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Abstract 

This study, based on a search model, attempts to draw out the implications for discussions 
about reference rates that originated from the recent Libor manipulation scandal, with particular 
focus on whether the calculation of reference rates should be based solely on actual transaction 
data and whether the use of expert judgment should be allowed.  Generally speaking, yields on 
financial instruments can be decomposed into elements such as risk-free rate, (credit and/or 
market) risk premium, and liquidity premium.  The reference rate is not exceptional.  In 
developing a model, given that in times of crisis, liquidity dried up in interbank markets where 
reference rates are calculated, we use a search-based asset pricing model by Duffie, Gârleanu, 
Pedersen (2005, 2007) to consider a situation in which market transactions are sporadic.  In 
evaluating asset prices, we also combine this model with the robust control method, a technique 
for incorporating model uncertainty (e.g., a situation in which market participants lose 
confidence in their own pricing models and market prices during crises).  The results suggest a 
jump in the liquidity premium to the level exceeding the risk premium based on the 
fundamentals, while being amplified by uncertainty.  Given that reference rates are broadly 
used in deciding lending rates for a number of financial contracts and the prices of derivatives, it 
may be economically inefficient to use interest rates that include premiums which have risen 
due to a temporary surge in uncertainty.  Thus, an expert judgment could be allowed to some 
extent in order to remove these premiums.  
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1.  Introduction 

Since the Libor (London interbank offered rate) manipulation scandal came to light, the 
role and governance of the reference rates in interbank markets have drawn increasing 
attention.  In fact, active discussions have taken place among market participants, such 
as the British Bankers’ Association (BBA), which compiles Libor, as well as national 
regulatory authorities and international institutions such as the International 
Organization of Securities Commissions (IOSCO), the Bank for International 
Settlements (BIS), and the Financial Stability Board (FSB), to enhance the reliability 
and robustness of the reference rates. 
  Among several topics concerning reference rates,1  the recommendations in the 
Wheatley Review released by HM Treasury of the United Kingdom in September 2012 
are noteworthy.  The Wheatley Review reached three fundamental conclusions.  First, 
there is a clear case in favor of comprehensively reforming Libor, rather than replacing 
the benchmark.  Second, transaction data should be explicitly used to support Libor 
submissions by reporting banks.  And third, market participants should continue to 
play a significant role in the production and oversight of Libor. 
  Among these three conclusions, this paper focuses mainly on the second.  The 
process of determining the reference rates in interbank markets is known as a “fixing” 

arrangement.2  We cannot deny that the problem lies in the fact that there is room for 
manipulation of this fixing process among banks.  Therefore, as stated in the Wheatley 
Review, the use of transaction data must be convincing so as to leave no room for 
manipulation.  However, the issue is not so simple.  During the recent global financial 
crisis, not only in securitization markets with low market liquidity but also in several 
sovereign debt markets with ample liquidity, liquidity rapidly dried up, and transaction 
prices significantly deviated from the fair value measured by a pricing model.  
Moreover, market participants were unable to refer to either transaction prices or quoted 
prices.  Many of them have expressed the view that growing uncertainty about a pricing 

                                                 
1  For information on the relationship between reference rates and financial stability or on the 

transmission mechanism of monetary policy, see Muto (2012), Sudo (2012), and Kawata et al. (2012).  
For a literature survey on the practical use of reference rates, see Gyntelberg and Wooldridge (2008), 
and Kuo, Skeie, and Vickery (2012). 

2  Typically the market rate is estimated through a “fixing” arrangement, wherein an average rate is 
calculated from quotes contributed by a panel of banks.  One of the best-known fixing arrangements is 
that for Libor.  Compiled by the BBA, Libor refers to the interest rate at which banks in London offer 
to lend funds to each other just prior to 11:00 local time.  The BBA collects quotes from a panel of 
banks.  Quotes are ranked in order, the top and bottom quartiles are disregarded, and the middle two 
quartiles are averaged to compute Libor.  
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model and the value of reference assets exacerbated the liquidity problem.  Interbank 
markets are not excepted from such a market illiquidity problem.  For this reason, we can 
easily imagine that calculating reference rates based solely on actual transaction data 
may cause a problem, especially during periods of market stress. 
  This study develops a model to draw out the implications for the above-mentioned 
problem.  Specifically, the model describes liquidity risk based on the search model.  
Moreover, combining this model with the robust control method enables us to explain 
the situation in which the valuation is lowered to the extent of investors’ aversion to 
uncertainties surrounding their pricing model. 
  The search model attempts to explain liquidity risk with “search friction.”  The 
subject of the search is sellers’ or buyers’ orders that have surfaced (or their potential 
orders), that is, “liquidity.”  One major example is a model developed by Duffie, 
Gârleanu, and Pedersen (2005, 2007, henceforth denoted “DGP”).  Under the 
framework of the search model, DGP (2005, 2007) explains the situation where “agents 
cannot find a counterparty to trade when they want to sell financial assets” with the 
normal asset pricing model by loosening the premise that “agents can sell financial 
assets whenever they want.”  In the recent literature, Afonso and Lagos (2012) also 
applied a search model to investigate the trade dynamics in the federal funds market. 
  The robust control method is a technique developed by L. P. Hansen and T. Sargent to 
concretely express the so-called Knightian uncertainty by setting a max-min problem 
with restrictions in the form of entropy.  This method is suitable to explain the situation 
in which agents cannot choose one probability distribution of future uncertainty due to 
uncertainty over model building and parameter estimation: for example, a situation in 
which market uncertainty rises dramatically in times of financial crises. 
  Based on an intuitive conceptual model, we can decompose the reference rate into 
elements such as risk-free rate, (credit and/or market) risk premium, and liquidity 
premium.  Our theoretical model indicates that during periods of market illiquidity 
(specifically, when market transactions are sporadic), the premiums rise while 
amplifying a jump in rates and a heightening of fundamental risks.  Regarding the 
issue of whether reference rates should be based on the transaction or expert judgment,3 
given the fact that actual premiums observed in the market include various 
                                                 
3  Expert judgment is used in various ways in the calculation of reference rates.  For example, 

longer-term interest rates with low transaction volume even in normal times can be obtained by 
interpolation using expert judgment.  In times of market illiquidity when premiums rise while 
amplifying a jump in reference rates and deviating from fundamentals, expert judgment can be used to 
appropriately reflect the fundamental risks and remove these premiums.  This paper deals with the 
second example. 
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miscellaneous elements (sometimes to the level exceeding the actual premiums 
observed in the market, as in the peripheral European sovereign market currently), an 
expert judgment could be allowed to the limited extent necessary to remove the liquidity 
premium.  Given that reference rates are broadly used in deciding lending rates for a 
number of financial contracts and the prices of derivatives, it may not be efficient to 
stick rigidly with actual transaction rates, especially during periods of market illiquidity. 
  The remainder of this paper is organized as follows.  In Section 2, we briefly sketch 
the basic search model based on DGP (2005, 2007).  Section 3 incorporates the robust 
control method into the search-based asset pricing model.  Section 4 provides several 
numerical examples to analyze the components of reference rates such as risk-free rate, 
fundamental risk premium, and liquidity premium.  In Section 5, we conclude. 

 
2.  Basic Search Model 

As for search-based asset pricing model, we basically follow the model proposed by 
DGP (2005, 2007).  In this section, we briefly sketch the model. 
  We fix a probability space (Ω, ℱ,P) and a filtration {ℱ: 𝑡 ≥ 0} of sub-σ-algebras 
satisfying the usual conditions, as defined, for example, by Protter (2010).  The 
filtration represents the flow of information commonly available to agents over time.  
  Agents are risk averse and infinitely lived, with a constant time-preference rate δ > 0 
for consumption of a single non-storable numeraire good.  In our context, concrete 
images of agents are banks and money market funds that provide funds to banks in the 
interbank and money markets. 
  An agent can invest in a liquid risk-free security with an interest rate of r.  As a form 
of credit constraint that rules out Ponzi schemes, the agent must enforce some lower 
bound on the liquid wealth process W.  
  Agents may trade a “risky” asset in an over-the-counter market, which means that the 
risky asset can be traded only bilaterally, when in contact with a counterparty.  In our 
context, we consider a risky asset to be representative of risks in the banking sector (a 
typical example is Libor, and we assume assets that pay interest based on Libor).4 
  An agent is characterized by an intrinsic preference for asset ownership that is “high” 
or “low.”  A low-type agent, when owning the asset, has a holding cost (discussed later 
in Section 3 in a more concrete way).  The agent’s intrinsic type is a Markov chain, 
                                                 
4  As introduced in Section 1, reference rates are fixed, in practice, by using a trimmed arithmetic mean 

of quotes collected from banks.  It is difficult to explicitly incorporate this point into the model, and 
thus in this paper we abstract the case in a way such that a risky asset of the banking sector is traded. 
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switching from low to high with intensity λu, and back with intensity λd.  The 
intrinsic-type processes of any two agents are independent. 
  A fraction s of agents is initially endowed with one unit of the risky asset.  An agent 
owns either 𝜃𝑛  or 𝜃𝑜  units of the asset, where 𝜃𝑛  < 𝜃𝑜 .  For simplicity, no other 
positions are permitted, which entails a loss in generality.5  Thus, the full set of agent 
types is T = {ho, hn, lo, ln}, with “h” and “l” designating the agent’s current intrinsic 
liquidity state as high or low, respectively, and with “o” or “n” indicating whether the 
agent currently owns the asset or not, respectively. 
  We suppose that there is a “continuum” (a non-atomic finite measure space) of agents, 
and let µσ(t) denote the fraction at time t of agents of type 𝜍 ∈ T.  Because the 
fractions of each type of agent add to 1 at any time t, 

               𝜇𝑕𝑜 𝑡 + 𝜇𝑕𝑛 𝑡 + 𝜇𝑙𝑜  𝑡 + 𝜇𝑙𝑛  𝑡 = 1. 

Given a total supply Θ of shares per investor, market clearing requires that 

                𝜇𝑙𝑜 + 𝜇𝑕𝑜 𝜃𝑜 +  𝜇𝑙𝑛 + 𝜇𝑕𝑛 𝜃𝑛 = Θ, 

which, using (1), implies that the fraction of asset owners is 

               𝜇𝑙𝑜 + 𝜇𝑕𝑜 = 𝑠 =
Θ−𝜃𝑛

𝜃𝑜−𝜃𝑛
. 

  An agent finds a counterparty with an intensity λ, reflecting the efficiency of the 
search technology.  That is, at the successive event times of a Poisson process with 
some intensity parameter λ, an agent contacts another agent, chosen from the entire 
population “at random,” meaning with a uniform distribution across the agent 
population. 

In equilibrium, the rates of change of the fractions of the respective investor types 
are6 

               𝜇 𝑙𝑜  𝑡 = −2𝜆𝜇𝑕𝑛 𝑡 𝜇𝑙𝑜  𝑡 − 𝜆𝑢𝜇𝑙𝑜  𝑡 + 𝜆𝑑𝜇𝑕𝑜 𝑡  

               𝜇 𝑙𝑛  𝑡 = 2𝜆𝜇𝑕𝑛 𝑡 𝜇𝑙𝑜  𝑡 − 𝜆𝑢𝜇𝑙𝑛  𝑡 + 𝜆𝑑𝜇𝑕𝑛 𝑡  

                                                 
5  An appendix to the related paper (Kobayashi, Nakamura, and Ohashi [2008]) provides an additional 

discussion about holding positions without any limitation under the Walrasian setting.  The paper can 
be obtained upon request. 

6  The intuition for the first equation in (3) is as follows.  Whenever an lo agent meets an hn agent, he 
sells his asset and is no longer an lo agent.  This explains the first term on the right-hand side of (3).  
The second term is due to intrinsic-type changes in which lo agents become ho agents, and the last term 
is due to intrinsic-type changes from ho to lo.  The other three equations can be similarly interpreted. 

(1) 

(2) 

(3) 
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               𝜇 𝑕𝑜 𝑡 = 2𝜆𝜇𝑕𝑛 𝑡 𝜇𝑙𝑜  𝑡 − 𝜆𝑑𝜇𝑕𝑜 𝑡 + 𝜆𝑢𝜇𝑙𝑜  𝑡  

               𝜇 𝑕𝑛 𝑡 = −2𝜆𝜇𝑕𝑛 𝑡 𝜇𝑙𝑜  𝑡 − 𝜆𝑑𝜇𝑕𝑛 𝑡 + 𝜆𝑢𝜇𝑙𝑛  𝑡 . 

  DGP (2005) shows that there is a unique stable steady-state solution for {µ(t) : t ≥ 0}, 
that is, a constant solution defined by 𝜇  𝑡 = 0. 
  Having determined the steady-state fractions of investor types, we can compute the 
investors’ equilibrium intensities of finding counterparties of each type and, hence, their 
utilities for remaining lifetime consumption, as well as the Nash bargaining price of a 
risky asset P. 

 
3.  Introduction of Robust Control to the Search Model 

In this section, we combine a basic search model with a robust control method 
developed by Anderson, Hansen, and Sargent (2003).  To do so, we provide stochastic 
processes for the dividend and endowment and then introduce robust control for their 
parameters.  
  Before discussing the details of the model, we explain here the robust control method.  
The original concept may date back to the insight of Frank Knight, but Gilboa and 
Schmeidler (1989) developed an axiomatic approach of max-min expected utility theory 
with multiple priors in which investors’ uncertainty is represented by subjective 
probabilities.  Agents who do not know the true probability are supposed to have a set 
of subjective probability measures instead of a unique probability as usual, and they 
make decisions by optimizing the following max-min type objective function: 

             𝑚𝑎𝑥𝜋𝑚𝑖𝑛𝑄  𝑈 𝜋, 𝑄 . 

  In this formulation, robust strategy π improves the worst-case utility by choosing an 
optimal strategy within a set of admissible trading strategies.  Multiplicity of prior 
probabilities {Q} models the ambiguity of the likelihood of events or the model 
uncertainty of the pricing model.  Intuitively, the robust control method is a 
methodology in which the best price based on the optimal strategy under the 
“worst-case” scenario is calculated as a conservatively estimated value, which can differ 
from a price based on an original reference model.  More recently, Chen and Epstein 
(2002) provided a continuous-time intertemporal extension of the multiple-prior 
framework of Gilboa and Schmeidler (1989).  Furthermore, Anderson, Hansen, and 
Sargent (2003) developed a continuous-time dynamic formulation that explains the 
quantitative behavior of a robust solution via a formal semi-group analysis of the 
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corresponding Hamilton-Jacobi-Bellman (HJB) equation.  Their framework fits well 
with portfolio choice analysis involving uncertainty about the asset and liability return 
process.  Subsequently, many papers have been developed in this vein (e.g., Maenhout 
[2006]). 

  We assume that the wealth, dividend, and endowment processes evolve according to  

     D: the cumulative dividend process 
              𝑑𝐷𝑡 = 𝑚𝐷𝑑𝑡 + 𝜍𝐷𝑑𝐵1,𝑡 , 

     e: the cumulative endowment process 
              𝑑𝑒𝑡 = 𝑚𝑒𝑑𝑡 + 𝜍𝑒 𝜌𝑖𝑑𝐵1,𝑡 +  1 − 𝜌𝑖

2𝑑𝐵2,𝑡                  

                    𝜌𝑖 =  
𝜌𝑕      𝑖𝑓  𝑕𝑖𝑔𝑕 𝑡𝑦𝑝𝑒
𝜌𝑙      𝑖𝑓   𝑙𝑜𝑤 𝑡𝑦𝑝𝑒

    

                    𝜌𝑕 <  𝜌𝑙 , and  

     W: the wealth process 
              𝑑𝑊𝑡 =  𝑟𝑊𝑡 − 𝑐𝑡 𝑑𝑡 + 𝜃𝑡𝑑𝐷𝑡 + 𝑑𝑒𝑡 − 𝑃𝑑𝜃𝑡                 

                    𝜃𝑡 =  
𝜃𝑜      𝑖𝑓  𝑙𝑜/𝑕𝑜 𝑡𝑦𝑝𝑒
𝜃𝑛      𝑖𝑓   𝑙𝑛/𝑕𝑛 𝑡𝑦𝑝𝑒

   , 

where coefficients are all constants, and B1,t and B2,t are a standard Brownian motion 
with respect to the given probability space and filtration (Ft) and are independent from 
each other. c is consumption and P is the price of a risky asset (which is a constant in 
equilibrium that we examine in this section).  We suppose that the cumulative dividend 
process of the asset represents the risk of the banking sector, and the purchase of this 
asset by an agent means the provision of funds to the banking sector.  In our context, 
risk can be interpreted both as market and credit risk in the banking sector, both of 
which are related to fundamentals. 
  An agent i whose intrinsic type is currently high (that is, with 𝜌𝑖(𝑡) = 𝜌𝑕 ) values the 
asset more highly than does a low-intrinsic-type agent, because the increments of the 
high-type endowment have a lower conditional correlation with the asset’s dividends.  
In short, we assume that an agent takes risks in the banking sector by taking account of 
the correlation with the endowment received separately by itself. 
  We assume that there exists model uncertainty with regard to the dividend process 

(4) 

(5) 

(6) 
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and search intensity 𝜆.7  To explicitly represent model uncertainty, now let us introduce 
the set of prior probability measures 𝑄𝜑  on  Ω, ℱ .  We assume that all measures in 
𝑄𝜑  are equivalent to P, which is defined in the usual way, that is, via the density 
generators by Girsanov’s theorem.  As our model includes both the diffusion process 
and the Poisson process, we need the Doléans-Dade stochastic exponentials to relate a 
prior measure to a reference measure. 
  Prior probability measures 𝑄𝜑  on  Ω, ℱ  are defined by 

               𝑑𝑄𝜑

𝑑𝑝
 
𝐹𝑡

= 𝑍𝑡
𝑄𝜑

= ℰ 𝜙, 𝐵1 𝑡ℰ 𝜂, 𝑁  
𝑡
, 

where a density generator 𝜑 =  𝜙, 𝜂  belongs to the set of all progressively 
measurable processes.  The Doléans-Dade stochastic exponentials, ℰ 𝜙, 𝐵1 𝑡  and 

ℰ 𝜂, 𝑁  
𝑡
, are given by 

            ℰ 𝜙, 𝐵1 𝑡 = 𝑒𝑥𝑝   𝜙𝑠𝑑𝐵1,𝑠
𝑡

0
− 1

2
 𝜙𝑠

2𝑑𝑠
𝑡

0
  

 ℰ 𝜂, 𝑁  
𝑡

= 𝑒𝑥𝑝    𝑙𝑛 1 + 𝜂 𝑧  
𝑅

𝑑𝑁  𝑑𝑠, 𝑑𝑧 
𝑡

0

−    𝜂 𝑧 − 𝑙𝑛 1 + 𝜂 𝑧   
𝑅

𝜈𝐸 𝑑𝑧 𝑑𝑠
𝑡

0

  

where 𝑁 , and 𝜈𝐸  are the compensated Poisson process and its jump measure, 
respectively.8  See, for example, Cont and Tankov (2004) regarding the change of 
measure and entropy representation for the Levy processes, which include a Poisson 
process.  
  We assume that agents have constant-absolute-risk-averse (CARA) additive utility U, 
with a coefficient of absolute risk aversion γ.  Let δ be a discount rate and discounted 

relative entropy be ℛ𝑡  𝑝 𝑄 = 𝐸𝑝  𝑒−𝛿 𝑇−𝑡 𝑑𝑄

𝑑𝑝
𝑙𝑛

𝑑𝑄

𝑑𝑝
 = 𝐸𝑄  𝑒−𝛿 𝑇−𝑡 𝑙𝑛

𝑑𝑄

𝑑𝑝
 .  Let J be 

the value function, and our problem to solve is a robust utility optimization problem 
with a relative entropy constraint, which is given by 

         𝐽 𝑤, 𝜍 = 𝑠𝑢𝑝𝑐 𝑖𝑛𝑓𝑄𝐸𝑡
𝑄𝜑

  𝑒−𝛿 𝑠−𝑡 𝑈 𝑐𝑠 𝑑𝑠
∞
𝑡

+ 𝜔  𝑒−𝛿 𝑠−𝑡 𝑙𝑛𝑍𝑡,𝑠𝑑𝑠
∞
𝑡

 .   

  The above sup-inf representation is the core of robust control problem formulation, 
                                                 
7  Of course, the introduction of model uncertainty with regard to the endowment process and 

intrinsic-type-change intensities 𝜆𝑢 , 𝜆𝑑  is possible.  However, the most fundamental parameters for 
investors in our model are the dividend process and search intensity, which we highlight in this paper. 

8  Under Q, 𝐵1,𝑡
𝑄 = 𝐵1,𝑡 −  𝜙𝑠𝑑𝑠

𝑡

0
 is a Brownian motion, and  1 + 𝜂 𝜆  is new intensity for jumps. 

(7) 

(9) 

(8) 
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and ω (> 0) is a control parameter of the agent’s uncertainty aversion9.  Note that the 
penalty parameter ω of (9) plays a role in measuring the strength of the investor’s 
preference for robustness.  An agent with lower ω is more uncertainty averse.  On the 
contrary, ω → ∞ corresponds to the normal utility maximization problem. 
  For each investor type 𝜍 (∈  𝑙𝑜, 𝑙𝑛, 𝑕𝑜, 𝑕𝑛 ), the HJB equation is explicitly written 
as 
         0 = 𝑠𝑢𝑝𝑐 𝑖𝑛𝑓𝑄   𝜕𝑡  𝐽 𝑤, 𝜍 + 𝑈 𝑐𝑡 + 𝒜𝑤  𝐽 𝑤, 𝜍 + ℬ𝑤  𝐽 𝑤, 𝜍 − 𝛿 𝐽 𝑤, 𝜍    

                              +
𝜔

2
𝜙2 − 𝜔 𝜂 −  1 + 𝜂 𝑙𝑛 1 + 𝜂  𝜆 ∙ 1 𝜍=𝑙𝑜 ,𝑕𝑛  , 

where 

             𝒜𝑤  𝐽 𝑤, 𝑙𝑜 =  𝑟𝑤 − 𝑐 + 𝜃𝑜𝑚𝐷 + 𝜃𝑜𝜍𝐷𝜙+𝑚𝑒 𝜕𝑤  𝐽 

                      +
1

2
 𝜃𝑜

2𝜍𝐷
2 + 𝜍𝑒

2 + 2𝜌𝑙𝜃𝑜𝜍𝐷𝜍𝑒 𝜕𝑤𝑤  𝐽 

       𝒜𝑤  𝐽 𝑤, 𝑕𝑛 =  𝑟𝑤 − 𝑐 + 𝜃𝑛𝑚𝐷 + 𝜃𝑛𝜍𝐷𝜙+𝑚𝑒 𝜕𝑤  𝐽 

                      +
1

2
 𝜃𝑛

2𝜍𝐷
2 + 𝜍𝑒

2 + 2𝜌𝑕𝜃𝑛𝜍𝐷𝜍𝑒 𝜕𝑤𝑤   

               𝒜𝑤  𝐽 𝑤, 𝑙𝑛 =  𝑟𝑤 − 𝑐 + 𝜃𝑛𝑚𝐷 + 𝜃𝑛𝜍𝐷𝜙+𝑚𝑒 𝜕𝑤  𝐽 

                      +
1

2
 𝜃𝑛

2𝜍𝐷
2 + 𝜍𝑒

2 + 2𝜌𝑙𝜃𝑛𝜍𝐷𝜍𝑒 𝜕𝑤𝑤  𝐽 

 𝒜𝑤  𝐽 𝑤, 𝑕𝑜 =  𝑟𝑤 − 𝑐 + 𝜃𝑜𝑚𝐷 + 𝜃𝑜𝜍𝐷𝜙+𝑚𝑒 𝜕𝑤  𝐽 

                      +
1

2
 𝜃𝑜

2𝜍𝐷
2 + 𝜍𝑒

2 + 2𝜌𝑕𝜃𝑜𝜍𝐷𝜍𝑒 𝜕𝑤𝑤  𝐽. 

       ℬ𝑤  𝐽 𝑤, 𝑙𝑜 = 𝜆𝑢 𝐽 𝑤, 𝑕𝑜 − 𝐽 𝑤, 𝑙𝑜   
                      +2 1 + 𝜂 𝜆𝜇𝑕𝑛  𝐽 𝑤 + 𝑃 𝜃𝑜 − 𝜃𝑛 , 𝑙𝑛 − 𝐽 𝑤, 𝑙𝑜   
       ℬ𝑤  𝐽 𝑤, 𝑕𝑛 = 𝜆𝑑 𝐽 𝑤, 𝑙𝑛 − 𝐽 𝑤, 𝑕𝑛   
                          +2 1 + 𝜂 𝜆𝜇𝑙𝑜  𝐽 𝑤 − 𝑃 𝜃𝑜 − 𝜃𝑛 , 𝑕𝑜 − 𝐽 𝑤, 𝑕𝑛   
       ℬ𝑤  𝐽 𝑤, 𝑙𝑛 = 𝜆𝑢 𝐽 𝑤, 𝑕𝑛 − 𝐽 𝑤, 𝑙𝑛   
       ℬ𝑤  𝐽 𝑤, 𝑕𝑜 = 𝜆𝑑  𝐽 𝑤, 𝑙𝑜 − 𝐽 𝑤, 𝑕𝑜  . 
 

  As for the infimum part of the HJB equation for the lo-type investor, the minimum 

                                                 
9  As for the robust control method, there are several versions.  One origin from variety emerges is a 

way of restricting the coverage of the “worst-case” scenario, as the literally worst-case scenario can go 
too far (e.g., a disaster can occur), rendering decision making meaningless.  In order to delete 
meaningless scenarios and maintain an economic intuition at the same time, Andersen, Hansen, and 
Sargent (2003) proposed the use of “relative entropy” (also known as “Kullback-Leibler distance”) as a 
definition of distance from the reference model. 

(10) 
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point is attained at 

          𝜙𝑡
∗ = −

𝜃𝑜𝜍𝐷𝜕𝑤  𝐽

𝜔
 

          𝜂𝑡
∗ = 𝑒𝑥𝑝  −

2𝜇𝑕𝑛
 𝐽 𝑤+𝑃 𝜃𝑜−𝜃𝑛 ,𝑙𝑛 −𝐽 𝑤,𝑙𝑜  

𝜔
 − 1  = :  𝑒𝑥𝑝  −

2𝜇𝑕𝑛Λ𝑃,𝑙𝑜

𝜔
 − 1. 

Because the target function is convex with respect to both 𝜙 and 𝜂, each of the above 
solutions  𝜙𝑡

∗, 𝜂𝑡
∗  is the global minimum. 

  Similarly, for the hn-type investor, the minimum point is attained at 

           𝜙𝑡
∗ = −

𝜃𝑛 𝜍𝐷𝜕𝑤  𝐽

𝜔
 

           𝜂𝑡
∗ = 𝑒𝑥𝑝  −

2𝜇𝑙𝑜
 𝐽 𝑤−𝑃 𝜃𝑜−𝜃𝑛 ,𝑕𝑜 −𝐽 𝑤,𝑕𝑛  

𝜔
 − 1 = :  𝑒𝑥𝑝  −

2𝜇𝑙𝑜Λ𝑃,𝑕𝑛

𝜔
 − 1, 

for the ln-type investor the minimum point is attained at 

            𝜙𝑡
∗ = −

𝜃𝑛 𝜍𝐷𝜕𝑤  𝐽

𝜔
,  

and for the ho-type investor the minimum point is attained at 

            𝜙𝑡
∗ = −

𝜃𝑜𝜍𝐷𝜕𝑤  𝐽

𝜔
 . 

Therefore, by imputing the above minimum point into the HJB equations, we can 
rewrite the HJB equations as follows. 

          0 = 𝑠𝑢𝑝𝑐
 𝜕𝑡 𝐽 𝑤, 𝑙𝑜 + 𝑈 𝑐𝑡 − 𝛿 𝐽 𝑤, 𝑙𝑜    

           +  𝑟𝑤 − 𝑐 + 𝜃𝑜𝑚𝐷+𝑚𝑒 𝜕𝑤  𝐽 +
1

2
 𝜃𝑜

2𝜍𝐷
2 + 𝜍𝑒

2 + 2𝜌𝑙𝜃𝑜𝜍𝐷𝜍𝑒 𝜕𝑤𝑤  𝐽 

           −
𝜃𝑜

2𝜍𝐷
2

2𝜔
 𝜕𝑤  𝐽 2 + 𝜆  2𝜇

𝑕𝑛
Λ𝑃,𝑙𝑜𝑒

−
2𝜇𝑕𝑛Λ

𝑃,𝑙𝑜

𝜔 + 𝜔  1 − 𝑒−
2𝜇𝑕𝑛Λ

𝑃,𝑙𝑜

𝜔  1 +
2𝜇𝑕𝑛Λ

𝑃,𝑙𝑜

𝜔
     

           + 𝜆𝑢Λ𝑙𝑜     

for the lo-type investor. 

For other types of investors, we can obtain similar equations. 
  To continue to calculate equations explicitly, we apply the CARA utility as below; 

             𝑈 𝑐 = −𝑒−𝛾𝑐 . 

  By following DGP (2007), we can guess the value function to solve the HJB 
equations as follows: 

          𝐽 𝑤, 𝜍 =−𝑒−𝑟𝛾 𝑤+𝑎𝜍 +𝑎  . 
 

(11) 

(12) 

(13) 

(14) 
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The optimal consumption is determined by ∂c𝑈 𝑐 − 𝜕𝑤 𝐽 = 0 , that is, 

             𝑐∗ =  ∂c𝑈 −1 𝜕𝑤  𝐽 = −
log 𝑟

𝛾
+ 𝑟 𝑤 + 𝑎𝜍 + 𝑎  , 

where  𝑎 =
1

𝑟
 

log 𝑟

𝛾
+𝑚𝑒 −

1

2
𝑟𝛾𝜍𝑒

2 −
𝑟−𝛿

𝑟𝛾
  , and constant 𝑎𝜍  is calculated numerically 

later. 
  As argued in Maenhout (2004), to preserve the homotheticity (or independence of an 
impact on parameter from the wealth level) of the value function, the robustness 
parameter ω of the relative entropy term should be 

          𝜔 = 𝜔0𝐽 𝑤, 𝜍  

for some constant 𝜔0 < 0.10 
  Based on the above setting, we then try to derive HJB equations.  As for the lo-type 
investor, the HJB equation can be rewritten as follows. 

     0 = −𝑟2𝛾𝑎𝑙𝑜 +𝑟𝛾𝜃𝑜𝑚𝐷   −
1

2
𝑟2𝛾2 𝜃𝑜

2𝜍𝐷
2 + 2𝜌𝑙𝜃𝑜𝜍𝐷𝜍𝑒   +   

𝜃𝑜
2𝜍𝐷

2

2𝜔0
𝑟2𝛾2 

                      

+ 𝜆  2𝜇
𝑕𝑛

 −𝑒−𝑟𝛾 𝑃 𝜃𝑜−𝜃𝑛 +𝑎𝑙𝑛 −𝑎𝑙𝑜  + 1 𝑒

2𝜇𝑕𝑛 −𝑒−𝑟𝛾 𝑃 𝜃𝑜−𝜃𝑛 +𝑎𝑙𝑛 −𝑎𝑙𝑜  +1 

𝜔 0   

     −𝜔0
 ∙  1 − 𝑒

2𝜇𝑕𝑛 −𝑒−𝑟𝛾 𝑃 𝜃𝑜−𝜃𝑛 +𝑎𝑙𝑛 −𝑎𝑙𝑜  +1 

𝜔 0  1 −
2𝜇𝑕𝑛 −𝑒−𝑟𝛾 𝑃 𝜃𝑜−𝜃𝑛 +𝑎𝑙𝑛 −𝑎𝑙𝑜  +1 

𝜔0
    

     + 𝜆𝑢 −𝑒−𝑟𝛾 𝑎𝑕𝑜−𝑎𝑙𝑜  + 1 . 

  For other types of investors, we can obtain similar equations. 
  As in DGP (2007), the equilibrium price P is determined using Nash bargaining with 
seller bargaining power q.  However, we do not go far into the issue of bargaining 
power here, and it is given exogenously. (In reality and during times of crisis, while 
lenders of funds can find borrowers other than banks, borrowers find themselves at a 
loss in the absence of access to loan funds.  Thus, bargaining power may be 
asymmetric, but we leave this to future work.)  The bargaining price satisfies  

        𝑎𝑙𝑜 − 𝑎𝑙𝑛 ≤ 𝑃 𝜃𝑜 − 𝜃𝑛 ≤ 𝑎𝑕𝑜 − 𝑎𝑕𝑛 . 
                                                 
10  Because we apply “negative” exponential utility, we take ω0 as negative values to keep original 

parameter ω positive.  A “homothetic” penalty parameter is useful due to not only analytical 
tractability but also economic interpretation.  See Maenhout (2004) for more details. 

(15) 
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By summing up, we obtain the following result. 
  In equilibrium, an agent’s consumption rate is given by  

  𝑐∗ = −
log 𝑟

𝛾
+ 𝑟 𝑤 + 𝑎𝜍 + 𝑎   , where  𝑎 =

1

𝑟
 

log 𝑟

𝛾
+𝑚𝑒 −

1

2
𝑟𝛾𝜍𝑒

2 −
𝑟−𝛿

𝑟𝛾
 , 

the value function is given by 

        𝐽 𝑤, 𝜍 =−𝑒−𝑟𝛾 𝑤+𝑎𝜍 +𝑎  , 

and  𝑎𝑙𝑜 , 𝑎𝑙𝑛 , 𝑎𝑕𝑜 , 𝑎𝑕𝑛 , 𝑃 ∈ ℝ5 solves 

          0 = −𝑟2𝛾𝑎𝑙𝑜  +𝑟𝛾𝜃𝑜𝑚𝐷 −
1

2
𝑟2𝛾2 𝜃𝑜

2𝜍𝐷
2 + 2𝜌𝑙𝜃𝑜𝜍𝐷𝜍𝑒  + 𝜃𝑜

2𝜍𝐷
2

2𝜔0
𝑟2𝛾2 

              + 𝜆  2𝜇𝑕𝑛 −𝑒−𝑟𝛾 𝑃 𝜃𝑜−𝜃𝑛  +𝑎𝑙𝑛 −𝑎𝑙𝑜  + 1 ∙ 𝑒

2𝜇 𝑕𝑛  −𝑒−𝑟𝛾 𝑃 𝜃𝑜−𝜃𝑛  +𝑎𝑙𝑛 −𝑎𝑙𝑜  +1 

𝜔 0   

               −𝜔0
 ∙  1 − 𝑒

2𝜇 𝑕𝑛  −𝑒−𝑟𝛾 𝑃 𝜃𝑜−𝜃𝑛  +𝑎𝑙𝑛 −𝑎𝑙𝑜  +1 

𝜔 0 ∙  1 −
2𝜇𝑕𝑛 −𝑒−𝑟𝛾 𝑃 𝜃𝑜−𝜃𝑛  +𝑎𝑙𝑛 −𝑎𝑙𝑜  +1 

𝜔0
    

              + 𝜆𝑢 −𝑒−𝑟𝛾 𝑎𝑕𝑜−𝑎𝑙𝑜  + 1 , 

for the lo-type investor, 

          0 = −𝑟2𝛾𝑎𝑕𝑛 + 𝑟𝛾𝜃𝑛𝑚𝐷 − 1

2
𝑟2𝛾2  𝜃𝑛

2𝜍𝐷
2 + 2𝜌𝑕𝜃𝑛𝜍𝐷𝜍𝑒  +

𝜃𝑛
2𝜍𝐷

2

2𝜔0
𝑟2𝛾2 

                 

               +𝜆

 
 
 
 
 
 

2𝜇
𝑙𝑜
 −𝑒−𝑟𝛾 −𝑃 𝜃𝑜−𝜃𝑛 +𝑎𝑕𝑜−𝑎𝑕𝑛  + 1 ∙ 𝑒

2𝜇𝑙𝑜 −𝑒−𝑟𝛾 −𝑃 𝜃𝑜−𝜃𝑛 +𝑎𝑕𝑜−𝑎𝑕𝑛  +1 

𝜔 0

−𝜔0  1 − 𝑒

2𝜇𝑙𝑜 −𝑒−𝑟𝛾 −𝑃 𝜃𝑜−𝜃𝑛 +𝑎𝑕𝑜−𝑎𝑕𝑛  +1 

𝜔 0  1 −
2𝜇𝑙𝑜 −𝑒−𝑟𝛾 −𝑃 𝜃𝑜−𝜃𝑛 +𝑎𝑕𝑜−𝑎𝑕𝑛  +1 

𝜔0
  

 
 
 
 
 
 

 

             +𝜆𝑑 −𝑒−𝑟𝛾 𝑎𝑙𝑛 −𝑎𝑕𝑛  + 1           
for the hn-type investor, 

              0 = −𝑟2𝛾𝑎𝑙𝑛 + 𝑟𝛾𝜃𝑛𝑚𝐷  −
1

2
𝑟2𝛾2 𝜃𝑛

2𝜍𝐷
2 + 2𝜌𝑙𝜃𝑛𝜍𝐷𝜍𝑒  + 𝜃𝑛

2𝜍𝐷
2

2𝜔0
𝑟2𝛾2 

                      +𝜆𝑢 −𝑒−𝑟𝛾 𝑎𝑕𝑛 −𝑎𝑙𝑛  + 1                          
for the ln-type investor, and 

              0 = −𝑟2𝛾𝑎𝑕𝑜 + 𝑟𝛾𝜃𝑜𝑚𝐷  −
1

2
𝑟2𝛾2 𝜃𝑜

2𝜍𝐷
2 + 2𝜌𝑕𝜃𝑜𝜍𝐷𝜍𝑒  + 𝜃𝑜

2𝜍𝐷
2

2𝜔0
𝑟2𝛾2 

                   +𝜆𝑑 −𝑒−𝑟𝛾 𝑎𝑙𝑜 −𝑎𝑕𝑜  + 1                         
for the ho-type investor, 

(16) 
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as well as the Nash bargaining equation 

                𝑞 −𝑒𝑟𝛾 𝑃 𝜃𝑜−𝜃𝑛 − 𝑎𝑙𝑜−𝑎𝑙𝑛  + 1 =  1 − 𝑞  −𝑒𝑟𝛾 −𝑃 𝜃𝑜−𝜃𝑛 + 𝑎𝑕𝑜−𝑎𝑕𝑛  + 1 , 

where 𝑞 ∈  0,1  is the bargaining power of the seller of a risky asset. 
These equations are highly nonlinear, however, it is possible to calculate them 

numerically.  By following a procedure similar to DGP (2007), we can confirm our 
candidate optimal consumption and trading strategy that satisfies the transversality 
condition. 
  A natural benchmark is the limit price associated with vanishing search frictions, 
characterized as follows. 

    If the fraction of asset owner (see equation(2)) 𝑠 < 𝜇𝑕𝑜 + 𝜇𝑕𝑛
11, then, as 𝜆 → ∞, 

         𝑃 →
𝑚𝐷−

1

2
𝑟𝛾  𝜃𝑜 +𝜃𝑛  𝜍𝐷

2 +2𝜌𝑕𝜍𝐷𝜍𝑒 

𝑟
+

𝜍𝐷
2 𝛾 𝜃𝑜 +𝜃𝑛  

2𝜔0
. 

 
  For reference, the non-robust HJB equations correspond to the limit case; 𝜔0 → −∞.  
In this case,  

         𝑃 →
𝑚𝐷−

1

2
𝑟𝛾  𝜃𝑜 +𝜃𝑛  𝜍𝐷

2 +2𝜌𝑕𝜍𝐷𝜍𝑒 

𝑟
. 

This is exactly the same as the result in DGP (2007).  To state it differently, as long as 
model uncertainty exists, the limit price does not converge to the price with vanishing 
search frictions.  If an investor is uncertainty averse, he evaluates the asset price at a 

level lower by 𝜍𝐷
2 𝛾 𝜃𝑜 +𝜃𝑛  

2𝜔0
(< 0)  than the non-robust limit price. 

 
 
4.  Numerical Results 

In this section, we give some numerical examples.  
  We select the same parameters as the DGP (2007) setting to compare both results and 
highlight our “uncertainty aversion” effect.  Table 1 contains the exogenous search 
model parameters for the base-case and resulting steady-state fractions of each type. 
Table 2 contains additional base-case parameters with risk aversion and uncertainty 
aversion. 
                                                 
11  This condition implies hnlo   .  As the amount of risk assets in the market is exogenously 

given, the market is rationed depending on the steady-state fraction of agents.  If a sign of inequality 
is reversed, a different result is obtained by following a similar calculation here. 

(17) 

(18) 

(19) 



13 
 

150 200 250 300 350 400 450 500 550 600
0

10

20

30

40

50

60

70

80

90

100

Search intensity

R
at

e
s 

ba
se

d 
on

 t
ra

n
sa

c
ti
on

 (
%
)

 

 

Risk and More Uncertainty averse
Risk and Uncertainty averse
Risk averse only

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Chart 1 shows that the relationship between search parameters and reference rates.  
The further to the left on the horizontal axis, the more difficult it is to find 
counterparties to trade with.  The dotted blue line assumes a risk-averse agent, as in 
DGP (2007).  For such an agent, the harder it is to find a counterparty in the market 

λ λ u λ d s q
625 5 0.5 0.8 0.5

μ ho μ hn μ lo μ ln

0.7972 0.1118 0.0028 0.0882

Table 1: Base-case parameters for search model and steady-state masses 
Note: Search intensity λ = 625 implies that an agent expects to be in contact with 2λ = 1,250 other 

agents each year, that is, 1,250/250 = 5 agents a day.  Given the equilibrium mass of potential 
buyers, the average time needed to find a counterparty is 250 × (2μhn)-1 = 1.8 days.   

r , δ γ ρ h ρ l μ e σ e μ D σ D θ o θ n ω 0

0.05 0.01 -0.5 0.5 10000 10000 1 0.5 20000 0 -10, -50

Table 2: Additional parameters with risk aversion and uncertainty aversion 
Note: The intrinsic type of an agent is identified with correlation parameter ρl > ρh.  A high-type agent 

values the asset more highly than does a low-type agent, because the increments of the low-type 
endowment have lower conditional correlation.  
An agent owns either θo > θn units of the asset.  No other positions are permitted. 
Drift and volatility parameters for dividends and endowment are just examples.  
ω0 (< 0) is a penalty parameter that controls the agent’s uncertainty aversion. ω0 → －∞ 

corresponds to a non-robust agent who believes his own reference model.  On the contrary, as ω0 
approaches zero, an agent becomes more uncertainty averse.  

Chart 1: Relationship between search intensity and transaction rate 
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B 
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(i.e., the lower the market liquidity), the higher the transaction rate.  The dotted red 
line assumes a risk-averse and uncertainty-averse agent, and suggests that the 
heightened uncertainty has pushed up the premium (similarly, the solid red line assumes 
a risk-averse and “more” uncertainty-averse agent).  Now let us assume that A 
represents a condition before the market becomes volatile.  If the volume of interbank 
market transactions shrinks rapidly due to a large shock and a bank is a risk-averse 
agent, A will move, for example, to B reflecting the low liquidity (the transaction rate 
will rise by Δα).  If the market conditions are extremely uncertain, a bank can be not 
only risk averse but also uncertainty averse.  In this case, A will move, for example, to 
C (the transaction rate will rise by Δα + Δβ).  Although it depends on the definition of 
reference rates, if we define reference rates as just a tool to measure the degree of 
“risk-free rate + (market and/or credit) risk premium related to the banking sector” 
excluding the liquidity premium related to increased difficulty in finding a counterparty 
(Δα) and premiums heightened by increased uncertainty (Δβ), we can say the following: 
C is the actual transaction rate, but it contains a number of factors other than the 
fundamental risk premium; and to see the rate that only reflects the fundamental risk 
premium in the banking sector, an expert judgment process is necessary to exclude Δα
＋Δβ.12 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
12  Strictly speaking, A already includes some liquidity premium.  It can be said that, in reality, A 

moves to B or C (i.e., faces increased difficulty in finding a counterparty) against the background of the 
heightened fundamental risk.  It is necessary to practice decomposing reference rates into their 
elements on a routine basis.  This is important in establishing method for appropriate expert judgment. 
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Chart 2: Relationship between fundamental risk and transaction rate 
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  Chart 2 shows that the relationship between reference rates and fundamental risk in 
the banking sector as a function of a volatility scaling of σD.  The further to the left on 
the horizontal axis, the higher the fundamental risk of the banking sector as a whole.  
The chart suggests the usual price assessment in which high risk corresponds to high 
return.  The dotted blue line assumes a risk-averse agent, as in DGP (2007).  The 
dotted red line assumes a risk-averse and uncertainty-averse agent, and suggests that the 
heightened uncertainty has pushed up the premium (similarly, the solid red line assumes 
a risk-averse and “more” uncertainty-averse agent).  Now let us assume that A 
represents a condition before the market becomes volatile.  If the volatility of the 
banking sector increases due to a large shock and a counterparty is a risk-averse agent, 
A will move, for example, to B reflecting the rising risk (the transaction rate will rise by 
Δα’).  If the market conditions are extremely uncertain, a bank can be not only risk 
averse but also uncertainty averse.  In this case, A will move, for example, to C (the 
trading rate will rise by Δα’ + Δβ’).  The premium increases by amplifying the 
fundamental risks.  Although it depends on the definition of reference rates, if we 
define reference rates as just a tool to measure the degree of “risk free rate + (market 
and/or credit) risk premium related to the banking sector” excluding the liquidity 
premium heightened by increased uncertainty (Δβ’), we can say the following: C is the 
actual transaction rate, but it contains a number of factors other than the fundamental 
risk premium; and to see the rate that only reflects the fundamental risk premium, an 
expert judgment process is necessary to exclude Δβ’. 
  As can be seen currently in the peripheral European sovereign bond markets, yields 
or interest rates sometimes rise to levels that are well above those that can be justified 
on the basis of fundamentals (given “bad sentiment” and indescribable unidentified 
premiums).  The economic inefficiency of using interest rates that include such 
premiums in a number of financial contracts and prices of derivatives should be 
considered.13 

 
5.  Conclusion 

This study, based on a search model, attempts to draw out the implications for recent 
discussions about reference rates that originated from the recent Libor manipulation 
problem, with particular focus on whether the calculation of reference rates should be 
based solely on actual transaction data and whether the use of expert judgment should 
                                                 
13  For discussions on reference rates and efficiency of the economy as a whole, see for example Sudo 

(2012). 
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be allowed to some extent. 
The reference rate can be decomposed into elements such as risk-free rate, (credit 

and/or market) risk premium, and liquidity premium.  The theoretical model which 
combines the search model and robust control method indicated that during periods of 
market illiquidity (specifically, when market transactions are sporadic), premiums rise 
while amplifying a jump in reference rates and deviating from fundamentals. 

These results imply that it is not desirable to calculate reference rates based solely on 
actual transaction data in times of crisis, particularly when market liquidity dries up, 
given the fact that actual reference rates observed in the market include various 
miscellaneous elements.  Although it is important to promote a sound rate-setting 
process based on the use of actual transaction data, an appropriate and transparent use of 
expert judgment is also necessary to remove indescribable unidentified premium.  It 
would be difficult, however, for market participants to accurately measure the premium 
in times of financial crisis, and it is also unreasonable to expect them to make an 
accurate expert judgment only at moments of financial stress without practice.  
Therefore, appropriate expert judgment in times of financial crisis requires preparation 
on a routine basis.  It is also necessary to secure a channel through which the 
transparency enhanced by, for example, improvement of statistical data, reduces the 
uncertainty associated with model parameters and raises the quality of and confidence in 
expert judgment.  The introduction of robust fallback procedures during periods of 
market stress might be another way to deal with this issue. 
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