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Abstract

This paper proposes an empirical dynamic stochastic general equilibrium (DSGE)

framework to measure the degree of monetary policy accommodation when the nominal

interest rate is zero. The framework employs a hypothetical DSGE model in which the

nominal interest rate can be lowered below zero because, for instance, the central bank

can impose a “carry tax” on currency. We call the model’s nominal interest rate the

“shadow rate.” When the shadow rate is positive, it is observed as the actual nominal

interest rate set by the central bank. When it is negative, however, it deviates from the

actual nominal interest rate which remains at its lower-bound of zero. In the model, it is

not the actual nominal interest rate but the shadow rate that affects the economy when

the two rates deviate. The hypothetical DSGE model can be fit to data using a version of

particle filters, and the historical movements of the shadow rate can be estimated. As an

application, we estimate a small New Keynesian model using Japanese data. The results

suggest that the shadow rate was well below zero during the period when the nominal

interest rate was zero in the early 2000s.
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1 Introduction

Many central banks today use short-term nominal interest rates as their main policy instru-

ments. A potentially serious challenge caused by the use of nominal interest rate, however, is

the zero lower-bound of nominal interest rate. Once the policy rate becomes zero, monetary

policy can become ineffective if the central bank does nothing other than controlling the current

policy rate.

Since the recent financial turmoil that led many developed countries into severe recessions,

the challenge caused by the zero lower-bound of interest rate has gone beyond mere academic

curiosity; it is now of practical importance to the central banks. Today several central banks

are actually faced with the lower-bound, and the leading example of a country that have tackled

such a situation is, of course, Japan. The Japanese economy experienced a prolonged stagnation

in the 1990s and, as a result of the deflationary pressures, the Bank of Japan (BoJ) lowered its

policy rate to the lower bound of zero three times in the past 15 years.

Is the argument that monetary policy loses its effects on the economy once the policy rate

reaches zero too naive? Recent theoretical studies show that, even when the policy rate has

reached the lower-bound of zero, monetary policy can stimulate the economy by committing

to keeping the policy rate at zero longer than usual (e.g., Reifschneider and Williams, 2000).

Indeed, as summarized in the survey by Ugai (2006), empirical studies on the Japanese expe-

rience suggest that the policy measures of BoJ taken during the periods of zero interest rate

actually had at least some effects on the economy.

Motivated by such arguments, this paper proposes an empirical framework that can be

used to measure the degree of monetary policy accommodation during the periods of zero

interest rate. We consider a hypothetical dynamic stochastic general equilibrium (DSGE)

model in which the central bank can lower the nominal interest rate below zero. In the model,

a certain way to implement the negative nominal interest rate, such as imposing a “carry tax”

on currency, is assumed to be available to the central bank.1 Then we fit the hypothetical

model to actual data assuming the following. The model’s nominal interest rate is observed as

the actual nominal interest rate when it is positive. When the model’s nominal interest rate is

negative, however, it cannot be observed and the actual rate is stuck at zero. Then, we interpret

the estimated negative nominal interest rate of the model during the periods of zero interest

rate as measuring the degree of monetary policy accommodation, which was implemented by

the “unconventional” monetary policy measures such as quantitative easing or commitment to

keeping the policy rate at zero.

We call the nominal interest rate in the hypothetical DSGE model the “shadow rate.” The

shadow rate represents the policy stance of the central bank. By assumption, the shadow rate

coincides with the actual nominal interest rate in normal circumstances where it is positive,

but when it becomes negative, they deviate from each other. In the model, it is not the actual

1For other ways to lower nominal interest rates below zero, see Buiter (2009).
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nominal interest rate but the shadow rate that affects the economy when the two rates deviate,

i.e., when the nominal interest rate has hit its lower-bound of zero.

Although the model can in principle be fit to data in a Bayesian framework, there is a diffi-

culty caused by the zero lower bound of the actual nominal interest rate. Normally, estimating

a DSGE model is not a very difficult task because the likelihood function of the model can be

easily evaluated using the Kalman filter. In our setup, however, since the relationship between

the shadow rate and the actual nominal interest rate is non-linear, a direct application of the

Kalman filter is not possible. To overcome this problem, we employ a version of particle filter.2

The particle filter allows us to approximate the distribution of the shadow rate, and using the

approximate distribution, we can estimate the model parameters. Finally, with the parameter

estimates, we can estimate the unobserved path of the shadow rate.

The concept of shadow rate is not new in the literature (e.g. Black, 1995). Iwata and

Wu (2006) estimate a reduced-form model to evaluate the monetary policy effects during the

periods of zero interest rate in Japan, assuming the presence of the shadow rate. Also, Ichiue and

Ueno (2007, 2008) introduced a shadow rate in estimating a yield-curve model using Japanese

data. As we will see in Section 2, the distinctions between our approach and theirs are two-

fold. First, none of these studies employs a DSGE framework. Second, these studies do not

fully take into account the possible effects of changes in the shadow rate on the economy. In

particular, the framework of Iwata and Wu (2006) assume that the shadow rate affects the

economy only contemporaneously, and thus imposes the restriction that the lags of the shadow

rate do not affect current variables, including the current shadow rate. But such a restriction

does not generally hold in a rational-expectations model. For example, when monetary policy

represented by the shadow rate has some inertia, the shadow rate depends on its own lags.

As an application of the framework, we fit a small New Keynesian DSGE model to Japanese

data whose sample period contains the experience of zero interest rate. According to the results,

the estimated shadow rate is well below zero during the periods of zero interest rate. And the

decline of the shadow rate is larger in the second zero-interest-rate period. This is consistent

with the fact that in that period BoJ conducted a larger number of “unconventional” policy

measures.

The paper is organized as follows. Section 2 presents the DSGE framework, which assumes

that the nominal interest rate can be negative. Since the framework can be applied not only

to the small model estimated in a later section of this paper but also to a broader class of

DSGE models, we describe it based on a generic state-space representation of a DSGE model.

Section 3 describes a version of particle filters that we employ to deal with the nonlinearity

arising from the zero lower-bound of interest rate. Section 4 discusses the estimation strategy

based on the particle filter. As an application of our proposed estimation method, Section 5

2For an overview of particle filters, see Arulampalam et al. (2002). As an application to macroeconometrics,
Fernandez-Villaverde and Rubio-Ramirez (2005) also employ a particle filter to estimate a DSGE model, but
in a very different context than that of the present paper.
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fits a small New Keynesian model with the shadow rate to Japanese data. Section 6 concludes.

The appendix includes the derivations of some equations, relevant conditional densities, and

complete descriptions of the algorithms used to implement the estimation strategy of the paper.

2 A DSGE Framework With Shadow Rate

In this section, we sketch the DSGE framework in which the nominal interest rate can become

negative. We call the nominal interest rate of this framework a “shadow rate”. We first present

a generic state-space representation of a DSGE model with a shadow rate, and point out the

nonlinearity caused by the zero lower-bound of actual nominal interest rate. Then we compare

our framework with those of the existing literature on the zero lower-bound of nominal interest

rate.

2.1 State-space representation

Let us consider a hypothetical economy consisting of agents (including a government, if nec-

essary) and a central bank. We assume that the policy instrument of the central bank in this

model is the nominal interest rate r∗t . In the model, a certain way to implement the negative

nominal interest rate, such as imposing a “carry tax” on currency, is assumed to be available

to the central bank. Thus the central bank in the model can lower the nominal interest rate r∗t
below zero. We call the model’s nominal interest rate r∗t a “shadow rate”. This shadow rate is

the rate that affects the economy, and thus, enters into the objective functions and constraints

of the agents in the economy.

In the real world, the actual nominal interest rate rt can not be negative. In relating the

shadow rate r∗t to the actual nominal interest rate rt, we assume the following. When the

shadow rate is positive, it coincides with the actual nominal interest rate, rt, which the central

bank uses as its policy instrument in normal circumstances. When the shadow rate is negative,

however, the two rates deviate, and the actual nominal interest rate rt stays at zero. In sum,

the shadow rate and the actual nominal interest rate are related by the following observation

equation:

rt = max {0, r∗t } . (1)

Suppose that the optimization problems of the agents are specified and solved, that the

policies of the central bank and the government are specified, and that the equilibrium is

defined. By log-linearizing the resulting behavioral equations, policy functions, and the resource

constraints around the steady state, a DSGE model of the economy can be expressed as a system

of expectational difference equations:

AEt (St+1) = BSt + C +Dεt (2)
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where St is the m× 1 state vector containing variables (including expectational variables and

lagged variables) in the model, and εt ∼ N (0,Σ) is an n× 1 vector of structural shocks.

We assume that the shadow rate r∗t can be written as

r∗t = βr + ΛrSt (3)

for some scalar βr and some 1×m vector Λr.
3

Given the parameter values, the system of expectational difference equations in (2) can be

solved with standard methods (e.g., Klein, 2000, and Sims, 2002). Assuming the determinacy

of the system, the rational-expectations solution of (2) can be written as

St = α + ΠSt−1 + Ψεt (4)

where α, Π and Ψ are nonlinear functions of the structural parameters contained in A,B,C,

and D.4

Combining (4) with an observation equation that relates the observed data to the state

vector St, we have a state-space representation of the model. Let Yt ≡ (x′t, rt)
′ be an observation

vector containing rt as well as other observed data series xt. Then the observation equation

can be written as

Yt = F (β + ΛSt) ≡
[

βx + ΛxSt

max {0, βr + ΛrSt}

]
(5)

where β ≡ (β′x, βr)
′ is a vector of constants, Λx is a matrix, and Λ ≡ (Λ′x,Λ

′
r)
′.5 We assume (i)

there are as many observed series as structural shocks, i.e., Yt is an n × 1 vector, and (ii) ΛΨ

is invertible. The implication of these assumptions will be discussed in the next section.

The function F in the observation equation (5) is nonlinear. When such nonlinearity is

absent, estimation of the system and the state vector St is not a difficult task. The likelihood

of the system consisting of (4) and a linear observation equation can be easily evaluated via the

Kalman filter (see, e.g., Hamilton, 1994). Then the parameters can be estimated by maximum

likelihood or Bayesian method (see, e.g., An and Schorfheide, 2007). With the parameter

estimates, the state vector St can be estimated by the Kalman smoothing.

With the nonlinear observation equation (5), however, the standard Kalman filter is not

applicable. In the next section we will describe the difficulties caused by the nonlinearity in

detail and how a version of particle filter can be used to deal with the problem.

3When the variables in the model are all expressed in terms of the deviation from the steady state value, βr
is the steady state value of the shadow rate. When the units are different between rt and the interest rate in
the model, Λr contains a unit transformation coefficient (which is, for example, 4 if the transformation is from
a quarter-on-quarter basis to a year-on-year basis).

4We do not consider sunspot shocks. Lubik and Schorfheide (2004) show how a DSGE model without any
nonlinearity can be estimated allowing for the possibility of indeterminacy. Although it is beyond the scope of
the current paper, whether the estimation strategy proposed here can be extended to allow for the possibility
of indeterminacy is an interesting question.

5As is evident in the equation, we do not consider any measurement error in this paper.
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2.2 Comparison with the literature

To illustrate the novelty of our approach to deal with the nonlinearity caused by the zero

lower-bound, let us compare our framework with those of the previous studies.

First, compared to the frameworks of most theoretical studies on the zero lower-bound of

interest rate, our framework does not suffer from the lack of an analytical solution method

for nonlinear difference equations. The theoretical studies normally assume that the nominal

interest rate evolves according to an interest rate rule with the zero lower-bound constraint.6

In our notation, the rule can be written as

rt = r∗t = max {0, c+ φSt} ,

where c is a constant and φ is an 1×m vector. Typically, the equation is based on a Taylor-type

rule with interest rate smoothing, and thus φSt is a sum of the inflation term, the output gap

term, and the term of the lagged nominal interest rate.

Note that the above nonlinear equation implies that the dynamics of r∗t are affected by the

nonlinearity caused by the zero lower-bound constraint. Thus, the system of the structural

equations cannot be written in a linear form. Currently, no analytical solution method for

such a nonlinear system is available.7 As a result, the estimation techniques used for linear

DSGE models cannot be applied to such models. In contrast, the structural equation (2) in

our framework is linear. Thus, in our case, the model can be solved by the standard solution

methods. As a result, it can also be estimated as long as the nonlinearity of the observation

equation is taken care of with particle filtering, as we will show later.

We do not claim that our approach is the ideal solution to deal with the nonlinearity caused

by the zero lower-bound. We admit that our DSGE model is a hypothetical one in which

the nominal interest rate can be counter-factually negative. And our main objective is not to

estimate the true model of the economy, but to use the model as a gauge to measure the degree

of monetary policy accommodation during the periods of zero interest rate. Still, to the extent

that the movement of the shadow rate captures the effects of the unconventional monetary

policy measures such as quantitative easing or commitment to keeping the policy rate at zero,

our DSGE framework can be a good approximation of the true model of the economy. If it

is actually a good approximation, the fact that our approach allows one to estimate a DSGE

model even over the period of zero interest rate can be considered as a benefit of the approach.

Next, compared to the frameworks of the empirical studies that assume the presence of the

shadow rate, there are two distinctions. First, our framework is based on a structural DSGE

6Such studies include Eggertson and Woodford (2003), Jung, Teranishi and Watanabe (2005), and Kato and
Nishiyama (2005).

7There are some methods that can handle certain types of nonlinearities in state transition equation. An
example is the Markovian Jump Linear Quadratic approach proposed by Svensson and Williams (2007, 2008).
Such methods, however, have not been applied to the problem of zero bound of interest rate.
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model, while the previous studies are based on reduced-form models.8 Second, our framework

allows for the possibility that the lags of the shadow rate affect the current variables in the

system. To see this point, let us look at the framework of Iwata and Wu (2006). They employ

a reduced-form system

A0Y
∗
t = A (L)Yt + µ+ ut

where Y ∗t ≡ (x′t, r
∗
t )
′, A0 is a matrix, A (L) ≡ A1L − · · · − ApLp, L is the lag operator, µ is a

vector of constants, and ut is a vector of shocks. Note that the shadow rate r∗t is included in

the left-hand side, but not in the right-hand side. This implies that the shadow rate can affect

the variables in the economy only contemporaneously, and that the lags of the shadow rate

cannot have any effect on the current variables. In particular, the shadow rate cannot depend

on its own lags, and thus monetary policy inertia is assumed to be lost once the shadow rate

becomes negative. In contrast, the state-transition equation (4) in our framework allows for

the effects of the lags of the shadow rate on the current variables. Regarding this point, Ichiue

and Ueno (2007, 2008) also allow for the dependence of the current shadow rate on its own

lags. Their framework, however, is based on a partial-equilibrium yield curve model with the

shadow rate. Therefore, unlike us, they ignore the effects of shadow rate on the other variables

in the economy.

3 The Filtering Method

We propose to employ a version of particle filter to deal with the nonlinearity in the observation

equation (5). Particle filters are sequential Monte Carlo filtering methods which are applica-

ble to any state-space model. The key idea of the methods is to represent the conditional

density function of the state vector by a set of random samples (“particles”) with associated

weights. It is shown in the literature that as the number of samples increases, this approximate

representation approaches the true conditional density.

In this section, we consider the situation in which all the parameter values are given. The

estimation of the parameters will be discussed in the next section. The focus of this section

is on how the distribution of the shadow rate can be approximated with particles. We also

assume that, when the particle filter is invoked, the initial value of S0 is given.

Below, to motivate the introduction of the particle filter, we first consider the filtering

problem in a general form. Then, we describe the specific version of particle filter which we

implement for our framework. We also discuss the implications of the assumptions which we

made on the system for our implementation of the particle filter.

8In fact, our framework does not have to be based on a DSGE model, and can be based on a reduced-
form model. Without considering the underlying DSGE model (2), one can base the whole analysis on the
reduced-form equation (4) treating α, Π and Ψ instead of A, B, C and D as the parameters to be estimated.
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3.1 The filtering problem

Consider the filtering problem for the system of (4) and (5). Let us denote the history of

observations by Y t ≡ {Ys}ts=0. The Filtering problem is to compute f (St|Y t), the density of

the state vector St conditional on the history Y t. Appendix A shows that the following recursive

formula for f (St|Y t) holds:

f
(
St|Y t

)
=

∫
f (St|St−1, Yt) f

(
St−1|Y t

)
dSt−1, (6)

where

f
(
St−1|Y t

)
=

f (Yt|St−1)∫
f
(
Yt|S ′t−1

)
f
(
S ′t−1|Y t−1

)
dS ′t−1

f
(
St−1|Y t−1

)
. (7)

This formula is different from the standard recursive formula of the filtering problem often used

in the literature.9 We find this version more helpful to clarify the idea of our particle filtering

method.

According to (6) and (7), observing the new data Yt, f (St|Y t) can be updated from

f (St−1|Y t−1) using two densities. The first is f (Yt|St−1), the probability of observing Yt when

St−1 is the true state in t − 1. Since this probability represents the plausibility of St−1 as the

true state in t− 1 given the new information Yt, reweighting the old density f (St−1|Y t−1) with

them as in (7) yields f (St−1|Y t), the new density of St−1 updated with the new information.

The second is f (St|St−1, Yt), the probability of St being the next state when St−1 is the old

state. The product of this probability and the new density of St−1 gives the probability that

the state evolved from St−1 to St. Integrating this over all possible starting states St−1 yields

the density of the current state, f (St|Y t).

If there was no nonlinearity and shocks were all Gaussian, there would be no need to employ

any approximation method. In that case, f (St|St−1, Yt) and f (Yt|St−1) would be Gaussian, and

f (St|Y t) would take the same simple Gaussian form as f (St−1|Y t−1). This is the case to which

the Kalman filter can be applied. In such a case, we could easily compute the exact distribution

f (St|Y t), which can be completely characterized by only two parameters, mean and variance.

However, things are not that easy when we have the nonlinearity in the observation equation

in (5). Once r∗t becomes negative, f (St|Y t) takes a different form than f (St−1|Y t−1), and no

simple analytical solution like the Kalman filter is available. This is because f (St|St−1, Yt)

and f (Yt|St−1) involve nonstandard distributions, as we show in Appendix B. As (6) says,

the density of St conditional on the history of the observations is an integral of the product

of the two nonstandard densities over St−1. The nonnormalities of the two densities make it

impossible to express the resulting integral in (6) in any analytically simple form. Therefore,

some approximation must be employed to conduct filtering based on (6) in this case.

9The standard formula often used in the literature involves f (Yt|St) and f (St|St−1) instead of f (Yt|St−1)
and f (St|St−1, Yt) in our formula. See, e.g., Equation (4) of Doucet et al. (2000).
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3.2 Particle filtering

Particle filters approximate the conditional density f (St|Y t) with a set of particles {Sit}Ni=1 and

associated weights {wit}Ni=1.

The particles are sequentially sampled from a density called importance density, and the

weights are also sequentially updated. It has been shown in the literature to be optimal to

sample Sit and update wit given Sit−1 and wit−1 by

Sit ∼ f
(
St|Sit−1, Yt

)
, (8)

wit ∝ wit−1f
(
Yt|Sit−1

)
. (9)

These are optimal in the sense that they minimize the variance of the weights {wit}Ni=1 condi-

tional on {Sit}Ni=1 and Y t.10

Note that the two conditional densities in (8) and (9) are the same as those in (6) and

(7). In fact, the particle filter based on (8) and (9) simply implements the idea embodied in

the recursive formula (6) and (7). Suppose that we have particles and weights
{
Sit−1, w

i
t−1

}N
i=1

approximating f (St−1|Y t−1). Observing Yt, we can first update the weight assigned to each

particle of the previous period using f
(
Yt|Sit−1

)
, the plausibility of Sit−1 as the true state

in t − 1 given the new information Yt. Also, for each particle of the previous period, we can

generate particles of the current period using f
(
St|Sit−1, Yt

)
, the probability of St being the next

state when Sit−1 is the old state. The resulting particles and weights {Sit , wit}Ni=1 approximate

f (St|Y t).

We use the optimal importance density function (8) and the optimal weight updating equa-

tion (9) for our particle filter. In many cases considered in the literature, the use of this optimal

density function and the associated weights is not feasible. Specifically, there are two reasons

why the optimal procedure is infeasible in many cases. First, it is usually very difficult to sam-

ple from f
(
St|Sit−1, Yt

)
. Second, it is often computationally hard to evaluate f

(
Yt|Sit−1

)
. In

our particular case, however, these two common difficulties are not present. First, as Appendix

B shows, f
(
St|Sit−1, Yt

)
is a density of a variable which is a linear function of a truncated nor-

mal variable. Therefore, sampling from the density can be done by drawing from a truncated

normal density and plugging the draw into the linear function. Second, as Appendix B also

shows, although f
(
Yt|Sit−1

)
is not normal when rt = 0, it is a product of normal density and a

probability which can be calculated from a cumulative normal density. Thus, it can easily be

evaluated.

Starting from initial particles {Si0}Ni=1 and weights {wi0}Ni=1, the particle filter sequentially ap-

proximate f (St|Y t) by sampling new particles according to (8) and updating weights according

10A large variance of the weights means that there are a lot of particles to which very small weights are
assigned. Such particles contain less information on the density to be approximated than particles with larger
weights do. Therefore, the efficiency of the approximation deteriorates as the variance of the weights increases.
See, e.g., Arulampalam et al. (2002).
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to (9). The complete description of the algorithm is given in Appendix C.

3.3 Role of the assumptions

Since the state vector in general contains multiple variables, its conditional density f (St|Y t)

is a multivariate density. Therefore, in general, we may have to approximate a multivariate

density in implementing the particle filter.

Approximating a multivariate density, however, is notoriously a difficult task. As the number

of dimensions increases, the number of particles required for a given precision of approximation

exponentially increases. The amount of time needed for the computation easily explodes,

rendering the approximation method computationally infeasible.

The two assumptions which we imposed on the system in Section 2 and the assumption made

in this section that S0 is given are intended to avoid this problem. With the two assumptions,

namely, (i) that there are as many observed series as structural shocks, and (ii) that ΛΨ is

invertible, we effectively limit our attention to the case in which an approximation of the one-

dimensional density of r∗t is sufficient to approximate the density of entire St. This is because

under the assumptions there is a mapping from r∗t to St given Yt and St−1, as we show in

Appendix B. Intuitively, when ΛΨ is invertible, the structural shocks εt can be computed from

r∗t and xt given St−1. Then, with the structural shocks εt and given St−1, the entire state vector

St can be backed out from the state-transition equation (4). Note that the argument holds for

all t ≥ 1 under the assumption that S0 is given.

Note that the assumptions do not hold for some of the typical DSGE models in the literature

such as Smets and Wouters (2003). In Smets and Wouters (2003), the number of shocks exceeds

the number of observed data series. Intuitively, in that model some of the shocks are inherently

attached to the natural output, and the natural output is treated as an unobservable state

variable in the state-space representation. When such an additional unobservable variable other

than the shadow rate was present in our framework, the approximation must have been done

for a multivariate density. However, as we noted above, the computation could be infeasible in

such a case.11

11For cases in which there are multiple unobservable variables, we suggest that a Gibbs sampler can be applied
in estimating the model using the particle filter presented here. Note that if the path of the shadow rate is
known, the system becomes standard and the DSGE model can be easily estimated. Therefore, starting from
an initial path of the shadow rate, we can draw parameters and the paths of unobservable variables other than
the shadow rate from the posterior distribution conditional on the path of the shadow rate. Then, given the
draws of the path of the unobservables and parameter values, we can apply the particle filtering method to draw
a path of the shadow rate. One can iterate these steps to sample parameters and paths of the unobservables
from the unconditional posterior distribution.
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4 Estimation Strategies

We now proceed to the estimation step of the system given by (4) and (5). The parameter

values are not known, and must be estimated. We denote by θ all the structural parameters

contained in matrices A, B, C, and D in (2).

We assume that the sample period for the estimation is chosen such that the actual nominal

interest rate is not zero in the initial period. This assumption guarantees that the unconditional

distribution of the observed data in the initial period is a normal distribution. Then, as we will

show below, the period likelihood function for the initial period can be easily evaluated.

In the previous section, we assumed that S0 is given when the particle filter is invoked.

When S0 can be computed from Y0, the assumption can be easily satisfied. Even when some

elements of S0 cannot be computed from Y0, we can treat the unknown elements in S0 as

additional parameters, and add them to θ.

We first describe how the likelihood of the model for a set of the parameter values can be

computed with the particles and weights generated by the particle filter. We then describe the

strategy for estimating the parameters. We also describe the particle smoothing method, by

which we can estimate the path of the shadow rate given the parameter estimates.

4.1 Likelihood evaluation

For a set of parameter values, the particle filter generates the particles and associated weights{
{Sit}Ni=1 , {wit}Ni=1

}T
t=0

, which approximate the conditional densities of the state vector. With

them, we can evaluate the likelihood as follows.

First, the likelihood function can be written as a product of the period likelihood functions

f (Yt|Y t−1)

f
(
Y T |θ) =

T∏
t=0

f
(
Yt|Y t−1

)
(10)

with f (Y0|Y −1) ≡ f (Y0). We now make explicit the dependence of the likelihood on the

parameter values by putting θ in the expression on the left hand side.

For t > 0, the period likelihood function f (Yt|Y t−1) can be written as

f
(
Yt|Y t−1

)
=

∫
f (Yt|St−1) f

(
St−1|Y t−1

)
dSt−1,

where we used the fact that f (Yt|St−1, Y
t−1) = f (Yt|St−1). We approximate this using the

particles
{
Sit−1

}N
i=1

and weights
{
wit−1

}N
i=1

approximating f (St−1|Y t−1) as

f
(
Yt|Y t−1

) ≈
N∑
i=1

wit−1f
(
Yt|Sit−1

)
.

For t = 0, we use the unconditional distribution of Y0. Since the actual nominal interest
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rate in this period is not zero by assumption, we have r∗0 = r0, and thus (5) implies that

Y0 = β + ΛS0. Since (4) implies that the unconditional distribution of S0 is normal with mean

(I − Π)−1 α and variance
∑∞

i=0 ΠjΨΣΨ′ (Πj)
′
, the unconditional distribution of Y0 is normal

with mean β + Λ (I − Π)−1 α and variance
∑∞

i=0 ΛΠjΨΣΨ′ (Πj)
′
Λ′.

4.2 Parameter estimation

Maximum likelihood estimation can be done by simply maximizing the likelihood function (10)

with respect to θ. However, in the current literature, maximum likelihood estimation of DSGE

models is not the common choice of the estimation method. As An and Schorfheide (2007) point

out, one reason for this is that the estimates of structural parameters obtained by maximum

likelihood methods are often at odds with the parameter values suggested by other evidence

such as the results from micro studies. This reflects that the likelihood function often peaks

in regions of the parameter space that are inconsistent with the parameter values suggested by

other evidence.

The common approach employed in the literature of estimation of DSGE models is a

Bayesian approach. In the Bayesian approach, a prior distribution p (θ) is placed on pa-

rameters. Then by Bayes’ Theorem the posterior distribution of θ can be constructed from the

prior distribution and the likelihood function as

p
(
θ|Y T

)
=

f
(
Y T |θ) p (θ)∫

f (Y T |θ) p (θ) dθ

It is usually impossible to analytically compute this posterior distribution. Thus, instead,

draws from the posterior distribution are generated using Markov Chain Monte Carlo (MCMC)

methods, and inference on the parameters are made based on these posterior draws.

In this paper, following An and Schorfheide (2007), we employ the Random-Walk Metropolis

algorithm as the MCMC method to generate posterior draws. The details of the algorithm are

given in Appendix C.

4.3 Smoothing

Given parameter values, smoothing is a step to compute the densities of state vectors St at

each period given the entire data sample Y T , that is, f
(
St|Y T

)
for all t. When the particle

filter is employed for filtering, smoothing can be done using the particles and weights generated

by the particle filter. Let us assume that we now have the parameter estimates obtained from

the estimation step described above, and that, using the parameter estimates, we have invoked

the particle filter to get the particles and weights
{
{Sit , wit}Ni=1

}T
t=1

.

To conduct smoothing with the particles and weights, we use backward simulation following

Godsill, Doucet, and West (2004). As we describe below, the idea of the backward simulation

is straightforward. Our primary interest is on the path of shadow rate; let us therefore focus
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here not on smoothing the entire state vector but on smoothing only the path of shadow rate.

The details of the algorithm, which conducts smoothing for the entire state vector, are given

in Appendix C.

First note that plugging each particle Sit into (3) yields the corresponding shadow rate r∗,it .

Thus
{
r∗,it , w

i
t

}N
i=1

approximates the conditional density f (r∗t |Y t). With these particles of the

shadow rate and their weights, the smoothing procedure approximates f
(
r∗t |Y T

)
by generating

lots of draws from the density. To get one such draw, we start from the last period T and

move backward to the initial period 0. First, for the last period T , f
(
r∗T |Y T

)
is exactly the

conditional density which the particles and weights
{
r∗,iT , w

i
T

}N
i=1

approximate. Thus, we simply

choose the sample of the shadow rate r̃∗T from
{
r∗,iT
}N
i=1

with probability {wiT}Ni=1. For t < T ,

given the chosen shadow rate r̃∗t+1, we can reevaluate the weight assigned to each particle with

the information that the shadow rate in the next period is r̃∗t+1. This can be done by reweighting

each weight {wit}Ni=1 with the probability that r̃∗t+1 actually realizes in the next period when the

current state is Sit . Then, we choose r̃∗t from
{
r∗,it
}N
i=1

with the reweighted probabilities. The

steps proceed recursively backward, and we obtain a sample path of the shadow rate {r̃∗t }Tt=0.

By generating a desired number of paths of the shadow rate, we have the approximation of the

density f
(
r∗t |Y T

)
represented by those paths.

5 Example: Small DSGE Model with Japanese Data

In this section, we fit a small DSGE model to Japanese data as an application of the estimation

method presented above.

5.1 A small New Keynesian model

The small model which we fit to Japanese data is a typical DSGE model in the literature. It

basically consists of three equations. As usual, the equations have all been log-linearized, and

the variables are in terms of deviations from the deterministic steady state. The definitions of

the parameters are summarized in Table 1.

The first equation is the forward-looking IS curve with internal habits:12

yt = cy1yt−1 + cy2Etyt+1 − cy3Etyt+2 − cy4 (r∗t − Etπt+1) + εyt , (11)

where yt is the output gap, πt is the inflation rate, and εnt is the shock to the natural rate

whose distribution is i.i.d.normal, cy1 ≡ χ/ζ, cy2 ≡ (1 + βχ+ βχ2) /ζ, cy3 ≡ βχ/ζ, cy4 ≡
12This IS curve can be derived from the following household utility function:

E0

∑∞
t=0 β

t
[
(1− σc)−1 (Ct − χCt−1)1−σc − χh (1 + σh)−1

N1+σh
t

]

subject to an appropriate budget constraint with the shadow rate. Here, Ct is consumption level, Nt is labor
supplied.
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(1− βχ) (1− χ) / (σcζ), ζ ≡ 1 + χ + βχ2. The discount factor β is a function of r̄, the steady

state annual real interest rate (in percentage point), and β = 1/ exp (r̄/400).

The second equation is the hybrid New Keynesian Phillips curve:13

πt = cπ1Etπt+1 + cπ2mct + cπ3πt−1 + επt , (12)

where cπ1 ≡ β/
(
1 + βγp

)
, cπ2 ≡ κ/

{(
1 + βγp

)
(1 + θ (1− α) /α)

}
, κ ≡ (1− ξp

) (
1− βξp

)
/ξp,

cπ3 ≡ γp/
(
1 + βγp

)
, επt is the price shock whose distribution is i.i.d.normal, and mct is the real

marginal cost defined by

mct ≡ cπ4yt + cπ5
{(

1 + βχ2
)

(yt − εyt )− χ (βEtyt+1 + yt−1 + εyt )
}
,

with cπ4 ≡ (σh + 1− α) /α and cπ5 ≡ σc/ {(1− χ) (1− βχ)}. The parameters θ and α are

the steady state price elasticity of demand and the cost share of labor input in the Cobb-

Douglas production function, respectively. Following Ichiue et al. (2008), we calibrate these

two parameters and set θ = 6 and α = 0.63.

The third equation is the Taylor-type monetary policy rule with inertia:

r∗t = φrr
∗
t−1 + (1− φr)

{
φyyt + φππt

}
+ εrt . (13)

where εrt is the monetary policy shock whose distribution is i.i.d.normal.

Note that the interest rate that enters the structural equations (11)-(13) is not the nominal

interest rate rt but the shadow rate r∗t . The two rates are related by (1).

Let St ≡
(
yt−1, πt−1, r

∗
t−1, yt, πt, r

∗
t , Etyt+1

)′
and εt ≡ (εyt , ε

π
t , ε

r
t )
′. Then the structural equa-

tions (11)-(13) can be cast into a system of expectational difference equations (2). Within the

parameter region of determinacy, the solution can be written in the form of (4). Letting π̄

be the steady state inflation rate, the observed data series are related to the model variables

through the following observation equation.




[
GAPt

INFt

]

Rt


 =




[
0

π̄

]

r̄ + π̄


+




[
0 0 0 100 0 0 0

0 0 0 0 400 0 0

]
St

max
{

0,
[

0 0 0 0 0 400 0
]
St

}




where GAPt is the data of GDP gap, INFt is the data of annual inflation rate, Rt is the data

of annual nominal interest rate. All the data are in percentage points.

Finally, S0 can be computed from Y0 in this case. y−1, π−1, r
∗
−1, y0, π0, r

∗
0 are computed

from the observation equation with Y−1 and Y0. As for E0y1, it can be computed by solving

e′EyS0 = e′y (α + ΠS0), where eEy and ey are selection vectors whose values are zeros except for

13The Phillips curve is derived in the Calvo-style sticky-price setup with backward indexation. The underlying
production function is assumed to be Cobb-Douglas with capital being fixed. The labor market is assumed to
be competitive.
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the elements corresponding to Etyt+1 and yt, respectively, being one.

5.2 Data and implementation

We use three quarterly Japanese time series as observable data series: the CPI inflation rate

for INFt, GDP gap constructed by the method described in Hara et al. (2006) for GAPt, and

the overnight call rate for Rt. All the variables except the call rate are seasonally adjusted.

The sample period is 1981:1Q to 2008:3Q.14 We treat a value of nominal interest rate less than

5 basis point as zero. As a result, there are two periods of zero interest rate: 1999:2Q-2000:2Q

and 2001:2Q-2006:2Q.

We set the number of particles to 10,000. While the approximation error becomes smaller

as the number of the particles increases, the computation time significantly increases. To make

the computation more efficient, we implemented the particle filter in Fortran code, but there is

still a considerable computational burden in running the particle filter. The number of 10,000

is adopted taking into account this tradeoff.

As for the implementation of the Random-Walk Metropolis algorithm, the covariance matrix

of the proposal density, Σ̃, is set to 0.5 times the Hessian of the posterior density of an auxiliary

model evaluated at the posterior mode. The auxiliary model is the same as the above model

except that it ignores the nonlinearity caused by the zero lower-bound of interest rate. More

precisely, it assumes that the shadow rate is always equal to the actual nominal interest rate.15

The initial draw is drawn from NP

(
θ̄, 2Σ̃

)
, where θ̄ is the posterior mode obtained by max-

imizing ln f
(
Y T |θ) + ln p (θ). We repeat the steps of the Random-Walk Metropolis algorithm

1,000,000 times, and throw away the first half of the draws. The resulting 500,000 draws are

used to approximate the posterior density.

5.3 Results

Table 1 shows the prior specifications and the parameter values at the posterior mean. Note

that the steady state real rate at the posterior mean is lower than its prior mean, 2.00, which

is about the average of the ex-post real rate during the sample period. This result obtains, of

course, because we allowed the shadow rate to decline below zero.

Figure 1 shows the prior and posterior densities of the structural parameters. In many

cases, the posterior density is narrower than the prior density, suggesting that the observations

14We do not include the period after the recent financial crisis in the sample period. Capturing the large
economic fluctuations during that period is beyond the scope of the small DSGE model employed here.

15Note that in principle Σ̃ can be any positive definite matrix for the algorithm to correctly generate draws
from the posterior density. Having said that, usually Σ̃ is set to some constant times the Hessian of the posterior
density of the model being estimated, evaluated at the posterior mode. In our case, however, the Hessian of
the model being estimated cannot be computed with a high precision because the likelihood is computed with
approximation. As a result, when the Hessian of the model being estimated is used, the speed of convergence
of the algorithm becomes very slow. We avoid this problem by using the Hessian of the auxiliary model, which
is computed with much higher precision because no approximation by the particle filter is necessary for this
model.
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actually added useful information for estimating the parameter values. Also, all of the posterior

densities are essentially single-peaked, suggesting that a severe identification problem is not

present in this estimation.

Figure 2 shows the impulse responses to structural shocks. Most of them seem to be

reasonable. The response of inflation to a monetary policy shock is delayed, attaining its

peak in about 2 years. The response of output gap is hump-shaped as well.

Figure 3 shows the smoothed path of the shadow rate at the posterior mean, together with

the output gap and the inflation rate. The path of shadow rate is the mean of 10,000 paths

generated by the method described in Section 4. The 90% confidence interval is also constructed

as the 5- and 95- percentiles of the 10,000 paths. As is clear from the figure, the shadow rate

declines to a level below zero during the periods of zero interest rate. Especially, the decline of

the shadow rate is large in the second zero-interest-rate period. This is consistent with the fact

that in that period BoJ conducted a larger number of “unconventional” policy measures, which

are detailed in Ugai (2006). The shadow rate hits the bottom of -1.94% in the 4th quarter of

2002, when the output gap and the inflation rate are also near their bottoms.

The movement of the estimated shadow rate is crucially affected by the fact that our model

takes into account the monetary policy inertia, which is captured by the lagged shadow rate in

the monetary policy reaction function (13). Figure 4 illustrates this point. The dashed thick

line is the policy rate implied by the estimated monetary policy reaction function (the difference

between this and the shadow rate depicted as the solid thick line corresponds to the monetary

policy shock εrt ). The solid thin line is computed by using the estimated monetary policy

reaction function (13) but with the (lagged) shadow rate r∗t−1 on the right-hand side replaced

by the (lagged) actual nominal interest rate rt−1. During the zero-interest-rate periods, rt−1

stays at zero while r∗t−1 is well below zero, and thus the solid thin line is much above the solid

thick line. The dashed thin line is the case of so-called Taylor rule, where we set φr = 0,

φy = 0.5/4, φπ = 1.5. In this case, the rule-implied rate declines to around -2% in 2002, but

then quickly goes up to zero, while the dashed thick line remains well below zero after 2002

reflecting the inertia embodied in the estimated monetary policy reaction function.

To compare the estimated path of the shadow rate with those of the previous studies, Figures

5 and 6 show the paths of the shadow rate estimated in Iwata and Wu (2006) and Ichiue and

Ueno (2008). These are taken from their original papers. First look at the estimated path of

Iwata and Wu (2006). Their path (“Implied Call Rate”) looks similar to ours, at least until

2001, which is the end of their sample period. Since our results, however, are based on the

sample period ending 2008:3Q, which includes additional four and a half years of period of

zero interest rate, one should not draw a conclusion from this comparison. Next, let us look at

the estimated path of Ichiue and Ueno (2008). Their sample period extends to the beginning

of 2006, and thus a more direct comparison can be made. Overall, their path is far below

our path for the most of the periods of zero interest rate. This might reflect the fact that

their approach does not take into account the relationships between the shadow rate and other
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macroeconomic variables.16 On the other hand, note also that the movements of the two paths

share some common features. Both paths hit the bottoms around 2003, and quickly rise till

about 2004. Such similarities are interesting given that the two paths are estimated by totally

different approaches.

Finally, let us compare the estimated path of the shadow rate with the information about

the monetary policy stance that may be contained in monetary variables outside the model.

We estimated the path of the shadow rate from the call rate, the output gap, and the inflation

rate. However, other variables closely related to monetary policy might contain some useful

information about the monetary policy stance as well. Kamada and Sugo (2006) construct

monetary policy proxies by regressing the call rate on some variables such as lending rates and

monetary aggregates over the period before 1996, and then extrapolating the fitted value into

the period after 1996. The results are shown in Figure 7, which is taken from their paper.

Among the four cases, the case “Lending rates + Lending attitude D.I.” is the closest to our

estimated path of the shadow rate. Like the shadow rate, it declines below -1% around 2002

and 2003, although the drop of the shadow rate is a little deeper. This suggests that our

estimation results, not using any of lending rates or lending attitude D.I., shares some common

information with that of Kamada and Sugo (2006) whose approach is totally different from

ours.

6 Conclusion

This paper proposed an empirical DSGE framework to measure monetary policy when the

nominal interest rate is zero. In so doing, we introduced a hypothetical DSGE model in which

the nominal interest rate can be negative due to, for example, the imposition of a carry tax on

currency by the central bank. We call the model’s nominal interest rate a shadow rate, and the

shadow rate represents the monetary policy stance of the central bank. By the introduction of

the shadow rate, the nonlinearity caused by the zero lower-bound does not affect the linearity

of the state-transition equation, and only the observation equation becomes nonlinear. We

argued that a Bayesian estimation of such a model can be done by employing a version of

particle filters. As an application of the method, we fitted a small New Keynesian model to

Japanese data. The results suggest that the shadow rate was well below zero during the period

of zero interest rate in the early 2000s.

There are many directions for extensions of the current work, and here we suggest two of

them. First, the small New Keynesian model which we fitted to Japanese data is very likely

to be too simple a model to capture the dynamics of the Japanese economy. Employing richer

DSGE models to estimate the shadow rate using the framework of this paper is one direction.

16On the other hand, the results of Ichiue and Ueno (2007) suggest that the large decline of the estimated
shadow rate in Figure 5 is due to the assumption of the constant equilibrium interest rate in their yield curve
model. In Ichiue and Ueno (2007), they extend their framework to allow for shifts in the equilibrium rate. The
bottom of the estimated path using the extended model is around -0.8%, putting it now above ours.
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Second, as we pointed out in Section 3, the framework presented in this paper cannot directly be

applied to some models with unobserved natural output, including Smets and Wouters (2003).

However, the development of the natural output during the periods of zero interest rate is

of great interest, especially when we evaluate the policies conducted during those periods.

Extending the framework for such models is another direction.
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A Derivation of (6)

f
(
St|Y t

)
=

f (St, Yt|Y t−1)

f (Yt|Y t−1)

=

∫
f (St, Yt, St−1|Y t−1) dSt−1∫
f
(
Yt, S ′t−1|Y t−1

)
dS ′t−1

=

∫
f (St|Yt, St−1, Y

t−1) f (Yt|St−1, Y
t−1) f (St−1|Y t−1) dSt−1∫

f
(
Yt|S ′t−1, Y

t−1
)
f
(
S ′t−1|Y t−1

)
dS ′t−1

=

∫
f (St|Yt, St−1)

f (Yt|St−1) f (St−1|Y t−1)∫
f
(
Yt|S ′t−1

)
f
(
S ′t−1|Y t−1

)
dS ′t−1

dSt−1.

In the final line, we used the fact that

f
(
St|St−1, Yt, Y

t−1
)

= f (St|St−1, Yt) ,

f
(
Yt|St−1, Y

t−1
)

= f (Yt|St−1) .

These relationships hold because, if we know St−1, the past history Y t−1 does not add any

information to infer about St and Yt.

B Conditional Densities

Let us fix the notation first. We denote by Y ∗t ≡ (x′t, r
∗
t )
′ the vector of data which would be

observed if the shadow rate was observable. Then we have Y ∗t = β + ΛSt, and thus (4) implies

that

Y ∗t = γ + ΦSt−1 + et, (B.1)

where γ ≡ β + Λα, Φ ≡ ΛΠ, et ≡ ΛΨεt, et ∼ N (0,Ω), and Ω ≡ ΛΨΣΨ′Λ′. We partition et, γ,

Φ and Ω as

et ≡
[
ex,t

er,t

]
, γ ≡

[
γx

γr

]
, Φ ≡

[
Φx

Φr

]
, Ω ≡

[
Ωxx Ωxr

Ωrx Ωrr

]
,

with the number of rows of ex,t, γx, Φx and Ωxx being equal to that of xt.

Note that under the assumptions that Yt is an n× 1 vector and that ΛΨ is invertible, there

is a mapping from r∗t to St given St−1 and Yt. That is, combining εt = (ΛΨ)−1 et and (B.1) and

then substituting the result into (4), we have

St = α + ΠSt−1 + Ψ (ΛΨ)−1 (Y ∗t − (γ + ΦSt−1)) . (B.2)

As pointed out in Section 3, this mapping enables us to approximate the density of St, which

is in general multivariate, by approximating one-dimensional density.
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Below, we denote by NP (x;µ,Σ) and NC (x;µ,Σ) the normal density and its cumulative

version at x with mean µ and variance Σ. Also, we denote by NTr
P (x; c, µ, σ2) the truncated

normal density at x with mean µ, variance σ2, and the truncation from above at c.

B.1 f (St|St−1, Yt)

(B.1) implies that the density of Y ∗t conditional on St−1 is

f (Y ∗t |St−1) = NP (Y ∗t ; γ + ΦSt−1,Ω) . (B.3)

Then, the density of r∗t conditional on xt is given by

f (r∗t |St−1, xt) = NP

(
r∗t ; γr + ΦrSt−1 + ρrxex,t, σ

2
r|x
)
, (B.4)

where ρrx ≡ ΩrxΩ
−1
xx , σ2

r|x ≡ Ωrr − ΩrxΩ
−1
xxΩxr.

When rt > 0, we know for sure that Y ∗t = Yt and thus the value of St can be computed

by (B.2) without any uncertainty. In this case, the density becomes degenerate. When rt = 0,

since rt = 0 if and only if r∗t ≤ 0, we have f (r∗t |St−1, Yt) = f (r∗t |St−1, xt|r∗t ≤ 0). Therefore,

f (r∗t |St−1, Yt) is a truncated normal density given by

f (r∗t |St−1, Yt) =

{
degenerate at r∗t = rt when rt > 0

NTr
P

(
r∗t ; 0, γr + ΦrSt−1 + ρrxex,t, σ

2
r|x
)

when rt = 0
(B.5)

The conditional density f (St|St−1, Yt) is then implicitly given by (B.2), the mapping from r∗t
to St.

B.2 f (Yt|St−1)

First note that f (Yt|St−1) is a joint density of xt and rt. Therefore, it can be written as the

product of the density of rt conditional on xt and the density of xt, i.e.,

f (Yt|St−1) = f (rt|St−1, xt) f (xt|St−1) .

As for the first term, note that rt is a censored normal variable with the latent variable r∗t .

Since the density of r∗t conditional on xt is given by (B.4), we have

f (rt|St−1, xt) =





NP

(
rt; γr + ΦrSt−1 + ρrxex,t, σ

2
r|x
)

if rt > 0

NC

(
0; γr + ΦrSt−1 + ρrxex,t, σ

2
r|x
)

if rt = 0

As for the second term, (B.1) implies that xt has the conditional density

f (xt|St−1) = NP (xt; γx + ΦxSt−1,Ωxx) .
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Multiplying the two and noting that the resulting density for rt > 0 is simply the joint normal

density of Yt, we have

f (Yt|St−1) =

{
NP (Yt; γ + ΦSt−1,Ω) if rt > 0

NC

(
0; γr + ΦrSt−1 + ρrxex,t, σ

2
r|x
)
NP (xt; γx + ΦxSt−1,Ωxx) if rt = 0

(B.6)

C Algorithms

Algorithm 1 (Particle filter for shadow rate).

1. Set initial particles and weights as Si0 = S0, wi0 = 1/N for all i = 1, . . . , N .

2. For t = 1 to T :

(a) Draw
{
r∗,it
}N
i=1

as follows.

• When rt > 0, set r∗,it = rt.

• When rt = 0, draw
{
r∗,it
}N
i=1

from (B.5).

(b) Set Sit = α + ΠSit−1 + Ψ (ΛΨ)−1 (Y ∗,it −
(
γ + ΦSit−1

))
with Y ∗,it = (x′t, r

∗,i
t )′ for all

i = 1, . . . , N .

(c) Update weights by wit ∝ wit−1f
(
Yt|Sit−1

)
with (B.6).

3.
{
{Sit , wit}Ni=1

}T
t=1

is an approximation of the sequence of the conditional distributions of

the state vector, {f (St|Y t)}Tt=1.

Algorithm 2 (Random-walk metropolis).

1. Set the followings:

• Σ̃, covariance matrix of the proposal distribution

• θ(0), initial draw

• nsim, number of draws to be generated

• nburn, number of initial draws to be discarded

2. For s = 1 to nsim:

• Draw ϑ from the proposal distribution NP

(
θ(s−1), Σ̃

)
.

• Set χ(s) = min

{
1,

f(Y T |ϑ)p(ϑ)

f(Y T |θ(s−1))p(θ(s−1))

}
.

• Set θ(s) as follows:
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– Set θ(s) = ϑ with probability χ(s).

– [Otherwise, set θ(s) = θ(s−1)] <Set θ(s) = θ(s−1) with probability 1− χ(s)>.

3.
{
θ(s)
}nsim
s=nburn+1

is an approximate realization from p
(
θ|Y T

)
.

Algorithm 3 (Particle smoothing).

1. Smooth the shadow rate by moving backward as follows:

(a) Choose r̃∗T = r∗,iT with probability wiT and set Ỹ ∗T ≡ (x′T , r̃
∗
T )′.

(b) For t = T − 1 to 1:

• For each i = 1, . . . , N , compute wit|t+1 ∝ witf(Ỹ ∗t+1|Sit) with (B.3).

• Choose r̃∗t = rit with probability wit|t+1 and set Ỹ ∗t = (x′t, r̃
∗
t )
′.

2. Recover the entire state vector by moving forward as follows:

(a) Set S̃0 = S0.

(b) For t = 1 to T :

• Set S̃t = α + ΠS̃t−1 + Ψ (ΛΨ)−1
(
Ỹ ∗t − γ − ΦS̃t−1

)
.

3.
{
S̃t

}T
t=0

is an approximate realization from f(ST |Y T ).
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Table 1. Prior Specifications and Parameter Values at the Posterior Mean

Prior

Parameter Type Mean 90% interval

σc Relative risk aversion Gamma 2.00 [0.68,3.88]

χ Habit persistence Beta 0.60 [0.25,0.90]

ξp Price fixity Beta 0.50 [0.17,0.83]

γp Price indexation Beta 0.50 [0.17,0.83]

σh Inverse of Frisch elasticity Gamma 2.00 [0.68,3.88]

φπ Monetary policy reaction to inflation Normal 1.50 [1.17,1.83]

φy Monetary policy reaction to output gap Normal 0.50 [0.17,0.83]

φr Monetary policy inertia Beta 0.75 [0.57,0.90]

π̄ Steady state inflation Normal 1.00 [-0.64,2.64]

r̄ Steady state real rate Normal 2.00 [0.36,3.64]

σy S.d. of natural rate shock Inverse gamma 0.005 [0.001,0.014]

σπ S.d. of price shock Inverse gamma 0.005 [0.001,0.014]

σr S.d. of monetary policy shock Inverse gamma 0.005 [0.001,0.014]

Posterior

Parameter Mean 90% interval

σc Relative risk aversion 2.367 [0.727, 3.976]

χ Habit persistence 0.968 [0.951, 0.987]

ξp Price fixity 0.963 [0.933, 0.997]

γp Price indexation 0.898 [0.825, 0.976]

σh Inverse of Frisch elasticity 3.508 [0.982, 5.750]

φπ Monetary policy reaction to inflation 1.463 [1.183, 1.742]

φy Monetary policy reaction to output gap 0.224 [0.122, 0.321]

φr Monetary policy inertia 0.893 [0.857, 0.927]

π̄ Steady state inflation 1.330 [0.621, 2.043]

r̄ Steady state real rate 1.582 [0.908, 2.245]

σy S.d. of natural rate shock 0.0020 [0.0018, 0.0023]

σπ S.d. of price shock 0.0010 [0.0009, 0.0012]

σr S.d. of monetary policy shock 0.0012 [0.0010, 0.0013]
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Figure 1: Prior and Posterior Densities
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Note: The figure plots the marginal posterior distributions (black lines) against their marginal prior distributions
(gray lines).

26



Figure 2: Impulse Responses
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Figure 3: Output Gap, Inflation Rate, and Shadow Rate in Japan
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Note: The path of the shadow rate is the mean of 10,000 paths generated by the method described in Section
4. The 90% confidence interval is also shown.
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Figure 4: Shadow Rate and Rule-Implied Call Rates
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Note: The dashed thick line labeled as “Estimated MP rule” is the policy rate implied by the estimated monetary
policy reaction function. The solid thin line labeled as “Estimated MP rule + observed rate” is computed by
using the estimated monetary policy reaction function (13) but with the (lagged) shadow rate r∗t−1 on the
right-hand side replaced by the (lagged) actual nominal interest rate rt−1. The dashed thin line is the policy
rate implied by the so-called Taylor rule, where the related parameters are set such that φr = 0, φy = 0.5/4,
φπ = 1.5.
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Figure 5: Estimated Shadow Rate of Iwata and Wu (2006)

monetary policy during this period therefore provides a good opportunity to study the
impact on monetary policy of the zero bound constraint on nominal interest rates.

We focus on the time period between 1991 and 2001 in this paper because there appears
to be several structural changes in the Japanese monetary policy during the past 30 years.
For example, in the second half of the 1980s, stabilizing the exchange rate seemed to be the
main policy goal for the BoJ due to the Plaza Accord. Moreover, the dramatic rise in asset
prices starting in the late 1980s caused the BoJ to refocus its policy activities on asset
prices. See Hetzel (1999) for a discussion of Japanese monetary policy since the 1970s.
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Figure 6: Estimated shadow rate of Ichiue and Ueno (2008)

Figure 3: Shadow Rate and Call Rate 
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Note: This figure shows the estimated shadow rate (thick line) and the call rate (thin line). 
 
 

 
 
 
 

Figure 4: Shadow Rate and Current Account Balance at the BOJ 
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Note: This figure shows the estimated shadow rate (thick line) and the current account balance (CAB) 
at the BOJ that is not subject to reserve requirements (trillions of yen, right scale, dotted line). 
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Note: The figure is taken from Ichiue and Ueno (2008).
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Figure 7: Monetary Policy Proxies of Kamada and Sugo (2006)

Note: 1. "Lending rates" stands for the Average Contracted Interest Rates on Loans and Discounts, and 
              "Lending attitude D.I." stands for the TANKAN Lending Attitude of Financial Institutions D.I.
          2. Shaded areas indicate recessions.
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of Financial Institutions D.I. Shaded areas indicate recessions.
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