closed form solution for nominal term structure, which is 

consistent with the microfoundation of the new Keynesian model introduced in Section 2. 

The solution has convenient forms for identifying the contribution of each shock to the term 

structure. 

 

3.1. The Stochastic Discount Factor 

 From the microfoundation for the new Keynesian model introduced in Section 2, 

we can derive the fundamental asset pricing equation for bond prices, 

  ( ) ( 1)
1 1[ ]n n

t t t tV E Q V −
+ +=       (11) 

for n = 1, 2,… as shown in Appendix A.1. Here ( )n
tV  is the price of n-period risk-free 

discount bond, which pays one unit of money at t n+ . 1tQ +  is the stochastic discount 

factor, the log of which satisfies 
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1 1 1 1
1ln

1t t t tq g x
ξ

β γ γ π ξ
ρ+ + + += − − ∆ − + ∆

−
,   (12) 

where g  is the steady state growth rate of the efficient level of output, as shown in 

Appendix A.5. The fundamental asset pricing equation (11) is used for obtaining the closed 

form solution for the interest rate term structure. A special case of the equation, in which 

1n = , is a typical Euler condition for the optimal intertemporal allocation of consumption, 

  (1)
1[ ]t t tV E Q += ,       (13) 

which is used for deriving the IS curve. Thus the term structure and the IS curve should be 

internally consistent through the common stochastic discount factor. 

 From (4)-(7) and (12), we can obtain another form of the stochastic discount 

factor, 

  2
1 , 1

{ , , }

1 ( )
2t t s s s s s t

s u

q i
ξ ω

ν σ ν σ ε+ +
=

⎡ ⎤= − + − +⎢ ⎥⎣ ⎦
∑ ,    (14) 

where 

  
[(1 ) ( 1)] /(1 )

[ ( 1)]
[ (1 ) ]

x

u x u

ξ ξ π ξ ξ

π

ω ω ω

ν βρ φ κ φ ρ
ν φ γ φ
ν γ βρ κ

− + − Ω −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = − + − Ω⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− + Ω⎝ ⎠ ⎝ ⎠

ν

.

   (15) 

s sν σ  can be called the prices of risk corresponding to an innovation of shock s . 

 From (12) and (14), using 1 1 , 1 0t t s tE x E Eξ ε+ + +∆ = ∆ = = , tEi i=  and tEπ π= , 

the steady state value of the short rate can be proved to be represented as 

  2

{ , , }

1 1ln ( )
2 s s

s u
i g

ξ ω

γ π ν σ
β =

= + + − ∑ .    (16) 



10 

Equation (15) implies that the prices of risk are time-invariant. In addition, as seen 

in (7), the short rate is represented as an affine function of the three factors that obey AR(1) 

processes. These properties of the model are identical with the three-factor Vasicek term 

structure model, although our model has macroeconomic interpretations in contrast with 

such purely financial models as Vasicek’s. This type of model is known to provide a closed 

form solution for the term structure, as will be obtained in the next subsection. 

 

3.2. The Nominal Term Structure 

 Using the fundamental asset pricing equation, the n-period nominal interest rate 

( )n
ti , which is defined as the continuously compounded rate satisfying ( ) ( )exp( )n n

t tV i n= − , is 

derived as an affine function of the shocks,  

  ( ) ( ) ( )

{ , , }

n n n
t s t

s u
i i b s

ξ ω=

= + ∑ ,      (17) 

where 

  ( ) 11
1

n
n s

s s
s

b b
n

ρ
ρ

−
=

−
,      (18) 

2 2
( ) 2

2
{ , , }

1 1 11 1 2 11 1
1 1 2 1 1 1

n n n
n s s s s s s

s
s u s s s s s

b b
i i

n n nξ ω

ν ρ ρ ρ
σ

ρ ρ ρ ρ ρ=

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞− − −
⎢ ⎥− = − − − +⎜ ⎟ ⎜ ⎟⎜ ⎟− − − − −⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

∑
          (19) 

for 1,2,n = …  Note that (1)
t ti i= , (1)i i= , and (1)

s sb b= . See Appendix B for the 

deviation. Since ts  has an unconditional zero mean, ( )ni  can be interpreted as the 

unconditional mean of n -period rate. 
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Several points are worth noting. First, (18) shows that the responses of nominal 

rates to the shocks have a common form, and (17) and (19) are represented with 

summations over { , , }s uξ ω= . Thus the effect of each shock on the term structure is 

represented as common forms, which depend only on four parameters sρ , sσ , sb  and 

sν . Therefore, we can identify which shocks are important for determining the term 

structure on a consistent basis and explain why the contributions of the shocks are different 

by investigating which of the four parameters are different. 

 Second, (18) shows that the response of n -period rate to a shock decays as n  is 

longer. In addition, as the autocorrelation of shock sρ  is larger, the response decays more 

slowly. Thus more persistent shock has a relatively larger effect on the long rate, and a 

smaller effect on the term spread between long and short rates. 

 Third, the nominal term premium ( )n
tTP  is proved to equal the unconditional 

average slope as 

  
1

( ) ( ) ( )

0

1 n
n n n

t t t tTP i E i i i
n τ

τ

−

+
=

≡ − = −∑ .    (20) 

Thus, we basically do not distinguish the term premium from the unconditional average 

slope in later analyses. The term spread ( )n
t ti i−  varies around the time-invariant term 

premium only through the expectations for the future short rates. 

 Finally, (19) and (20) show that the contribution of a shock to the term premium is 

proportional to the variance of the innovation 2
sσ . Note that since the variance is the 

square of the volatility, the term premium is sensitive to the volatility. In addition, (19) 

seems to suggest the term premium tends to be higher for more persistent shocks, although 
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this is less clear because sb  and sν  depend on the autocorrelation sρ . The numerical 

exercise in Section 5 displays this tendency. 

For simplifying the analysis, let’s consider the extreme case with the infinite 

maturity, as if we consider the longest rate in term structure. The term premium can be 

represented as 

  
2

( ) 2

{ , , }

1
1 2 1

s s s
t s

s u s s

b bTP
ξ ω

ν σ
ρ ρ

∞

=

⎡ ⎤⎛ ⎞
⎢ ⎥= − ⎜ ⎟− −⎢ ⎥⎝ ⎠⎣ ⎦

∑
.
    (21) 

The term premium is represented with a summation of three premia, each of which 

corresponds to compensation for the risk of time-variation in each shock. Thus, if each of 

the three premia is positive, we can conclude that the shock contributes to the positive term 

premium.  

The first term in the bracket corresponds to the conditional covariance between the 

future bond price and the stochastic discount factor. For example, a positive innovation in 

the IS shock—which may be interpreted as a positive preference innovation, raises the short 

rate. This is because the positive preference innovation raises the output gap, to which the 

monetary policy authority reacts by raising the short rate. According to (18), the longer 

rates also rise in response to the innovation. Thus the innovation lowers the bond price for 

any maturity. On the other hand, the innovation raises the stochastic discount factor, since a 

positive preference innovation leads to a higher marginal utility. Consequently, the bond 

prices and the stochastic discount factor have a negative conditional covariance through the 

innovation. In that sense, the IS shock is unfavorable for bondholders and a positive 

premium is required. Similarly, a positive innovation of the monetary policy shock lowers 
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bond prices while suppressing consumption and the inflation rate to raise the stochastic 

discount factor. Thus, a positive premium is required for the covariance through the 

monetary policy shock. In contrast, a positive cost-push shock raises the inflation rate, 

which usually lowers both bond prices and the stochastic discount factor. Thus, the 

cost-push shock is favorable for bondholders, and a negative premium is usually required.  

The second term in (21) is the Jensen term, which always contributes to lower the 

term premiaince the Jensen term is proportional to the square of /(1 )s sb ρ− , a higher 

response of the short rate to shock or more persistent shock leads to a larger Jensen term 

and a lower term premium. In sum, the first term should dominate the second term for each 

shock to contribute to the positive term premia. 

 Equation (21) can be rewritten as 

  ( ) 2
2

{ , , }

[2(1 ) ]
2(1 )

s s s s
t s

s u s

b bTP
ξ ω

ρ ν σ
ρ

∞

=

− −
=

−∑
.
    (22) 

Thus a shock contributes to the positive term premia if and only if 

  2(1 ) 0s s sbρ ν− − > .      (23) 

By substituting (8) and (15) into this, we can easily prove the following proposition.  

 

Proposition 1  The IS shock and the cost-push shock contribute to the positive term 

premium of infinite maturity rate if and only if 

  (1 ) ( 2) 0xξ πβρ φ κ φ− + − >      (24) 

and 

  (2 ) (1 )( 2) 0u x u πρ φ γ ρ φ− − + − − >      (25) 
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respectively. The monetary policy shock always contributes. 

 

Equation (24) implies that aggressive monetary policy rule, in which the response 

coefficients xφ  and πφ  are larger, allows the IS shock to contribute to a positive term 

premium. Note that Proposition 1 considers only the term premium of infinite maturity rate 

and does not consider the condition that the term premium monotonically increases with the 

maturity. On the other hand, as will be seen in Section 4, the real term premium is 

guaranteed to increase monotonically. 

For the baseline calibration, introduced in Section 5, (24) holds while (25) fails. In 

fact, (25) typically will not hold, since at least a large response coefficient to the inflation 

rate in the monetary policy rule, larger than two, is necessary. Thus the IS shock and the 

monetary policy shock contribute to the positive term premia, while the cost-push shock 

contributes to reduce the term premia. The magnitudes of the contributions are examined 

with calibrated parameters in Section 5. 

 

 

4. Term Structure of Real Rates and Inflation Premia 

 This section considers the term structure of real rates. The inflation premia, which 

are defined as nominal rates minus real rates, are also considered. First, the fundamental 

asset pricing equation and the stochastic discount factor for real bond prices are derived. 

Then, using closed form solutions, the properties of the term structure of real rate and 

inflation premium are discussed parallel to the discussion of nominal rates in Section 3. 
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4.1. The Fundamental Asset Pricing Equation for Real Bond Prices 

 The fundamental asset pricing equation for nominal bond prices (11) leads to 

  ( )
1 2[ ]n

t t t t t nV E Q Q Q+ + += " ,     (26) 

which means that the price of an n -period discount bond, whose only payment is one at 

t n+ , is the expectation of the payment discounted by the stochastic discount factors. 

Similarly, the price of the n -period real discount bond, which pays /t n tP P+  at t n+ , is 

represented as  

  ( )
1 2[ / ]n

t t t t t n t n tV E Q Q Q P P+ + + +=� " .     (27) 

This can be rewritten as 

  
( )

1 1 2 1 1

( 1)
1 1

[ [ / ] / ]

[ ]

n
t t t t t t n t n t t t

n
t t t

V E Q E Q Q P P P P

E Q V
+ + + + + + +

−
+ +

=

=

� "
� �    (28) 

where  

1 1 1
1 1

t t t
t t

t t t

P C
Q Q

P C

γ

β
−

+ + +
+ +

⎛ ⎞Ψ
= = ⎜ ⎟Ψ ⎝ ⎠

�
. 

    (29) 

Equation (28) is the fundamental asset pricing equation for real bond prices, while 1tQ +
�  

can be called the real stochastic discount factor. 

 Using a similar method to that used to derive the log of the nominal stochastic 

discount factor (14), the log of the real discount factor can be written as 

  2
1 , 1

{ , , }

1 ( )
2t t s s s s s t

s u
q r

ξ ω

ν σ ν σ ε+ +
=

⎡ ⎤= − + − +⎢ ⎥⎣ ⎦
∑ � �� ,    (30) 

where 
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[(1 ) ( )] /(1 )

( )
(1 )

x

u u u

ξ ξ π ξ ξ ξ

π

ω ω ω

ν βρ φ κ φ ρ ρ
ν γ φ ρ
ν γ βρ

− + − Ω −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = − Ω⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− Ω⎝ ⎠ ⎝ ⎠

ν
�

� �
� ,

   (31) 

{ , , }
t s t

s u
r r b s

ξ ω=

= + ∑ � ,      (32) 

  2

{ , , }

1 1ln ( )
2 s s

s u
r g

ξ ω

γ ν σ
β =

= + − ∑ � .     (33) 

  (1 )s s sb ρ ν= −� � ,       (34) 

Here tr  is the real short rate which satisfies (1)lnt tr V= − �  while r  is its steady state 

value.  

 

4.2.The Real Term Structure 

 The real term structure can be obtained in a similar method to that used for the 

nominal term structure. The n -period real rate ( )n
tr  can be represented as 

 ( ) ( ) ( )

{ , , }

n n n
t s t

s u
r r b s

ξ ω=

= + ∑ � ,      (35) 

where  

  ( ) 1 (1 )1
1

n n
n s s s

s s
s

b b
n n

ρ ν ρ
ρ

− −
= =

−
�� �

,
     (36) 

  
2 2

( ) 2
2

{ , , }

111
2 1

n
n s s

s
s u s

r r
nξ ω

ν ρ σ
ρ=

⎛ ⎞−
− = −⎜ ⎟−⎝ ⎠

∑
�

.
    (37) 

Since sb�  and sν�  are related in a simple form (34), the unconditional average slope of real 

rate ( )nr r−  has a much simpler form than that of nominal rate.  
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 Several properties are common for the nominal and real rates. First, a response of 

n -period real rate to a shock decays as n  is longer in the same rate as that of nominal rate. 

Thus the response of inflation premia, which are defined as nominal rates minus real rates, 

does too. Second, the real term premium ( )n
tRTP  equals the unconditional average slope as 

  
1

( ) ( ) ( )

0

1 n
n n n

t t t tRTP r E r r r
n τ

τ

−

+
=

≡ − = −∑ .    (38) 

Third, a contribution of a shock to the term premium is proportional to the variance of the 

innovation 2
sσ . On the other hand, in contrast with nominal rates, (37) and (38) suggest 

that all shocks are guaranteed to contribute to the positive term premium as the following 

proposition. 

 

Proposition 2  All shocks are guaranteed to contribute to positive slopes of the real term 

premia between any maturities. 

 

This proposition implies that the real term premia are guaranteed to increase monotonically 

with maturity. In fact, the sign of the average slope of real term structure is still 

controversial in the literature. Den Haan (1995), among many studies, demonstrates 

positive average slope of real term structure, while Ang and Bekaert (2004) argue that the 

real term structure is almost flat. Our results support the former study. 

 The inflation premium can be represented as 

  ( ) ( ) ( ) ( ) ( ) ( )

{ , , }
[ ]n n n n n n

t t s s t
s u

i r i r b b s
ξ ω=

− = − + −∑ � .    (39) 
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Since ( ) ( )n n
s sb b≠ �  in general, the inflation premium varies, depending on the shocks. The 

unconditional average of the inflation premium can be represented as 

  ( ) ( ) ( ) ( )n n n n
t ti r i r TP RTP− = − + −  .    (40) 

 

 

5. Analyses with Calibrated Parameters 

In Sections 3 and 4, the closed form solutions for the term structure of nominal rate, 

real rate, and inflation premium were derived using parameters with macroeconomic 

interpretations. This section calibrates the model to answer following questions: Which 

parameters are crucial for the term premia? What value should the parameters take for 

fitting the term structure data? Why is the slope of term structure positive on average? Do 

monetary policy rules play an important role for term premia? Which of the real term 

premia or inflation premia explain the nominal term premia? 

 

5.1. The Calibrated Results 

 The baseline calibration is reported in Table 1. The parameter values are chosen 

basically from a range used in the literature to ensure that the model-implied term structure 

is consistent with the data. For example, 1γ =  is familiar in standard RBC models, while 

0.16γ =  is suggested by Rotemberg and Woodford (1997). Our calibration 0.4γ =  is 

chosen from an interval of those. As an exception, the chosen value for the slope of the 

Phillips curve 0.005κ =  is small relative to ones reported in the literature. For example, 

McCallum and Nelson (2000) reported that κ  should be in [0.01, 0.05] to be consistent 



19 

with their empirical results. For seeing whether these values are consistent with the term 

structure data, sensitivity analyses—which report the impacts of the changes in parameter 

values on the term structure—are conducted in the next subsection. 

The high autocorrelation of the IS shock is consistent with Gali and Rabanal 

(2004) and Ireland (2004), whose estimates suggest that a preference shock is highly 

persistent and dominates the dynamics of the macroeconomic variables. The 

autocorrelation and volatility of the monetary policy shock come from the residual of the 

regression of the Taylor rule. Note that the reaction of the short rate to the policy shock is 

weakened by the reflection to the reduced output gap and inflation rate, as discussed in 

connection with equation (10). This is the main reason why the policy shock does not play 

an important role for the term premium. 

 Figure 1 reports the factor loadings on the nominal rates. This shows that, although 

the factor loading decays more slowly for more persistent shock as discussed in Section 3, 

the persistence of the monetary policy shock is insufficient to prevent the factor loading 

from sharply dropping from 1Q rate to 20Q rate. Thus a positive monetary policy shock 

raises the short rate more than the long rate, which results in a decrease in the term spread, 

following the conjecture of Evans and Marshall (1998). 

 Figures 2 and 3 report the contributions of shocks to the nominal and real term 

premia, respectively. The figures show that the IS shock explains most of the term premia. 

One important reason for these results is the higher variance and persistency of the IS 

shock.  

 Figure 4 reports the factor loadings of the inflation premia. The factor loadings on 

the IS shock and monetary policy shock are much smaller than those of the nominal and 
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real rates. Thus, a large part of the inflation premium variation is up to the cost-push shock. 

The factor loadings can be represented as 

  ( ) ( ) 11
1
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n nb b
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     (41) 
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     (43) 

These equations suggest the small slope of the Phillips curve prevents the IS shock and the 

monetary policy shock from having large effects on the inflation rate, which results in a 

smaller effect on the inflation premium. 

Figure 5 reports the decomposition of the unconditional average of nominal term 

premium into those of real term premium and inflation premium. The figure displays that 

the term structure of inflation premium is downward on average. In fact, the inflation 

premium for three month rate equals 0.54 percent, while that for infinite maturity equals 

0.28 percent.  

 

5.2. Sensitivity Analyses 

 We’ll now turn the focus to the nominal and real term premia and the 

unconditional mean of inflation premium for infinite maturity, which equal 0.33, 0.59, and 

0.28 percent per quarter, respectively, for the baseline parameter values. Table 2 reports 

changes in the premia corresponding to changes in parameter values. This table enables us 
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to see which of the changes in real term premium or inflation premium explain the changes 

in nominal term premiaeveral points are worth noting.  

First, a larger value of the slope of the Phillips curve κ  results in a negative 

nominal term premium, -0.83 percent, which is inconsistent with the positive unconditional 

mean of term premia observed in the data. The parameter value of κ  is highly 

controversial in the literature, and our results support a smaller slope of the Phillips curve. 

This is because a large slope allows the IS shock to have too-large an effect on the inflation 

rate and the short rate, which results in a higher Jensen term and a lower nominal term 

premium. 

Second, a less aggressive monetary policy responses to the output gap results in a 

smaller nominal term premium. This is because a less aggressive policy causes the output 

gap to be more volatile, which results in a larger response of the short rate to the IS shock 

and a higher Jensen term. On the other hand, the response to the inflation rate is much less 

important.  

 Third, even larger autocorrelation and volatility of the monetary policy shock have 

only a tiny effect, mainly because of the small bω . This implies that even if the monetary 

policy authority aggressively deviates from the Taylor rule, the authority does not have to 

change the short rate significantly, which results in a tiny effect on the term premia. 

 Fourth, a large autocorrelation and volatility of the cost-push shock strongly 

suppresses the nominal term premium. Thus more persistent or volatile cost-push shock is 

inconsistent with the positive slope of the term structure observed in the data. 
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 Finally, since the IS shock is crucial for explaining the term premium, the 

premium is very sensitive to the autocorrelation and volatility of the IS shock. 

 In sum, the nominal term premium is sensitive to the slope of the Phillips curve, 

the monetary policy response to the output gap, and the autocorrelation and volatility of the 

IS shock. In particular, the large effect of the policy response on the term premia suggests, 

interestingly, that the policy authority may be able to control the term premia by choosing 

the monetary policy rule. This effect may be an answer for Greenspan’s (2005) conundrum, 

in which the long rate remains low even after the Fed has repeatedly raised the short rate in 

recent years. That is, the response to the output gap in the monetary policy rule may 

become less aggressive, and this reduces the term premium. In fact, the Fed is raising the 

short rate very slowly, by a “measured” pace, even after U.S. economy has clearly 

recovered, and this fact may be interpreted as a decline in the response to the output gap in 

the policy rule. Another possible answer to the conundrum is a less persistent and volatile 

IS shock. The persistency and volatility of macroeconomic variables such as GDP or 

inflation rate are known to be lower than before. Stock and Watson (2002), among many 

studies, attributes this to a change in the property of the shock itself. 

 

 

6. Conclusion 

 How do monetary policy rules affect term premia? To answer that question, we 

used a very simple new Keynesian model in which the term structure and the IS curve are 

internally consistent based on microfoundations. We succeeded in obtaining closed form 
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solutions for the term structure of nominal and real rates and inflation premia, which are 

represented by parameters with macroeconomic interpretations, and used them to obtain 

clearer intuition for the relationship between the term structure and macroeconomic 

variables. 

Theoretically we derive two propositions. Proposition 1 considers the conditions 

for each shock to contribute to the positive nominal term premium of infinite maturity rate. 

This proposition provides three implications as follows. First, aggressive monetary policy 

rules allow the IS shock to contribute to the positive term premiaecond, the cost push shock 

is difficult to contribute to the positive term premium. Third, the monetary policy shock 

always contributes to the positive term premium. These results are basically obtained by the 

property of the conditional covariance between the future bond price and stochastic 

discount factor, as discussed in Section 3. 

Proposition 2 implies that the real term premia are guaranteed to increase 

monotonically with maturity, and all shocks contribute to the positive real term premium. 

In fact, the sign of the slope of real term structure is still controversial in the literature. Den 

Haan (1995), among many studies, demonstrates the positive average slope of real term 

structure, while Ang and Bekaert (2004) argue that the real term structure is almost flat. 

Our results support the former study. 

We also calibrated the model to investigate quantitative implications. The findings 

are as follows. First, the IS shock explains most of the term premia. One important reason 

for this is the higher variance and persistency of the IS shock. On the other hand, the 

cost-push shock contributes to reduce the premium as predicted in the discussion in 

connection with Proposition 1. The monetary policy shock has only a tiny effect, because 
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the reaction of the short rate to the policy shock is weakened by the reflection to the 

reduced output gap and inflation rate. Second, the slope of the Phillips curve would have to 

be small relative to ones reported in the literature to be consistent with the term structure 

data. This is because a large slope allows the IS shock to have too-large an effect on the 

inflation rate and the short rate, which results in a higher Jensen term and a lower nominal 

term premium. Finally, a less aggressive response to the output gap in the monetary policy 

rule leads to a lower term premium. This is because a less aggressive policy causes the 

output gap to be more volatile, which results in a larger response of the short rate to the IS 

shock and a higher Jensen term. These results may be answers for Greenspan’s (2005) 

conundrum. For example, the response to the output gap in the monetary policy rule may 

become less aggressive, and this reduces the term premium. 

 Since the macroeconomics and finance literatures are not yet very well integrated, 

general equilibrium models—which can explain the dynamics of both macroeconomic 

variables and asset prices well—require further study. A natural direction of future research 

is adding another property into the model. The macroeconomic literature often incorporates 

habit formation, an indexation of price setting, sticky wages, capital accumulation, real 

frictions such as capital adjustment cost, learning under parameter uncertainty, and so on, 

into the model. Unfortunately, however, macroeconomics lacks a sufficient consensus on 

which properties are more important than the others. Examining whether a property of the 

macroeconomic models can explain term structure data may help identify the most 

important properties of the model. 
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Appendix A 

This appendix demonstrates how the IS curve (1) can be derived from the 

microfoundation. The model is typical one in the new Keynesian literature, very similar to 

Walsh (2003, p.232), although long term bonds are added for discussing the term structure 

of interest rates. 

 

A.1. Household  

The preference of the representative household is defined over consumption goods, 

real money balances, and a labor supply. The composite consumption good is defined as 

  
/( 1)1 ( 1) /

0

t t
t t

t jtC c dj
θ θ

θ θ
−

−⎡ ⎤= ⎢ ⎥⎣ ⎦∫      (A.1) 

where jtc  is the individual goods produced by firm j  and tθ  is the price elasticity of 

demand for the individual goods. Here tθ  is an exogenous disturbance, which is the 

source of the cost-push shock. tP  is the corresponding price index of these goods defined 

as  

1/(1 )1 1

0

t
t

t jtP p dj
θ

θ
−

−⎡ ⎤= ⎢ ⎥⎣ ⎦∫      (A.2) 

where jtp  is the price of individual good produced by firm j . In this setting, the demand 

for good j  can be written as 

  
t

jt
jt t

t

p
c C

P

θ−
⎛ ⎞
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⎝ ⎠

.      (A.3) 
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The household supplies labor hours jth , which are used for producing the individual goods 

jtc . 

Households maximize an expected present discount value of utility, 

  
1

11 1
0 0

0

1
1 1 1

t t
t t jt

t t

ME C h dj
P

ζ

γ ηϖ χβ
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∑ ∫ ,
 (A.4) 

where 0 1β< <  and all of γ , ζ , η , ϖ  and χ  are positive. Here tΨ  is the 

exogenous preference shock, which is a source of the IS shock. tM  denotes nominal 

money balances. 

The household’s budget constraint is  

1 1( ) ( ) ( 1) ( )
1 10 0

1 1

n n n n
t t t t t jt jt jt t t t t

n n
PC M V B w h dj dj M T V B

∞ ∞
−

− −
= =

+ + = + Π + + +∑ ∑∫ ∫ . (A.5) 

Here jtw  and jtΠ
 
are the nominal wage per hour and the household’s share in the profits 

of firm j , respectively. The aggregate real output tY  is defined to satisfy 

1 1

0 0t t jt jt jtPY w h dj dj= + Π∫ ∫ .    (A.6) 

( )n
tV  is the price of n-period risk-free discount bond which pays one unit of money at t n+ , 

while ( )n
tB  is the number of the n-period bond held by the household at the end of period t. 

tT  is a nominal lump sum transfer that the household receives from the monetary policy 

authority in the form of cash. This setting of household’s maximization problem is typical 

in the new Keynesian literature, although the long term bonds are added to the budget 

constraint for considering the term structure of interest rates. 
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In the household’s decision problem, consumption, labor supply, money, and bond 

holdings are chosen to maximize (A.4) subject to (A.5). One of the first order conditions to 

the problem is the fundamental asset pricing equation for bond prices (11), 

  ( ) ( 1)
1 1[ ]n n

t t t tV E Q V −
+ += . 

Here 1tQ +  is the stochastic discount factor, which satisfies 

1 1
1

1

t t t
t

t t t

C PQ
C P

γ

β
−

+ +
+

+

⎛ ⎞Ψ
= ⎜ ⎟Ψ ⎝ ⎠ .

    (A.7) 

A special case of the fundamental asset pricing equation, in which 1n = , is a typical Euler 

condition (13), 

  (1)
1[ ]t t tV E Q += . 

 

A.2. The Monetary Policy Authority 

The monetary policy authority controls the short rate by obeying a Taylor rule (3). 

In addition, the policy authority is assumed to just pass out the seigniorage to the 

representative household as a transfer, 

1t t tT M M −= − .      (A.8) 

Since the bonds are in zero net supply in equilibrium, the budget constraint (A.5) results in 

t tC Y= . That is, aggregate consumption and output need not be distinguished from one 

another in the model. 
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A.3. Firms 

 We consider an economy with a continuum of identical firms. For simplicity, we 

ignore variations in capital so that output of individual goods jtc  is a function of 

exogenous productivity tA  and labor input jth  as 

  jt t jtc A h= .      (A.9) 

Firms maximize their expected profits 

  0
0 1

( )
t

jt jt jt jt
t

E Q p c w hτ
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∞

= =

⎡ ⎤
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⎣ ⎦
∑ ∏     (A.10) 

subject to three constraints. The first is their production function (A.9) and the second is the 

demand curve given by (A.3). The third constraint is the friction that each period, only a 

fraction 1 α−  of all firms are able to adjust their price as a Calvo (1983) sticky price 

model. 

 

A.4. Efficient Level of Output and the Output Gap 

 Let’s consider the efficient level of output, which is chosen by a social planner 

who can overcome the friction to adjust the prices. Substituting (A.9) into (A.1) results in 

  
/( 1)1 ( 1) /

0

t t
t t

t t jtC A h dj
θ θ

θ θ
−

−⎡ ⎤= ⎢ ⎥⎣ ⎦∫ .    (A.11) 

The social planner maximizes the household’s welfare (A.4) subject to (A.11). The efficient 

level of output *
tY  is defined as the consumption level that satisfies the first-order 

conditions to the problem: 

  
1 1

*
t tY A

η
η γ η γχ

+
−

+ += .      (A.12) 
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Thus the efficient level of output depends positively on the productivity and can be 

interpreted as a technology shock. 

In fact, under friction, in which all firms are not able to adjust their prices to each 

period, the actual output can deviate from the efficient level of output. Let’s define the 

output gap tx  as the log difference between these outputs as  

*
t t tx y y= − ,      (A.13) 

where lnt ty Y=  and * *lnt ty Y= . With these settings, a famous linear approximation of the 

first order condition of the maximization problem (A.10) around the steady state results in 

the new Keynesian Phillips curve (2) where (1 )(1 ) /κ α αβ α= − − 2. Here the inflation rate 

is defined as 1ln /t t tP Pπ −= .  

 

A.5. The Forward-looking IS Curve 

Using (A.13), the log of the stochastic discount factor (A.7) can be written as (12), 

1 1 1 1
1ln

1t t t tq g x
ξ

β γ γ π ξ
ρ+ + + += − − ∆ − + ∆

−
, 

where *
tg E y≡ ∆  is the deterministic trend of *

ty  and the IS shock tξ  is defined as the 

deviation of *(1 )( )t tyξρ ψ γ− −  from its steady state. Thus a positive IS shock can be 

interpreted as a positive preference shock or a negative technology shock.  

 Since 1
ˆ ˆ(1 )t t tE ξξ ρ ξ+∆ = − − , log-linearizing the Euler condition (13) around the 

steady state results in the IS curve (1) where (1)lnt ti V= − . 

                                                      
2 For the deviation, see, for example, Walsh (2003, p.263) or Woodford (2004). 
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Appendix B 

 By substituting (14) and (17) into (11), 
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Since ts  obeys AR(1),  
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where  

  ( ) ( )n n
s sB b n= ,      (B.3) 

  ( ) ( )( )n nI i i n= − .     (B.4) 

This, using , (0,1)l t Nε ∼  i.i.d., results in 
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Since (B.5) holds for any outcome of tξ , tu  and tω ,  

  ( ) ( 1)n n
s s s sB b Bρ −= + ,     (B.6) 
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Solving (B.6) and (B.7) recursively leads to 
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Substituting (B.3) and (B.4) into (B.8) and (B.9) results in (17) and (18) respectively. 
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Table 1: The Calibrated Parameters 
 

Structural parameters  Implied values 

β  0.99  bξ  1.31 

γ  0.40  ub  3.38 

κ  0.005  bω  0.36 

xφ  0.125  ξν  17.47 

πφ  1.5  uν  0.95 

π  0.05  ων  1.75 

g  0.007  bξ�  0.90 

ξρ  0.95  
ub�  1.21 

uρ  0.70  bω�  0.42 

ωρ  0.75  ξν�  17.91 

ξσ  0.0060  uν�  4.04 

uσ  0.0040  ων�  1.67 

ωσ  0.0015  i  0.012 

   r  0.007 
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Table 2: The Sensitivity Analysis 
 

 Changes in 

Parameters 

Nominal 

term premium 

Real 

term premium 

Inflation 

premium 
γ  

0.50 0.16 0.07 0.07 -0.01 
κ  0.005 0.050 -1.16 0.09 -1.20 

xφ  0.125 0.025 -0.93 -0.16 -0.73 

πφ  1.5 1.1 -0.13 -0.05 -0.09 

ξρ  0.95 0.90 -0.31 -0.46 0.13 

uρ  0.60 0.90 -4.85 0.09 -4.86 

ωρ  0.75 0.90 -0.00 0.00 -0.00 

ξσ  0.0060 0.0100 0.73 1.03 -0.25 

uσ  0.0040 0.0100 -0.44 0.07 -0.45 

ωσ  0.0015 0.0100 0.01 0.01 -0.00 

The baseline - 0.33 0.59 0.28 
 
Note: The changes in nominal term premia, real term premia, and the inflation premia (percent per 
quarter) for infinite maturity when the parameter values change are reported. Note that since the 
steady state values of short rates also depend on the parameter values, the changes in nominal term 
premium are not equal to the sum of the changes in real term premium and inflation premium. The 
baseline reports the premia for the baseline parameter values. 
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Figure 1: Factor Loading of the Nominal Rate 

Note: The factor loadings of the nominal rates are reported. The horizontal axes correspond to the 
maturity (quarters). Thick, thin, and broken lines correspond to the IS shock, the cost-push shock 
and the monetary policy shock, respectively. 
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Figure 2: Contributions of the Shocks to the Nominal Term Premium 

 

 
Note: The contributions of the shocks to the nominal term premia (percent per quarter) are reported. 
The horizontal axes correspond to the maturity (quarters). White, black, and gray bars correspond to 
the contributions of the IS shock, the cost-push shock, and the monetary policy shock, respectively. 
Thick and thin lines correspond to the actual term premia and model-implied term premia, 
respectively. The actual term premia are the average term spreads for 1983:1Q-2002:4Q calculated 
by using CRSP (Center for Research in Security Prices, Graduate School of Business, the 
University of Chicago: www.crsp.uchicago.edu. All rights reserved.) Monthly US Treasury 
Database. 
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Figure 3: Contributions of the Shocks to the Real Term Premium 

 

 
 
Note: The contributions of the shocks to the real term premia (percent per quarter) are reported. The 
horizontal axes correspond to the maturity (quarters). White, black, and gray bars correspond to the 
contributions of the IS shock, the cost-push shock, and the monetary policy shock, respectively. 
Thin line corresponds to the model-implied term premia. 
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Figure 4: Factor Loading on the Inflation Premium 

Note: The factor loadings of the nominal rates are reported. The horizontal axes correspond to the 
maturity (quarters). Thick, thin, and broken lines correspond to the IS shock, the cost-push shock, 
and the monetary policy shock, respectively. 
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Figure 5: Decomposition of the Nominal Term Structure 

Note: The contributions of the real rate and the inflation premium to the nominal rate (percent per 
quarter) are reported. The horizontal axes correspond to the maturity (quarters). White and black 
bars correspond to the contributions of the real rate and the inflation premium, respectively. Thick 
and thin lines correspond to the actual nominal term structure and the model-implied term structure, 
respectively. The actual term structure is the average term spreads for 1983:1Q-2002:4Q calculated 
by using CRSP (Center for Research in Security Prices, Graduate School of Business, the 
University of Chicago: www.crsp.uchicago.edu. All rights reserved.) Monthly US Treasury 
Database. 
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