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Abstract

We focus on the pairwise correlations of Japanese stock returns to study their
correlation dynamics empirically. Two types of reduced size sample portfolios
are created to observe the changes in conditional correlation: a set of indi-
vidual stock portfolios created by using a network-based clustering algorithm
and a single portfolio created from the mean return indexes of the individual
sample portfolios. A multivariate GARCH model with dynamic conditional
correlation (DCC) is then fitted to the return data of these sample portfo-
lios independently. The estimation results show that the correlation matrices
change over time in a way that depends on the sample portfolios; further, the
DCC parameters are significantly different between them. Then, the time se-
ries of the maximum eigenvalues of the correlation matrices are calculated to
observe the changes in correlation intensity. A higher level of correlation inten-
sity is observed during crisis periods, namely after both the Lehman shock and
the Great East Japan Earthquake. We also examine the impact of correlation
changes on the risk of sample portfolios by using a numerical simulation, with
the results showing non-negligible positive impacts. The comparative VaR

backtesting simulation also suggests that DCC performs better than CCC.
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1 Introduction

The correlation of asset returns is one of the key issues for quantitative risk measurement
and portfolio investment control. Among the many heavily debated issues related to this
topic, dynamic changes in correlation remain particularly controversial. Intuitively, the
risk of financial asset portfolios measured by a certain risk measure such as value at risk
(VaR) comprises two components: variance and covariance. Correlation hence plays a
key role in calculating portfolio risk since it directly affects the covariance part. Finan-
cial asset returns including stock returns exhibit fat-tailed properties in that large losses
occur more frequently with much higher probabilities than those expected by the normal
distribution (Fama [1965], Mandelbrot [1963], Mantegna and Stanley [2000]). Another
well-known feature of financial returns is volatility clustering: large fluctuations of returns
tend to cluster together, resulting in the persistence of volatilities (Cont [2007], Man-
delbrot [1963]). These features can significantly affect the estimation of the correlation
between asset returns.

Many measures capture the correlation (or comovement) of returns. The most fre-
quently used of these measures is the Pearson product moment correlation; however,
this type of linear correlation is significantly distorted for fat-tailed returns, showing a
much higher degree of interdependence than actually exists, especially in crisis periods
when many assets tend to have larger volatilities. The key issue here is how to overcome
volatility fluctuations, which are seemingly a major source of the fat-tailedness of return
distributions. In this regard, conditional volatility models such as the generalized au-
toregressive conditional heteroskedasticity (GARCH) model provide a useful method with
which to address the conditional volatility of fat-tailed asset returns.

Another concern is the possible dynamic changes in correlation between asset returns.
The choice of dynamic or static correlation is rather an empirical issue that depends on the
actual return data. A more complicated dynamic correlation model can involve a static
model as a special case; however, such a complicated model requires more resources for
model fitting. The choice should thus be carefully made by considering the empirical fea-
tures of the return data as well as the computational burden of the parameter estimation.
Estimating the correlation of fat-tailed asset returns is already a difficult task that only
becomes more challenging when the number of assets is large.

In this study, we empirically examine how the correlation between individual Japanese

stock returns changes over time. A correlation structure exists between different asset



classes such as stocks and bonds as well as between the individual assets that belong to
the same asset class. We focus on the latter case to cope with a higher level of dimen-
sion, although our research can be extended easily to the former case. We aim to gather
useful information regarding the correlation between individual stocks through empirical
analyses of stock returns by using a multivariate GARCH (MGARCH) model with dy-
namic conditional correlation (DCC-GARCH hereafter). Specifically, we propose using
a dimension reduction method to build a set of sample portfolios to observe the condi-
tional correlation of returns. Our approach employs clustering techniques of time series
data to form homogeneous groups of stocks. The analysis includes assessing the dynamic
changes in within-group and between-group correlations to infer the underlying correlation
dynamics in the stock market. We also quantitatively evaluate the impact of changes in
correlation intensity on the risk of sample portfolios.

Our three research questions are as follows:
e Does the correlation of stock returns change over time?
e More specifically, does correlation intensity change significantly during crisis periods?

— We focus on the collapse of Lehman Brothers in 2008 (the Lehman shock here-
after) and the Great East Japan Earthquake in 2011 (the Great Earthquake

hereafter) as the crisis events.
e Do correlation changes significantly affect portfolio risk?

The remainder of this paper is organized as follows. Section 2 focuses on the develop-
ment of MGARCH models with conditional correlation in the current body of knowledge
on this topic. In Section 3, we discuss the difficulties of modeling a high-dimensional cor-
relation matrix of fat-tailed returns; then, our modeling approach based on DCC-GARCH
and the method used to build a sample portfolio that comprises selected individual stocks
are described. In Section 4, we fit the model to the return data of the sample portfo-
lios presented in Section 3. The estimation results of the DCC-GARCH models are also
summarized. In Section 5, the dynamic changes in correlation intensity are examined for
every sample portfolio, focusing on correlation changes during crisis periods. Further, the
impact of correlation changes on the risk amount of the sample portfolios in terms of VaR
and Expected Shortfall (ES) is analyzed by using numerical simulations. In Section 6,
several technical discussion points are listed after the summary of our analysis. Section 7

concludes and offers possible directions of future work.



2 Literature review

Bollerslev [1986] is the seminal paper on the univariate GARCH model, which generalized
the ARCH process introduced in Engle [1982] to allow for past conditional variances in the
current conditional variance equation. The numerous variants of the GARCH model, such
as IGARCH (Engle and Bollerslev [1986]) and EGARCH (Nelson [1991]), can accurately
replicate time-varying volatility and volatility clustering to describe the dynamics of the
dependency of conditional volatility.

In addition to volatility modeling, the comovement of financial returns is of great
practical importance. When extending univariate GARCH to MGARCH, the key issue is
how to model the conditional covariances of asset returns. Importantly, the conditional
covariance matrix has to be positive definite at any time. Because such a theoretical
restriction complicates the estimation of the model, building a flexible but parsimonious
model is therefore crucial.

The first generation of MGARCH is the VECH-GARCH model proposed by Boller-
slev et al. [1988], which is a natural multivariate extension of univariate GARCH. VECH-
GARCH enables flexible multivariate modeling, but the number of parameters increases
rapidly as the number of assets increases. The BEKK-GARCH model proposed by Engle
and Kroner [1995] ensures positive definiteness; however, it still suffers from the high di-
mensionality problem. FACTOR-ARCH-type models (Engle et al. [1990], Van der Weide
[2002], and Lanne and Saikkonen [2007]) assume common factors that generate the condi-
tional covariances for dimension reduction. The second type of MGARCH model decom-
poses the conditional covariance matrix of returns into two parts: the conditional volatility
and the conditional correlation of the residuals. Bollerslev [1990] first introduced a class
of constant conditional correlation (CCC) models, in which conditional correlation is as-
sumed to be constant over time, with only conditional volatility time-varying.

Engle [2002] generalized the CCC model to make the conditional correlation matrix
time-varying as in the DCC one. In particular, the author introduced a proxy variable
with a GARCH-type structure to establish the positive definiteness of the correlation
matrix, whereas VC-GARCH (Tse and Tsui [2002]) formulates the correlation matrix as a
weighted sum of past correlations. The advantage of DCC-GARCH is that the dynamics
of the correlation matrix are described by a small number of parameters, assuming the
same correlation dynamics for all assets. Hence, DCC-GARCH may be applied to large

portfolios.



This benefit of DCC, however, becomes too restrictive when the assumption of the
same correlation dynamics for all assets does not hold true and thus many variants of
DCC have been proposed. For instance, BDCC (Block DCC, Billio et al. [2006]) has
a block-diagonal structure to DCC assuming different correlation dynamics; AG-DCC
(asymmetric generalized DCC, Cappiello et al. [2006]) incorporates the asymmetry of the
dynamics of the proxy variable; STCC (Silvennoinen and Terdsvirta [2005, 2009]) and
regime-switching DCC (Pelletier [2006]) introduce smooth change and regime-switching
mechanisms to DCC dynamics, respectively; and CDCC (consistent DCC, Aielli [2011])
introduces a corrective step in the proxy variable dynamics to overcome the estimation bias
problem of DCC. Moreover, Aielli and Caporin [2013, 2014] proposed a clustering method
to reduce the complexity of large-scale DCC—GARCH models, in which the GARCH model
parameter matrices depend on the clustering of individual assets.

Finally, other extensions of DCC-GARCH offer a flexible choice of non-Gaussian dis-
tributions as the residual distribution. As mentioned in Lee and Long [2009], the copula-
based method can be applied to many MGARCH models including DCC and CCC to link
the marginals. The research presented by Jondeau and Rockinger [2006], Patton [2006],
and Lee and Long [2009] are just some of the many theoretical and empirical studies in

the literature.

3 Modeling the correlation of stock returns

3.1 Fat-tailedness and the correlation of stock returns

This study examines the correlation of individual asset returns within the same asset
class, namely Japanese stock returns. In particular, we aim to observe how the correlation
between individual stock returns changes over time, as mentioned in Section 1. More than
3,000 stocks are listed on the Tokyo Stock Exchange, with at least 1,700 of these listed
on the First Section that includes larger stocks (blue chips). Here, we are only interested
in the whole market portfolio that covers every stock listed. However, because handling a
correlation matrix of returns at such a large scale is challenging, some dimension reduction
operation is required before carrying out the empirical analysis.

When modeling the correlation structure of asset returns, a factor model approach
is frequently employed in which one or multiple factors are defined according to exter-
nal or internal information on the financial asset. Dimension reduction can be easily

accomplished in factor models as the pairwise correlations between individual assets are



attributed to their responses to the common factor(s). However, the most pressing prob-
lem of this approach is identifying the factor. CAPM or Fama and French n-factor models
are good examples of the factor model approach for stock price modeling. The market
factor here can be defined as the mean return of all stocks or a stock price index (e.g., the
Nikkei225). Nevertheless, those factors may not be sufficiently reliable to approximate the
correlation of asset returns.

A more direct approach to observe the correlation structure is thus to calculate a sample
linear correlation matrix of asset returns during a defined observation period. Although the
sample linear correlation matrix approach may suffer from insufficient positive definiteness,
especially in large portfolios, several methods have been proposed to recover positive
definiteness including a shrinkage estimator (Ledoit and Wolf [2003]). Nonetheless, the
sample linear correlation matrix can still be significantly distorted by the fat-tailedness of
returns. An MGARCH model is useful to work around this problem; here, fat-tailedness
is removed, or significantly reduced, by controlling volatility fluctuation. In the context of
the CCC— or DCC-GARCH models, the correlation matrix is defined as the correlation of
standardized residuals, which is independently and identically distributed (i.i.d.). Thus, we

use DCC-GARCH to model the conditional correlation matrix of Japanese stock returns.

3.2 DCC-GARCH

Let (2, F, {F:}, P) be a filtered probability space equipped with the filtration {F;} of
its o-field F on a set © and probability measure P on (2, F). Consider multiple asset

returns as a stochastic vector process r; that is assumed to be described as
Tt :E(’I‘t|ft_1)+€t (1)

where E (-|-) denotes a conditional expectation operator with respect to the measure P,
Fi—1 is the filtration (information set) at time ¢t — 1, generated by the observed series r;
up to and including ¢ — 1, and e; is a vector of unpredictable residuals.

Assuming the predictable conditional (time-varying) mean and volatility of r;, equation

(1), is written as’

1/2
T = MKy + Ht Zt,
(2)
My = E (rt|]:t—1) s E (Zt) = 0, Var (Zt) = IN

where p, is a vector of conditional means at time ¢, H; is an N x N (N is the number

of returns) symmetric positive definite matrix, which is a conditional variance—covariance

! The description of MGARCH models follows Bollerslev [1990] and Ghalanos [2014] with some modifica-
tions.




matrix of 74, Var(:) is a variance operator, and z; is a vector of i.i.d. standardized
residuals, the mean and variance of which are 0 and Iy: an identity matrix of order N,
respectively.? Further, z; follows a multivariate distribution, although this distribution is
only specified when estimating the model.

As for the matrix process H, there are generally two approaches, namely modeling the
conditional covariance matrix H; directly (e.g., VECH or BEKK models) and modeling
the conditional correlation matrix indirectly by using a correlation matrix (e.g., CCC and
DCC models). We adopt the latter approach in which only the variance part of H; is
modeled explicitly.

Three factors must be considered when running a multivariate model: the interactions
of the individual mean processes and volatility processes as well as the correlation structure
of the standardized residuals. For the interactions mentioned above, we follow the standard
simplified settings frequently used to reduce the computational burden of the parameter

estimation. The two sub-models are then implemented as the mean and volatility models.

Mean model

The conditional mean process is modeled separately for each stock return to allow us to

estimate each autoregressive moving average (ARMA) model independently as

P Q
Ty =+ Z Airy ;i + Z Bjei j+ e (3)
i=1 j=1

where A; and Bj are diagonal matrices.?

Variance model

The equation of the volatility dynamics comprises a simple vector form of the univariate

GARCH(p, q) model as

q p
ht =w+ Z Sist_i © E—; + Z Tjht_j (4)
=1 j=1

The variance of r; is confirmed to be H; as

’

Var (r¢|Fi—1) = Vars—1 (r¢) = Ht1/2Vart,1 (z¢) (Htl/2> = H,

where Var (+|-) is a conditional variance operator. Note that H; is assumed to be deterministic in the
context of the GARCH model. The correlation of 7, is equivalent to that of z:, since HE/Q does not
affect the correlation.

The degree (P, Q) can take different values for every stock return, while the values and diagonal elements
of A; and B; are determined empirically.



where ©® denotes the Hadamard operator (the entry-wise product), h; is the diagonalized
matrix of Hy, and both S; and T'; are diagonal matrices.* Note that equation (4) only
models the variance of r; as hy; the covariance of r; is not modeled. Note also that equation
(4) with the diagonal coefficient matrices means that there are no inter-temporal volatility
spillover effects between stock returns.® While this assumption enables us to estimate the
univariate GARCH model separately, such a simplification may be too restrictive and can
lead to a biased estimation result. This point is the major drawback of this modeling
approach.

Further, it is possible to adopt a more flexible GARCH structure; however, we adopt
the simple linear GARCH model to reduce the model fitting burden for a large number of
stock returns.

The above-mentioned mean and variance models can be estimated by fitting the uni-

variate ARMA-GARCH model to historical data on individual stock returns.

Correlation structure (CCC and DCCQC)

The third part to be implemented is the correlation of the residuals z;, which is the same
as the correlation of returns 7, as mentioned earlier. The CCC of Bollerslev [1990] is
a typical unconditional correlation model, in which an N x N positive definite constant
correlation matrix R is defined as

H;=D:RD; = {szv hkk-thll-t} (5)

k, i=1, .., N

where Dy is a diagonal matrix with the elements of Hy as (\/hn.t, cee \/hNN.t) and py;
is the unconditional correlation of the returns between stock k and I.
The DCC-GARCH model proposed by Engle [2002] replaces R in the CCC with

dynamic correlation Ry:

H;=DR,D; = {Pkbt\/ hkbthlbt} (6)

k, =1, .., N

where py;.+ is the conditional correlation of returns between stock k£ and [ at time ¢t. DCC

has been widely used to implement dynamic correlation in MGARCH.

4 The degree (p, q) can take different values for every stock return, while the values and diagonal elements
of S; and T'; are determined empirically.
® We have not defined Htl/2 in equation (2). The decomposition from H; to Htl/2 is apparent for the

diagonal matrix h:. v/h; is defined as the volatility of r;.



Correlation dynamics

DCC is more flexible than CCC; however, the number of parameters in R; increases
significantly when the number of stocks becomes large. Moreover, because the correlation
matrix can change depending on time ¢, ensuring that every correlation matrix satisfies
the positive definite condition throughout the entire period is a challenge. Engle [2002]
satisfied this constraint by modeling a dynamic correlation process with the proxy variable
Q4. The proxy variable @, is modeled as
— m / — n —
Q=Q+ Z a; (zt—izt—i - Q) + Z b (Qt—i - Q)
i=1 j=1
m n _ m , n (7)
=1~ Zaz’ — Z bj | Q@+ Zaz‘zt—izt_i + Z b;Q;_;
i=1 j=1

i=1 j=1
where a; and b; are non-negative scalars and Q, is the unconditional matrix of the stan-
dardized residual z;. The DCC model with time lags in conditional correlation is described
as DCC (m, n). The parameter a; shows the sensitivity of Q, to previous shocks, while
the parameter b; represents the persistence of correlation in previous periods. The concept
of dynamic modeling is similar to volatility process modeling in the GARCH model. The

correlation matrix R; is then obtained by rescaling @, such that,

NI

R, = diag (Q,) " Q,diag (Q;)~ (8)

The positive definiteness of Q, as well as R; is ensured by the following conditions:

m n
a; > 0, ijO, Zai—l—ij<1. (9)
i—1 j=1

For more details on the DCC-GARCH, see Engle and Sheppard [2001] and Engle [2002].

An inconsistency problem exists when estimating Q in equation (7) with variance
targeting. Aielli [2011] pointed out that @ is not the unconditional covariance matrix of
z¢, as E [ztz;} =E[R) #E [Q} Instead, the author proposed CDCC, which includes a
corrective term for bias adjustment.”

While DCC-GARCH models have many technical limitations,® the parsimonious pa-
rameterization of the dynamic correlation is helpful for our empirical study. We hence
choose unrestricted scalar DCC-GARCH to model the conditional correlation, even though

improved estimation performance can be expected by applying more complicated models.

® We follow the notation of the DCC-GARCH of Engle [2002] with some modifications.
7 Some studies have already addressed this issue, including Engle and Kelly [2012].
8 The limitations of DCC-GARCH models are discussed in more detail in Caporin and McAleer [2013]



4 Model fitting and estimation results

4.1 Building reduced size sample portfolios

Data on stock returns

Before discussing our approach for fitting the DCC-GARCH model, we first identify the
stock return data and define the whole universe of stocks. The data frequency is daily; the
period runs from the beginning of January 2008 to the end of December 2013 to include
the two major financial shocks examined herein: the Lehman shock (2008) and the Great
Earthquake (2011). The whole universe of stocks comprises those listed on the First
Section of the Tokyo Stock Exchange that have complete daily price data (at close) for
the given period. These selection criteria have been introduced to avoid any inconsistency
in the time series when calculating the correlations. The total number of stocks in the

universe is 1,354 in 33 sectors. Price data are converted into daily log-returns.

Dimension reduction of the correlation matrix

To achieve unbiased observations, we need a data set that covers all the stocks in the uni-
verse such as a market portfolio rather than one that focuses on specific stocks. However,
using such a large portfolio complicates the correlation analysis, since a 1,300 x 1,300
correlation matrix is too large to fit a single DCC-GARCH model. We hence propose
creating sample portfolios to reduce the magnitude of the data. Specifically, we overcome
the complexity of a large-scale correlation structure not by building a more generalized
and complicated model but by reducing the data structure to apply a simple but robust
model. The main issue here is the selection of individual stocks to be included in the
sample portfolios. Some stock index portfolios such as the Nikkei225 are options, but
more flexible choices with wider coverage would be preferred.

To create reduced size sample portfolios, one approach would be to divide the whole
universe into several homogeneous groups. This approach is similar to common factor mod-
eling, but without the need to identify those factors. If such a grouping were available,
observing changes in within-group and between-group correlations in a reduced dimen-
sion could be possible. Further, the groups would not only be homogeneous but also be
balanced in size to avoid bias and concentration problems.

The standard sector classification that comprises 33 sectors is frequently used to cat-
egorize stocks. Sample portfolios can be created by selecting representatives from these

33 sectors based on certain criteria. Such a sector classification approach, however, has



a fundamental problem in that the distribution of group size is significantly unbalanced.
Moreover, it is not necessarily consistent with the comovement of stock returns, since
the classification is based on the definitions of the business sectors. The use of sector
classification to select sample portfolios may thus cause bias to arise.

Against this background, a more data-oriented grouping of stock returns was studied
in Isogai [2014]. Fourteen homogeneous and balanced groups of stocks were identified by
applying correlation clustering based on complex networks theory as shown in Table 1.
Homogeneity means that the stocks grouped together show a higher level of correlation
than those that belong to different groups. The correlation matrix is calculated by fitting
the CCC-GARCH model to avoid the distortion effect caused by the fat-tailedness of
returns. Two major categories of groups—cyclical and defensive—are also identified and
adopted to create the sample portfolios. For more detailed information on the clustering
algorithm, see Isogai [2014].° Two types of sample portfolios are created based on this

grouping.

® The total number of stocks is slightly smaller in this study than in Isogai [2014] because some stocks
had been delisted from the Tokyo Stock Exchange. The data period has also been updated.
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Group portfolios

The first type of sample portfolio is a set of partial portfolios, which covers only specific
groups identified by the correlation clustering mentioned above. The large-scale single
correlation matrix is separated into 14 diagonal blocks. The 14 sample portfolios are then
created based on the grouping to observe within-group dynamic correlation. The number
of stocks in these 14 groups is around 100 on average, which is still large for estimating
the dynamic correlation of returns when using the DCC-GARCH model. Thus, a second
round of dimension reduction is required to specify the individual stocks to be included in
each sample portfolio.

To identify and select the stocks in each group, we adopt the eigenvector centrality
measure, which is frequently used in network analyses. Network centrality is one of the
structural characteristics of a node in a network; an individual with a higher centrality
measure is often more likely to be a leading individual according to network theory.!? The
eigenvector centrality of a node is defined as an element of the eigenvector of a network
adjacency matrix with the maximum eigenvalue. Here, a node corresponds to a stock,
while a network corresponds to the group to which the stock belongs. The eigenvector
centrality measure is designed to provide a higher score to a node that has more links to
a node with many links. In the context of stock returns, the eigenvector centrality of a
stock is higher when it is correlated more with a stock that is highly correlated with other
stocks.

Technically, the centrality measure is generally assumed to take a positive value.'' Our
network adjacency matrix is designed to be a non-negative regular matrix; therefore, we
can safely define the eigenvector centrality measure. For more detailed information on the
eigenvector centrality measure, see Newman [2008].

Finally, the stocks that have the 20 largest eigenvector centrality values are selected
to create a sample portfolio for each group. The coverage of the total number of stocks
selected is about 20% of the total stocks.!? The 14 individual group models are built on the
selected 20 stocks. We define these sample portfolios as group portfolios, the correlation

matrices of which are all of equal size. Note that the selection of the stocks depends on

10 Typical centrality measures include degree centrality, closeness centrality, and betweenness centrality.

' The Perron-Frobenius theorem ensures that the eigenvector centrality measure takes a positive number.
This theorem ensures that there is a unique eigenvector of matrix A with the largest positive eigenvalue;
further, the eigenvector is positive and any non-negative eigenvector of A is a positive multiple of the
vector, on condition that A is a non-negative regular matrix.

12 The 20 largest values were used by balancing the coverage of stocks in the universe and the complexity
of the parameter estimation and evaluation.
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the centrality measure used; therefore, other centrality measures may suggest a different

set of stocks.

Market portfolio

The second type of sample portfolio covers the entire market. To reduce the dimensions
of the correlation matrix of the whole universe, an equally weighted stock portfolio is first
created for each group. Note that each group portfolio includes all of the stocks that
belong to the group at this stage. Then, the return index of each portfolio is calculated
as the mean of the individual stock returns in each group. The 14 return indexes can be
regarded as the underlying factors of the development of the stock market, since any stock
could belong to one of these 14 groups. Lastly, a single sample portfolio is created as an
equally weighted portfolio of the 14 return indexes to observe market-wide or between-

group (between-factor) dynamic correlation.

Non-constant correlation test

As mentioned in Section 1, the choice of dynamic or static correlation is rather an empirical
issue that depends on the actual return data. Before delving into the details of the
DCC-GARCH model estimation, it is informative to examine if the static correlation is
statistically acceptable for our data.

In that context, we perform the non-constant correlation test proposed by Engle and
Sheppard [2001] for the market portfolio and group portfolios. The GARCH(1, 1) model,
which is uniformly assumed to be a typical GARCH model, is first fitted to the individual
return data on every portfolio to calculate standardized residuals. The constant correlation
is then calculated from the standardized residuals. The null hypothesis (Hp) is R; = R.
The test is based on an artificial regression of the outer products of the residuals on a
constant and lagged outer products to explore if there is any time dependency between
R, and Ry;_1, -+, R;—;. The numbers of lags are set to 5 and 10.

Table 2 shows the test results. In many cases, we can safely reject the null hypothesis
in favor of the dynamic correlation model rather than the static one. This result provides
strong motivation to estimate the DCC-GARCH model with a more detailed specification,
although the test assumes a simple univariate GARCH(1, 1) model and has some technical

limitations.3

'3 Engle and Sheppard [2001] discussed the technical difficulties associated with testing the null of constant
correlation against an alternative of dynamic correlation. More recently, McCloud and Hong [2011]
proposed a specification test for the constant and dynamic structures of conditional correlations, which
is based on a generalized spectrum approach. Other testing approaches and their technical limitations
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Table 2: Constant correlation test

5 lags 10 lags
Stat  P-value Stat  P-value
Market 14.800 0.022 18.567 0.069
Cyclical Ga 22.618 0.001 24.566 0.011
Gg 39.777 0.000 65.617 0.000
Ge 11.613 0.071 30.414 0.001

Gp 35.870 0.000 44.261 0.000
Gg 46.986 0.000 52.558 0.000
Gr 60.859 0.000 64.939 0.000

Defensive Gg 29.062 0.000 32.831 0.001
Gy 12.087 0.060 22.925 0.018
Gy 18.305 0.006 27.586 0.004
Gy 22.597 0.001 30.010 0.002

Gk 59.057 0.000 64.219 0.000
G, 84.126 0.000 87.503 0.000
GuMm 93.684 0.000 105.109 0.000
GN 28.176 0.000 39.241 0.000

Note: “Stat” is the test statistic of the non-constant correlation test proposed by Engle and
Sheppard [2001], which is asymptotically distributed as a chi-squared distribution. P-value

is calculated for the null hypothesis (Ho): R; = R. For more details of the test, see Engle
and Sheppard [2001].

4.2 Modeling the dependency of returns using the copula function

To estimate the parameters of the DCC-GARCH model by using MLE, the likelihood
function needs to be specified. Two approaches can be used to build the conditional
joint distribution of return 7; in equation (2). The first approach assumes a multivariate
distribution (e.g., the multivariate normal) to specify the density function to maximize the
log-likelihood with respect to the model parameters. In the case of the normal distribution,
the maximization process can be simplified by separating the first-stage estimation of the
individual GARCH models from the second-stage DCC parameter estimation. However,
because the assumption of a normal distribution might not apply in every case, we select
an alternative approach based on the copula function to model the dependency structure
of the residuals.

The concept of the copula of an arbitrary distribution is a function to connect the
marginal distributions to a joint distribution. The joint distribution function F' (x1, ..., x,)

of a vector of variables X = (X1, ..., X,,) with marginal distribution functions

are also summarized there.
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Fy(z1), ..., F,(x,) can be represented by the copula function C (-) as
F(z1, ..., xp) =C(F1(21), ..., F (zp)) (10)

under absolutely continuous margins (Sklar’s Theorem, Sklar [1959]). Considering that

L1, oy T = F 1V (u1), ooy F7 ' (uy), the copula is obtained uniquely as
C (w1, oy un) = F (F7 (1), oy Bt () (11)

where Fi*1 (+) is the quantile function of the i-th marginal distribution. Consequently, the
joint density function f (z) of X can be described as

n

f(x1y ooy ) = c(F1(21), ooy Fp(z0)) H fi () (12)

i=1
where f;(x;) is the marginal distribution of x; and ¢ (+) is the density function of the copula.
The joint density of returns r; is defined as a combination of the copula density and the
density of the i.i.d. residual z;, as described by equation (12).

As for the marginal distribution of the individual residuals z;, we assume one of the
(standardized) normal, Student ¢, and skew ¢ distributions.!# The parameter set to be
estimated for the i-th return includes the ARMA-GARCH parameters as HZAG and distri-
butional parameters of z; as 6;. The parameters in 6; depend on the distribution type: 6;
includes &; and v; for the skew ¢, v; for the Student ¢, and none for the normal, where v;
and & are the shape and skew parameters, respectively. As such, the use of the copula
enables the flexible modeling of the marginal distributions. Further, the separation of
the fat-tailedness of residuals and tail dependency between them enables a more precise
parameter estimation. On the contrary, the multivariate distribution approach assumes
the same marginal distribution for all stocks.

The dependence structure of the marginals is modeled by using a copula; specifically,
we select the Student t-copula, since we assume possible tail dependency between the
residuals. The Student ¢-copula can handle tail dependency, whereas the Gaussian copula

cannot. The Student t-copula is defined as
C¥ (uly, R) =ty (1" (1), ., £, (un)) (13)

where R is a correlation matrix, v is a shape parameter, t, () is the cdf of the univariate

Student t-distribution, and t,.g is the cdf of the multivariate Student ¢-distribution. The

14 We use the skew t-distribution defined by Ferndndez and Steel [1998].
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density function of the Student t-copula is defined as

—(v+n)/2
(&) (T )" (1+v'¢Rq
c (uly, R) = : 2 ! (2)) ( 3 (v+1)/2 (14)
R (52" T (14 %)
where g = (q1, ..., @) is defined such that ¢; = ¢, ! (u;) for i = 1, ... ,n. For more details

on the Student ¢-copula, see Demarta and McNeil [2005].
Then, the conditional joint density of returns r; can be defined as a combination of the
copula density and density of the i-th residual z;.; based on equation (12), substituting N

(the number of stocks) for n:

2

£ (relies Vi, Bi, 7) =5 (urg, o, una| Ry, 7 H ) (15)

where u;.s = Fj(ri.¢|pit, Vi, 0;), ¢ (-) is the Student t-copula density defined in equation
(14), and 7 is the shape parameter of the Student ¢-copula.!®
The log-likelihood function LL (0|r;) is given by the density function (15) as

L(O|ry) = LLr(Ry D)
+LLy ((91, M1t \/E) e (9N7 KNt hN-t))

= LLR(alv ..., an, by, ..., by, 17)
+LLy, (61, 0{) +,...,+LLyy (On, 03 (16)

where @ is the whole parameter set, LLg (-) is the Copula-DCC part with the DCC
parameters (a, b) as in equation (7), and LLy, (-) is the univariate ARMA-GARCH part
with a set of parameters 0{1¢ for stock i (i =1, ..., N).
As such, the log-likelihood can easily be separated into two parts when maximizing
P L LL(-), where p is the length of the time series data: the joint Copula-DCC part and
the individual univariate GARCH part. The two parts of the log-likelihood function can
be safely maximized independently without any shared parameters between them. Thus,
the individual ARMA-GARCH parameters as well as their distributional parameters are
estimated first for the individual stocks by maximizing LLy;; then, the Copula—DCC

parameters are estimated by maximizing LLR.

4.3 Estimation results of DCC-GARCH

The DCC-GARCH model is simply fitted to the market portfolio and 14 group portfolios,
independently. When estimating the DCC-GARCH model for the market portfolio, the

15
Vhit

in equation (15) is the Jacobian of the variable transformation between r; and z:.
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univariate ARMA-GARCH models are first fitted to the individual group return indexes
defined in Section 4.1 based on the two-step estimation approach described in Section 4.2.
The ARMA-GARCH lags and residual distribution should be determined to identify the
model (model selection). The multiple models with different lag patterns and choices of
residual distribution are then estimated by using MLE, and the model with the highest
AIC is selected for every return index. In the second step, the DCC lags are determined
similarly by selecting the model with the highest AIC from the alternatives. Specifically,
the Copula—DCC model is fitted to the standardized residuals to estimate the DCC model
parameters by using MLE. The whole likelihood maximization process shown in equation
(16) is thus completed. Similar to the market portfolio, the univariate ARMA-GARCH
model is first fitted to the individual stock returns when estimating the DCC-GARCH
model for the group portfolios. The remaining estimation process is the same as that for
the market portfolio.

Table 3 shows the estimation results for the DCC parameters.'® The results of the
univariate ARMA-GARCH model for the market portfolio are summarized in Table 4 (for
the cyclical groups) and Table 5 (for the defensive groups). The estimation results of the
univariate ARMA-GARCH model for the group portfolios are omitted because of space

limitations.

16 We used the R (http://cran.r-project.org/) package “rmgarch” (Ghalanos [2014]) for the parameter
estimation.
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The DCC order (m, n) in equation (7) is almost (1, 1) or (1, 2) as shown in Table 3.
The lag order m for a; in equation (7) is 1 in all cases. The parameter a; indicates the
degree of responses of Q¢ to the past covariances of shocks in equation (7). The result
that the order m = 1 means that the effect of past shocks on Q¢, and hence the correlation
Ry, do not last longer. The lag order n for b; is 1 for the market portfolio and 1 or 2
for both the cyclical and the defensive group portfolios. The parameter b; indicates the
degree of persistence of Q; as well as R;. The order n = 1 (or 2) corresponds to the DCC
parameter bl (and b2) in Table 3.

The DCC parameters al are all non-zero positive numbers with enough significance,
but are very small numbers (< 0.02) compared with b1 and b2. Both bl and b2 take
relatively large numbers. We calculate bl 4 b2 to compare the relative persistence of
the sample portfolios; b1 + b2 is higher than 0.9 for some of them including the market
portfolio.!” Hence, we can say that DCC is more realistic for the sample portfolios than
CCC is, which assumes that a; = b; = 0 in equation (7). These findings are similar to
those of previous studies that have estimated DCC models.

The DCC parameter estimates, especially b1 and b2, vary widely between the groups,
implying that the correlation dynamics may differ across them. Indeed, the parameter
estimates vary even within the cyclical and defensive groups. We explore the pattern of
correlation changes in every group more in detail in Section 5.2. The shape parameters of
the Student t-copula range between about 14 and 29. These relatively high values mean
that the tail dependency of the standardized residuals seems to be limited, if any.

Tables 4 and 5 summarize the estimation results of the univariate ARMA-GARCH
model for the market portfolio. The parameter set depends on the individual ARMA-
GARCH lag degrees and distribution types of standardized residuals. The distribution is
selected to be the skew ¢ in most instances with the Student ¢ in one group based on the
AIC. The estimates of the shape parameters of the skew ¢ and Student ¢ show values below
10 in many of the defensive groups, but higher values in many of the cyclical groups. A
lower shape value means that the standardized residuals still exhibit fat-tailedness even
after the fat-tailedness of stock returns is reduced by adjusting the volatility by using
GARCH. An important advantage of the copula approach is that it can handle such

heterogeneities in marginal distributions very well.

'7 The values of al+b14b2 are all below 1, which indicates that the condition of equation (9) is satisfied.
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We conducted goodness of fit tests to ensure that the model assumptions are satisfied.
Specifically, the selection of the distribution type (shown as “Cdist” in Table 4) of the
standardized residuals should be confirmed. The absence of the serial correlation of the
standardized residuals should also be ensured, since the i.i.d. condition is assumed in
equation (2). We performed the Anderson—Darling test for the goodness of fit of the
selected distribution and the Ljung—Box test for the auto-correlation. These two tests are
portmanteau tests in which only the null hypothesis is well specified.

Table 6 shows the test results for the market portfolio. In every case, the Anderson—
Darling test results with high p-values show that the null hypothesis cannot be rejected
at the 10% significance level (or much higher significance level in most cases). We can
say that there is no significant misspecification with regard to the distribution of the
standardized residuals. As for the Ljung—Box test results, the null hypothesis of no serial
correlation cannot be rejected at the 10% significance level in most cases (excluding Gp).
These test results suggest that the model assumptions are generally well satisfied.

We also conducted the same tests for the group portfolios. No significant misspecifi-
cation or serial correlation problem was detected. The test results are omitted owing to
space limitations.

Further, to confirm the stability of the estimation result of the DCC-GARCH model,
we fit the same model to two sub-period data sets of the market portfolio that have
almost the equal numbers of trading days. We find that the parameter estimates differ
little between the whole period and sub-period cases. The same check is then performed

for the group portfolios and the results are similar.

5 Dynamic changes in correlation intensity
5.1 A measure of correlation intensity

The parameters of the DCC-GARCH were estimated for the market portfolio and group
portfolios presented in Section 4. In this section, we calculate DCC R; in equation (8).
Because one instance of R; exists at a time, the total number of correlation matrices is
the same as the length of the return series (i.e., larger than 1,300). The dimension of R;
is 20 x 20 for every group portfolio and 14 x 14 for the market portfolio. It is difficult to
observe the time series development of R; as it is in matrix form. We hence need a further
dimension reduction of R;.

The eigenvalues of the correlation matrix can be used as a vector of proxies for the
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Table 6: Goodness of fit test (Market portfolio)

Anderson—Darling test Ljung—Box test
Cdist AD  P-value LB P-value
Cyclical  Gp sstd  0.356 0.891 5.873 0.555

Gp sstd  0.510 0.737 8.472 0.293
Ge sstd  0.769 0.504 8.175 0.417
Gp sstd  0.728 0.536 11.429 0.179
Gg sstd  0.345 0.901 8.278 0.407
Gr sstd  0.578 0.669 17.617 0.024

Defensive Gg std  0.499 0.748 3.341 0.911
Gy sstd  0.348 0.898 6.034 0.643
Gp sstd  1.096 0.311 6.087 0.638
Gy sstd  1.828 0.114 10.560 0.228
Gk sstd  0.248 0.971 9.999 0.189
G, sstd  0.465 0.783 10.131 0.181

GuMm sstd  0.601 0.647 8.373 0.398
GN sstd  1.296 0.234 10.269 0.247

Note: “Cdist” is the conditional distribution of standardized residual z; in equation (2); “std” and “sstd” stand
for the Student ¢ and skew t distribution, respectively. AD is the test statistics for the Anderson—-Darling test
for the null hypothesis (Hp) that assumes the conditional distribution as the one specified by “cdist.” A
higher p-value for AD means a lower risk of the misspecification of the conditional distribution. LB is the
test statistics for the Ljung—Box test applied to the standardized residuals. The null hypothesis is that the
data are independently distributed without any observed correlations. The number of lags tested is 10 and
the degree of freedom is adjusted appropriately considering the number of parameters in the model.

correlation intensities on the corresponding axes. A larger eigenvalue indicates a stronger
correlation. The positive maximum eigenvalue of R; is the proxy for the correlation
intensity on the first axis with the largest variance.'® If the maximum eigenvalue is large
enough, other eigenvalues may have limited influence on the correlation intensity of R;. In
that case, the time series of the maximum eigenvalues approximate well the development
of the correlation intensity between stock returns.

To answer the first and second research questions, we focus on the time series of the
maximum eigenvalues of R;.'® We first calculate a series of R; by using the estimated
DCC-GARCH model for the market portfolio and group portfolios. Then, the time series

of the maximum eigenvalue of R; are calculated for every sample portfolio.

'8 This indicates “the maximum amount of the variance of the variables which can be accounted for with
a linear model by a single underlying factor” (Friedman and Weisberg [1981]).

19 The changes in a correlation matrix have two components: correlation intensity (eigenvalues) and direc-
tion (eigenvectors). We focus on correlation intensity to observe any dynamic changes, assuming that
intensity has a larger influence on portfolio risk. When simulating the quantitative impact of correlation
changes in Section 5.3, changes in both intensity and direction are considered with different R;.
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Eigenvalues and random matrix theory

Table 7 summarizes the eigenvalues of R; and unconditional correlation matrix R. The
three largest eigenvalues (EV1, EV2, and EV3) are listed from the whole set. Note that
the length of the corresponding eigenvector is normalized to one for all eigenvalues.?’
“Min” and “max” represent the minimum and maximum values of the time series of the
eigenvalues of Ry, respectively. “Uncon” represents the eigenvalue of R. The maximum
eigenvalue (EV1) is much larger than the second and third eigenvalues (EV2 and EV3) for
the market portfolio and for all individual group portfolios, suggesting that EV1 mostly
determines correlation intensity. If so, we can now focus on the time series development
of the maximum eigenvalue as a proxy for correlation intensity.

Random matrix theory provides a reliable measure for distinguishing informative eigen-
values from uninformative ones. The Marcenko—Pastur distribution is a good approxima-
tion to the density of the eigenvalues of the correlation matrix of randomized returns.?!
We are, however, interested in which of the eigenvalues are meaningful by examining
the largest eigenvalue of the correlation matrix of randomized returns. Importantly, we
must know the threshold value that the maximum eigenvalue of the correlation matrix of
randomized returns can take. If an eigenvalue of a correlation matrix is larger than the
threshold value, we can safely say that it is meaningful.

To determine the threshold, we need to know the limiting distribution of the maxi-
mum eigenvalue of the randomized return correlation matrix with the same size as the
sample correlation matrix. Johnstone [2001] showed that the asymptotic distribution of
the properly rescaled largest eigenvalue of the white Wishart population covariance matrix
is the Tracy—Widom distribution, which provides the limiting distribution of the maximum
eigenvalue, while the Marcenko—Pastur distribution suggests the boundary of the distribu-
tion of eigenvalues. For more mathematical details on eigenvalues and the Tracy—Widom
distribution, see Johnstone [2001] and Tracy and Widom [2009, 1996, 1994].

The distribution function of the Tracy-Widom distribution Fj (-) has three types of
definitions depending on the value of 3 (1, 2, and 4).2 We set 3 as 1, which provides the

most conservative (largest) quantile value (to be used as a threshold) compared with the

20 A symmetrical and positive definite matrix R, has orthonormal eigenvectors.

2! The largest and smallest eigenvalues of a Wishart matrix almost surely converge to the respective
boundaries of the support of the Mardenko—Pastur distribution when the true covariance matrix is an
identity matrix (Mardenko and Pastur [1967], Johnstone [2001]).

22 The value of 8 depends on the assumption of the correlation matrix structure: 8 = 1 for the Gaussian
orthogonal ensemble, 8 = 2 for the Gaussian unitary ensemble, and 8 = 4 for the Gaussian symplectic
ensemble.
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other settings. The distribution function Fj (+) is defined as

P =exp (—5 [ awdy) (B e} a7)
Fy (x) = exp <— /;O (v —2)a* () dy> (18)

where ¢ is the unique solution to the ordinary differential equation called the Painlevé
(type II) equation. For more exact and complete definitions, see Tracy and Widom [1996].
We calculate the 99th percentile of the Tracy-Widom distribution (8 = 1) to identify the
non-random eigenvalues that are beyond this value (Table 7). The 99th percentile value
of the Maréenko—Pastur distribution is also calculated for reference.??

Table 7 shows that the minimum value of the maximum eigenvalues (EV1) of R; during
the data period is larger than the 99th percentile of the Tracy—Widom distribution in all
sample portfolios as indicated by “*” in the EV1 column. This finding means that these
maximum eigenvalues are all meaningful enough. Next, we find that the minimum value
of EV2 is larger than the 99th percentile of the Tracy—Widom distribution only in one
group portfolio, while the maximum value of EV2 is larger than the threshold only in four
sample portfolios (the market portfolio and three group portfolios). This finding means
that EV2 is only meaningful at certain points of time during the period.?* Finally, the

maximum value of EV3 is larger than the threshold only in one group portfolio. Hence,

EV3 does not convey meaningful information.

28 We use R package “RMTstat” to calculate the density and quantiles of the Tracy-Widom and Maréenko—
Pastur distributions.

24 EV2 is only meaningful in Gy, (one of the defensive groups), including Electric Power and Gas. Gg (one
of the defensive groups), including Banks, has the largest maximum of EV1, which implies very strong
correlations in regional banks.
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5.2 Dynamic changes in maximum eigenvalues

The time series of the maximum eigenvalue of a conditional correlation matrix R; reveals
that the correlation intensity changes dynamically in the market portfolio and group port-
folios. This means that both the between-group and the within-group correlations of stock
returns change over time. We next describe the changes in the cyclical and defensive group

portfolios as well as the market portfolio more in detail.

Cyclical group portfolios

Figure 1 depicts how the correlation intensities of the cyclical groups change over time.
There are two charts for every group in Figure 1. The top chart shows the time series de-
velopment of the maximum eigenvalues of R; as a proxy measure for correlation intensity.
The bottom chart shows the mean volatilities, calculated as the mean of the conditional
volatilities of individual stock returns estimated by using the univariate GARCH model.
The two dotted vertical lines indicate the trading date closest to the Lehman shock and
Great Earthquake in that order.

Overall, correlation intensity changes dynamically in every group. Sharp increases
in within-group correlation intensity are observed after the Lehman shock and Great
Earthquake, with sharp increases in volatility observed as well. The differences between
the two events, however, vary by group. While the persistence of increased correlation
intensity as well as mean volatility is observed in many groups, the degrees of persistence
differ.

In groups Ga, Gp, and Gg, for example, mean volatility is much higher after the
Lehman shock than it is after the Great Earthquake. These groups include stocks in Elec-
tric Appliances and Transportation Equipment, both of which are more export-oriented
sectors.?> The larger increases in volatility suggest that the stock returns in these groups
were affected more by the overseas shock. Further, the maximum eigenvalues increased
significantly after both events; however, their peak levels are not necessarily higher after
the Lehman shock compared with after the Great Earthquake. In Gg, the maximum
eigenvalue is the highest after the Great Earthquake, whereas the peak levels in Gp and
Gg are similar for the two events.

By contrast, in Gp, Gg, and G, which are relatively less export-oriented, mean volatil-

ity increased markedly after both events. The maximum eigenvalue also increased after

25 For more details on the correspondence between the groups and business sectors, see Table 4 of Isogai
[2014].
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both events in Gp and Gg, while the degree of increase after the Great Earthquake was
limited in Gp.?% In summary, the pattern of changes in correlation intensity seems to be

significantly different by group.

Defensive group portfolios

Figures 2 and 3 show how the correlation intensity of the defensive groups changes over
time. The maximum eigenvalue of R; changes dynamically in every group as observed
in the cyclical groups. Sharp increases in within-group correlation intensity are observed
after both events; mean volatility also increased significantly after both. Comparing the
changes after the two events, the peak levels of the maximum eigenvalues are higher after
the Great Earthquake than they are after the Lehman shock in many groups. This trend
seems to be more evident in the defensive groups, which are less export-oriented, than in
the cyclical groups.

The persistence of increased correlation intensity and mean volatility is observed in
many groups to different degrees. In Gy, correlation intensity increased after the Lehman
shock, whereas the maximum eigenvalue decreased significantly after the Great Earth-
quake. Gy includes many construction companies like Gg in the cyclical category; hence,
the same type of temporal correlation breakdown with a greater impact occurred at that
time. In Gr,, a typical defensive group, which includes Electric Power and Gas, Pharma-
ceutical, and Foods, a sharp increase in correlation intensity is observed after the Great
Earthquake. In G; (Information and Communication; Land Transportation) and Gy (Re-
tail Trade; Foods), sharp increases are also observed after the Great Earthquake. Note that
the mean volatilities of these groups have similar peak levels after both events, excluding
Gg (Regional banks) and Gy.

Hence, the combination of the observations from the cyclical and defensive groups con-
firms that within-group correlation intensity changes over time, with a significant increase
in crisis periods accompanied by a sharp rise in volatility. Further, we find significant

differences in the changes in correlation intensity as well as volatility across the groups.

Market portfolio

Figure 4 shows the time series development of the maximum eigenvalue of R; of the market

portfolio as well as mean conditional volatility. Recall that the market portfolio comprises

26 The stock prices of some construction companies in Gg showed an unusual pattern after the Great
Earthquake; sharp increases were partially observed, which seemingly contributed to the lower correla-
tion intensity at that time.
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Figure 1: Maximum eigenvalue of the correlation matrix: Cyclical
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14 equally weighted index returns calculated from the 14 individual group portfolios, as
mentioned in Section 4.1. The correlation matrix R; shows the between-group or market-
wide factor correlation of the market portfolio. We see that mean volatility increased
significantly after both events, whereas the peak levels were similar.

Figure 4 clearly shows that between-group correlation changes over time as observed in
the within-group correlations. The market-wide factor correlation also intensified during
crisis periods as in many of the cyclical and defensive groups. Moreover, the maximum
eigenvalue peaked after the Great Earthquake, while the persistence of increased correla-
tion intensity was also observed.

The trends of the maximum eigenvalue after the Lehman shock are complicated. This
value increased considerably after the shock and remained at relatively high levels before
dropping sharply. Nonetheless, the peak level after the Lehman shock is lower than that
after the Great Earthquake. Further, an upward trend is observed after the sharp de-
crease, which lasted for around two years, although a lack of information prevents us from

clarifying the background of these movements.

5.3 Impact of correlation changes on portfolio risk

Having confirmed that both within-group and between-group correlation intensities change
over time, we are now interested in answering the third research question. To evaluate the

influence on the risk of the sample portfolios, we conduct a numerical simulation analysis.
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The simulation focuses on the changes in correlation intensities and their influence on the

portfolio risk measures: VaR and ES.

Relative changes in correlation intensity and volatility

Table 8 summarizes the maximum eigenvalues of the conditional correlation matrix R; and
mean volatilities of both the market and the group portfolios. This table also compares the
relative changes in the maximum eigenvalue and mean volatility. The maximum eigenval-
ues are calculated as the mean values during the 20 trading days after the Lehman shock
and Great Earthquake to smooth fluctuations. Moreover, the maximum eigenvalue of the
unconditional correlation matrix R is used as the benchmark for the relative comparison.

We can make two main observations here. First, the changes in the maximum eigenval-
ues from the unconditional one are relatively small compared with those of mean volatil-
ity, while the fluctuation in correlation intensity is also much smaller than that of mean
volatility for the sample portfolios.2” Second, the changes in the maximum eigenvalues are
significantly different across the sample portfolios, while the changes in mean volatilities

also differ across the sample portfolios, but not to a significant degree. At an event level,

2T Because the maximum eigenvalue and mean volatility are measured by using different scales, the same
changes in the two factors may influence the risk amount of the sample portfolio to a different degree.
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Table 8: Maximum eigenvalues and mean conditional volatilities

Maximum eigenvalue Mean volatility
Group ID  Uncon (a) L (b) E (c) b_T"(%) o) Uncon (a) L (b) E(c) %g hw)

a

Market 11.61 11.67 12.21 0.54 5.16 0.014 0.027 0.035 86.78 143.20

Cyclical
Ga 13.38 13.33 13.75  -0.37 2.77 0.025 0.034 0.033 36.00 32.00
Gg 12.99 13.26 13.66 2.08 5.19 0.027 0.046 0.038 72.15 42.60
Gg 11.14 11.17 11.71 0.26 5.15 0.026 0.036 0.041 34.72 55.44
Gp 10.50 10.93 11.53 4.11 9.82 0.027 0.044 0.053 63.22 97.11
Gg 9.74 10.13 10.46 4.01 7.37 0.023 0.038 0.049 63.24 111.05
Gy 9.37 10.05 9.52 7.27 1.56 0.032 0.050 0.072 56.64 126.78

Defensive
Gg 14.90 15.05 15.45 0.98 3.69 0.019 0.030 0.030 61.51 60.34
Gg 10.70 10.84 10.62 1.32  -0.73 0.022 0.037 0.040 67.22 78.88
Gy 10.39 10.35 11.09 -0.40 6.74 0.018 0.028 0.034 56.35 87.27
Gy 10.42 10.60 11.15 1.77 7.02 0.019 0.029 0.037 52.19 97.12
Gk 10.33 10.52 10.93 1.87 5.82 0.019 0.031 0.037 64.40 94.09
Gy, 10.51 10.28 11.56 -2.14 10.02 0.017 0.023 0.029 39.05 74.50
Gum 8.80 9.15 9.53 4.01 8.26 0.016 0.032 0.039 97.81 138.21
Gy 8.54 832 923 -253 8.03 0.018 0.032 0.037 71.50 101.19

Note: “Uncon” of the maximum eigenvalue column denotes the maximum eigenvalue of the unconditional
correlation matrix R. “Uncon” of the mean volatility column is the mean of the volatilities estimated by CCC—
GARCH. L and E denote the Lehman shock and Great Earthquake, respectively. The maximum eigenvalues
of L and E are calculated as the means of the maximum eigenvalues of the conditional correlation matrix R
during the 20 trading days after the two events. The mean volatilities of L and E are calculated as the means
of conditional volatility during the 20 trading days after the two events.

the changes are much larger after the Great Earthquake in terms of both the maximum

eigenvalue and mean volatility.2®

Impact study of correlation changes: A numerical simulation

We next present the results of a numerical simulation conducted to compare quantitatively
the impact of correlation changes on the risk amount of the sample portfolios: the market
portfolio and the 14 group portfolios. Three factors are required when calculating portfolio
risk: volatility, correlation, and the distribution of the probabilistic variable. The timing
of the evaluation and confidence level should also be specified.

The timing here is set as two trading days after the Lehman shock and Great Earth-

quake.?? The estimated conditional volatility and correlation on these two trading days

28 Please note that because the sharp rise in volatility was slightly delayed after the Lehman shock, whereas
it occurred immediately after the Great Earthquake, this lag might overemphasize the changes after the
latter event.

29 The selected trading days are October 15, 2008 and March 16, 2011, when the maximum eigenvalue
peaked for most of the sample portfolios.
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are specified in the simulation. To randomly sample the residuals, we use the Student
t-copula, which has the same parameters, namely the conditional correlation matrix and
shape parameter, as those estimated by the DCC-GARCH model presented in Section 4.3.
A sample data set is generated by randomly sampling 100,000 draws from the Student
t-copula for every sample portfolio. These data are then converted into individual returns
by the quantile functions of the marginal distributions; finally, the portfolio returns are
calculated by applying the conditional volatilities.

Note that the initial portfolio value is normalized to 1; therefore, the portfolio value
after the one-day holding period is calculated as the 1 + the sum of individual simulated
returns. The portfolio risk measures (VaR and ES) are calculated by using the historical

simulation method:

VaR, [X] = —inf {z|Pr[X <z|]>1-p}, O0<p<l1
(19)
ES,[X] =E[-X|- X >VaR, [X]], 0<p<1

where X is portfolio returns and p is the confidence level of these risk measures (set at
99%).

We calculate the risk measures for the sample portfolios with both unconditional and
conditional correlations to observe the differences between these two cases. The case
with the unconditional correlation is regarded as the benchmark. For comparison, VaR
and ES are also calculated with the Gaussian copula and unconditional correlation, the

combination of which is the most naive assumption when measuring risk.

Simulation results

Tables 9 and 10 summarize the simulation results for VaR and ES, respectively. These
results show that the VaR and ES of the sample portfolios increased in many cases when
calculated using conditional correlation. This finding means that changes in correlation
intensity can have a non-negligible positive impact on portfolio risk.

In Table 9, the VaR values of the market portfolio with the conditional correlation is
about 1.2% and 3.1% (b—a and e—d, respectively) larger than those with the uncondi-
tional correlation after the Lehman shock and Great Earthquake, respectively. The ES
of the market portfolio is also about 0.3% and 3.7% larger, as shown in Table 10. The
impact is larger after the Great Earthquake than after the Lehman shock, as shown by
the larger maximum eigenvalue, implying that the larger maximum eigenvalues after the

Great Earthquake contribute to the larger impact.
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In the case of the cyclical and defensive group portfolios, a similar tendency is observed
as that in the market portfolio, although the impact differs considerably by group because
of the different correlation intensities. The VaR and ES values with the conditional cor-
relation are larger than those with the unconditional correlation in most groups. The
VaR value with the conditional correlation is larger by about 11% (G, after the Great
Earthquake) at the maximum but is similar (Grp and Gy, both after the Great Earth-
quake) at the minimum. The ES value is also larger by about 13% (Gy, after the Great
Earthquake) at the maximum and similar (G and Gy, both after the Great Earthquake)
at the minimum. These higher levels of the maximum eigenvalues seemingly contribute to
the larger risk amount compared with the unconditional case, although the impacts differ
significantly in both cyclical and defensive groups.3®

When we use the Gaussian copula, the differences (between VaR and VaR" in Table
9: ES and ES” in Table 10) become larger, since this copula underestimates the risk
without considering the tail dependency of the residuals unlike the Student t-copula. The
existence of the tail dependency of returns is confirmed; however, the differences from
the unconditional cases are still not large in many of the sample portfolios. The tail
dependency is rather limited for the GARCH-filtered standardized residuals, as shown by
the higher level of the shape parameters listed in Table 3.

30 In some cyclical groups (G, Gp, and Gg), the order of the maximum eigenvalues is not consistent with
that of the risk amount, although the differences in VaR and ES changes are not large. This inconsistency
is probably because of the differences in the random sample sets as well as the smaller eigenvalues and
direction of the eigenvector of the conditional correlation contributing to the risk differently.
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VaR backtesting

In addition to the numerical impact simulation, we conducted another test to evaluate the
model performance of DCC-GARCH in comparison with CCC-GARCH. We assume that
DCC—-GARCH shows better VaR backtesting performance compared with CCC-GARCH
if DCC captures the correlation changes that affect VaR values, while CCC, by definition,
does not.3!

The VaR value is calculated over the whole in-sample period at the 99% confidence level
by using the DCC— and CCC-GARCH models with the parameters estimated in Section
4.3. The holding period is one trading day. The conditional volatilities are updated daily
by the univariate GARCH using the previous time series of return data. The number
of VaR exceedances is counted for every sample portfolio to compare the theoretically
expected number of exceedances. The two types of VaR backtests proposed by Kupiec
[1995] and Christoffersen and Diebold [2006] are conducted to evaluate the frequency of
exceedances statistically.

Table 11 shows the results of the VaR backtesting. The p-values are calculated for the
null hypothesis (Hp): the VaR model is correctly specified. The null hypothesis cannot be
rejected in six groups (Ge, Gp, Gg, Gy, Gy, and Gy) for DCC and in five groups (Gg,
Gp, Gg, Gj, and Gy) for CCC at the 5% significance level in both tests.>?> Even for the
groups in which the null hypothesis is rejected, the exceedance counts are closer to the
expected level (14) in four groups (Gg, G, Gi, and Gk ) in DCC than in CCC, while they
diverge in two groups (G and Gy,). These results suggest that DCC performs better than
CCC in terms of VaR backtesting.

31 VaR backtesting is normally conducted as an out-of-sample test with a rolling model parameter esti-
mation. We simplified the test, since our VaR backtesting is conducted only to compare the relative
performance of DCC and CCC. As for ES backtesting, technical issues that are related to the elicitability
concept have been much debated since Gneiting [2011]. Recently, Acerbi and Szekely [2014] proposed
a new backtesting method for ES that uses a MonteCarlo hypothesis test. We do not cover the ES
backtesting here, since the issue is beyond our scope.

32 The VaR backtesting results may seem to be unsatisfactory for formulating risk management strategies.
As described in Sections 3.2 and 4.2, we assume a simple GARCH model for univariate returns and a
scalar DCC model with the Student t-copula for their dependency structure. For improved backtesting
performance, this modeling framework needs to be reexamined; however, this investigation is beyond
the scope of the present study.
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6 Discussion

The correlation of asset returns is a key issue for quantitative risk measurement and
portfolio investment control. In this empirical study, we propose a data-driven approach
to observe the dynamic changes in the correlation matrices of Japanese stock returns
by using an MGARCH model, namely DCC-GARCH. While it is difficult to fit any
multivariate model with conditional correlation to the whole universe of stock returns
(about 1,400 stocks according to our definition), we overcome the high dimensionality
problem by fitting a reduced size MGARCH model with DCC to two types of sample
portfolios: the market portfolio and group portfolios.

When building these sample portfolios, we apply the clustering method originally de-
veloped in complex networks theory. The unconditional correlation matrix of the whole
universe is first estimated by using the CCC-GARCH model. The universe is then divided
into 14 sub-groups with two large categories: cyclical and defensive. The group portfolios
are next built with 20 representative stocks selected by using a network centrality measure.
These portfolios cover each segment of the universe as homogeneous groups. The market
portfolio is finally built as a set of the 14 mean return indexes of the individual groups.

We fit the scalar DCC-GARCH model to the return data of the market and group
portfolios to observe the between-group and within-group correlation dynamics, respec-
tively. The likelihood function of DCC-GARCH is built by using the Student ¢-copula
considering the tail dependency of returns. The parameter estimation results show that
DCC-GARCH is more realistic than CCC-GARCH, confirming that both within-group
and between-group correlations change over time and that the dynamics are significantly
different for the sample portfolios.

The conditional correlation matrices are calculated from the DCC-GARCH estimation
results for all sample portfolios. Then, the time series of the maximum eigenvalues of
the conditional correlation matrices are calculated to observe the dynamic changes in
correlation intensity. The findings confirm that both the between-group and the within-
group correlations intensified after the Lehman shock and Great Earthquake; however, the
patterns of changes are significantly different across the sample portfolios.

We also explore the impact of correlation changes on the risk of sample portfolios by
using a numerical simulation. The VaR and ES values of the market and group portfolios
with the conditional correlation are compared with those with the unconditional corre-

lation, assuming the highest level of conditional volatilities after the Lehman shock and
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Great Earthquake. The results show that the dynamic change in the correlation matrix
has non-negligible positive influences on the risk of the stock portfolio. The comparative
VaR backtesting results also suggest that DCC performs better than CCC.

These empirical findings suggest a number of discussion points. The first point relates
to technical limitations when modeling correlations. Although DCC-GARCH can model
dynamic correlation and the copula-based two-step estimation procedure can also incor-
porate the heterogeneity of individual return distributions efficiently, it remains difficult
to evaluate the changes in the estimated correlation matrix. We adopted the maximum
eigenvalue of a correlation matrix as the proxy measure for correlation intensity. The max-
imum eigenvalue reveals the dynamic changes in correlation intensity as a scalar indicator,
which helps us follow the pattern of these changes. Nevertheless, the maximum eigenvalue
is still not directly linked to the calculation of portfolio risk. More strictly, the changes
in the eigenvector of a correlation matrix can also influence portfolio risk, demanding a
simulation analysis of the quantitative impact of correlation changes on portfolio risk.
As for the impact study, the simulation results depend on the modeling assumptions of
DCC-GARCH: no volatility spillover is considered. Further, the correlation dynamics can
be described differently by other more structural dynamic correlation models. To quan-
tify the effect of volatility spillovers on dynamic correlation, we must estimate conditional
correlation or covariance by using other types of multivariate models including the BEKK
model.

The second discussion point is the practical aspects of DCC-GARCH. Since DCC-
GARCH provides a consistent framework with which to combine conditional mean, volatil-
ity, and correlation to measure portfolio risk, it is thus flexible to capture any time-varying
changes in those three factors. Despite the technical limitations of DCC-GARCH, its com-
pact and flexible modeling framework with parsimonious parameters and easy parameter
estimation procedure are valuable from a practical viewpoint of risk control. For example,
the conditional approach is beneficial for stress testing portfolio risk by using possible
combinations of extreme volatilities and correlation matrices. In brief, we need extreme
but plausible scenarios for meaningful stress testing. The estimated historical time series
of the conditional correlation matrix as well as conditional volatility can further provide
a set of realistic combinations of volatility and correlation, which may not be available
with a static correlation matrix, in order to set the stress level. Moreover, the eigenvalues
may be used to adjust correlation intensity when building the scenarios, although further

study is required to clarify their quantitative impact.
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Another discussion point is the high dimensionality of the correlation matrix of stock
returns. We adopt the reduced size of sample portfolios to monitor the whole stock
market, since we are interested in a more general portfolio with wider coverage rather
than a specifically targeted portfolio. The clustering algorithm is based on the correlation
matrix of the whole universe of stock return data, which is calculated by assuming the use
of CCC-GARCH. The volatility interaction between stocks is thus not considered. Using
other methods to estimate the correlation matrix may lead to different group samples.
This point is an important caveat to this study. Nevertheless, our dimension reduction
method works well, even for a very large number of assets with fat-tailed returns, while
group size as well as the size of sample portfolios can be modified flexibly. The method of
selecting representatives from a group based on a network centrality measure can also be

easily applied to other groupings.

7 Conclusion

In this study, the dynamic correlation of Japanese stock returns is modeled by using
DCC-GARCH, which is fitted to reduced size sample portfolios. It is confirmed that the
correlation matrix changes over time in both the market portfolio and the group portfolios.
Significant differences in the patterns of the changes between the sample portfolios are also
identified, with sharp increases in correlation intensity observed during crisis periods.
The presented findings suggest two possible directions for future research. First, our
empirical findings depend on the assumption of no volatility spillovers. A more generalized
multivariate model could thus be applied to similar types of sample portfolios if the size
was appropriately reduced. Second, it would be meaningful to test if the same result would
be obtained when other clustering methods are used to create a set of reduced size sample
portfolios. A higher level of coverage of stocks in a sample portfolio is another issue to
be considered. We used a simple scalar DCC-GARCH model; however, more generalized
and complicated DCC models including BDCC and AG-DCC would improve estimation
performance. Moreover, with regard to issues related to correlation intensity, a more
detailed study of the relationship between the eigenvalues and portfolio risk would be an
interesting topic. Finally, a practical application of the estimation of dynamic correlation

change to portfolio risk management needs to be explored.
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