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Abstract

We focus on the pairwise correlations of Japanese stock returns to study their
correlation dynamics empirically. Two types of reduced size sample portfolios
are created to observe the changes in conditional correlation: a set of indi-
vidual stock portfolios created by using a network-based clustering algorithm
and a single portfolio created from the mean return indexes of the individual
sample portfolios. A multivariate GARCH model with dynamic conditional
correlation (DCC) is then fitted to the return data of these sample portfo-
lios independently. The estimation results show that the correlation matrices
change over time in a way that depends on the sample portfolios; further, the
DCC parameters are significantly different between them. Then, the time se-
ries of the maximum eigenvalues of the correlation matrices are calculated to
observe the changes in correlation intensity. A higher level of correlation inten-
sity is observed during crisis periods, namely after both the Lehman shock and
the Great East Japan Earthquake. We also examine the impact of correlation
changes on the risk of sample portfolios by using a numerical simulation, with
the results showing non-negligible positive impacts. The comparative VaR
backtesting simulation also suggests that DCC performs better than CCC.

Keywords: Stock returns, dynamic correlation, DCC–GARCH, clustering, portfolio risk
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1 Introduction

The correlation of asset returns is one of the key issues for quantitative risk measurement

and portfolio investment control. Among the many heavily debated issues related to this

topic, dynamic changes in correlation remain particularly controversial. Intuitively, the

risk of financial asset portfolios measured by a certain risk measure such as value at risk

(VaR) comprises two components: variance and covariance. Correlation hence plays a

key role in calculating portfolio risk since it directly affects the covariance part. Finan-

cial asset returns including stock returns exhibit fat-tailed properties in that large losses

occur more frequently with much higher probabilities than those expected by the normal

distribution (Fama [1965], Mandelbrot [1963], Mantegna and Stanley [2000]). Another

well-known feature of financial returns is volatility clustering: large fluctuations of returns

tend to cluster together, resulting in the persistence of volatilities (Cont [2007], Man-

delbrot [1963]). These features can significantly affect the estimation of the correlation

between asset returns.

Many measures capture the correlation (or comovement) of returns. The most fre-

quently used of these measures is the Pearson product moment correlation; however,

this type of linear correlation is significantly distorted for fat-tailed returns, showing a

much higher degree of interdependence than actually exists, especially in crisis periods

when many assets tend to have larger volatilities. The key issue here is how to overcome

volatility fluctuations, which are seemingly a major source of the fat-tailedness of return

distributions. In this regard, conditional volatility models such as the generalized au-

toregressive conditional heteroskedasticity (GARCH) model provide a useful method with

which to address the conditional volatility of fat-tailed asset returns.

Another concern is the possible dynamic changes in correlation between asset returns.

The choice of dynamic or static correlation is rather an empirical issue that depends on the

actual return data. A more complicated dynamic correlation model can involve a static

model as a special case; however, such a complicated model requires more resources for

model fitting. The choice should thus be carefully made by considering the empirical fea-

tures of the return data as well as the computational burden of the parameter estimation.

Estimating the correlation of fat-tailed asset returns is already a difficult task that only

becomes more challenging when the number of assets is large.

In this study, we empirically examine how the correlation between individual Japanese

stock returns changes over time. A correlation structure exists between different asset
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classes such as stocks and bonds as well as between the individual assets that belong to

the same asset class. We focus on the latter case to cope with a higher level of dimen-

sion, although our research can be extended easily to the former case. We aim to gather

useful information regarding the correlation between individual stocks through empirical

analyses of stock returns by using a multivariate GARCH (MGARCH) model with dy-

namic conditional correlation (DCC–GARCH hereafter). Specifically, we propose using

a dimension reduction method to build a set of sample portfolios to observe the condi-

tional correlation of returns. Our approach employs clustering techniques of time series

data to form homogeneous groups of stocks. The analysis includes assessing the dynamic

changes in within-group and between-group correlations to infer the underlying correlation

dynamics in the stock market. We also quantitatively evaluate the impact of changes in

correlation intensity on the risk of sample portfolios.

Our three research questions are as follows:

• Does the correlation of stock returns change over time?

• More specifically, does correlation intensity change significantly during crisis periods?

– We focus on the collapse of Lehman Brothers in 2008 (the Lehman shock here-

after) and the Great East Japan Earthquake in 2011 (the Great Earthquake

hereafter) as the crisis events.

• Do correlation changes significantly affect portfolio risk?

The remainder of this paper is organized as follows. Section 2 focuses on the develop-

ment of MGARCH models with conditional correlation in the current body of knowledge

on this topic. In Section 3, we discuss the difficulties of modeling a high-dimensional cor-

relation matrix of fat-tailed returns; then, our modeling approach based on DCC–GARCH

and the method used to build a sample portfolio that comprises selected individual stocks

are described. In Section 4, we fit the model to the return data of the sample portfo-

lios presented in Section 3. The estimation results of the DCC–GARCH models are also

summarized. In Section 5, the dynamic changes in correlation intensity are examined for

every sample portfolio, focusing on correlation changes during crisis periods. Further, the

impact of correlation changes on the risk amount of the sample portfolios in terms of VaR

and Expected Shortfall (ES) is analyzed by using numerical simulations. In Section 6,

several technical discussion points are listed after the summary of our analysis. Section 7

concludes and offers possible directions of future work.
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2 Literature review

Bollerslev [1986] is the seminal paper on the univariate GARCH model, which generalized

the ARCH process introduced in Engle [1982] to allow for past conditional variances in the

current conditional variance equation. The numerous variants of the GARCH model, such

as IGARCH (Engle and Bollerslev [1986]) and EGARCH (Nelson [1991]), can accurately

replicate time-varying volatility and volatility clustering to describe the dynamics of the

dependency of conditional volatility.

In addition to volatility modeling, the comovement of financial returns is of great

practical importance. When extending univariate GARCH to MGARCH, the key issue is

how to model the conditional covariances of asset returns. Importantly, the conditional

covariance matrix has to be positive definite at any time. Because such a theoretical

restriction complicates the estimation of the model, building a flexible but parsimonious

model is therefore crucial.

The first generation of MGARCH is the VECH–GARCH model proposed by Boller-

slev et al. [1988], which is a natural multivariate extension of univariate GARCH. VECH–

GARCH enables flexible multivariate modeling, but the number of parameters increases

rapidly as the number of assets increases. The BEKK–GARCH model proposed by Engle

and Kroner [1995] ensures positive definiteness; however, it still suffers from the high di-

mensionality problem. FACTOR–ARCH-type models (Engle et al. [1990], Van der Weide

[2002], and Lanne and Saikkonen [2007]) assume common factors that generate the condi-

tional covariances for dimension reduction. The second type of MGARCH model decom-

poses the conditional covariance matrix of returns into two parts: the conditional volatility

and the conditional correlation of the residuals. Bollerslev [1990] first introduced a class

of constant conditional correlation (CCC) models, in which conditional correlation is as-

sumed to be constant over time, with only conditional volatility time-varying.

Engle [2002] generalized the CCC model to make the conditional correlation matrix

time-varying as in the DCC one. In particular, the author introduced a proxy variable

with a GARCH-type structure to establish the positive definiteness of the correlation

matrix, whereas VC–GARCH (Tse and Tsui [2002]) formulates the correlation matrix as a

weighted sum of past correlations. The advantage of DCC–GARCH is that the dynamics

of the correlation matrix are described by a small number of parameters, assuming the

same correlation dynamics for all assets. Hence, DCC–GARCH may be applied to large

portfolios.
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This benefit of DCC, however, becomes too restrictive when the assumption of the

same correlation dynamics for all assets does not hold true and thus many variants of

DCC have been proposed. For instance, BDCC (Block DCC, Billio et al. [2006]) has

a block-diagonal structure to DCC assuming different correlation dynamics; AG–DCC

(asymmetric generalized DCC, Cappiello et al. [2006]) incorporates the asymmetry of the

dynamics of the proxy variable; STCC (Silvennoinen and Teräsvirta [2005, 2009]) and

regime-switching DCC (Pelletier [2006]) introduce smooth change and regime-switching

mechanisms to DCC dynamics, respectively; and CDCC (consistent DCC, Aielli [2011])

introduces a corrective step in the proxy variable dynamics to overcome the estimation bias

problem of DCC. Moreover, Aielli and Caporin [2013, 2014] proposed a clustering method

to reduce the complexity of large-scale DCC–GARCH models, in which the GARCH model

parameter matrices depend on the clustering of individual assets.

Finally, other extensions of DCC–GARCH offer a flexible choice of non-Gaussian dis-

tributions as the residual distribution. As mentioned in Lee and Long [2009], the copula-

based method can be applied to many MGARCH models including DCC and CCC to link

the marginals. The research presented by Jondeau and Rockinger [2006], Patton [2006],

and Lee and Long [2009] are just some of the many theoretical and empirical studies in

the literature.

3 Modeling the correlation of stock returns

3.1 Fat-tailedness and the correlation of stock returns

This study examines the correlation of individual asset returns within the same asset

class, namely Japanese stock returns. In particular, we aim to observe how the correlation

between individual stock returns changes over time, as mentioned in Section 1. More than

3,000 stocks are listed on the Tokyo Stock Exchange, with at least 1,700 of these listed

on the First Section that includes larger stocks (blue chips). Here, we are only interested

in the whole market portfolio that covers every stock listed. However, because handling a

correlation matrix of returns at such a large scale is challenging, some dimension reduction

operation is required before carrying out the empirical analysis.

When modeling the correlation structure of asset returns, a factor model approach

is frequently employed in which one or multiple factors are defined according to exter-

nal or internal information on the financial asset. Dimension reduction can be easily

accomplished in factor models as the pairwise correlations between individual assets are
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attributed to their responses to the common factor(s). However, the most pressing prob-

lem of this approach is identifying the factor. CAPM or Fama and French n-factor models

are good examples of the factor model approach for stock price modeling. The market

factor here can be defined as the mean return of all stocks or a stock price index (e.g., the

Nikkei225). Nevertheless, those factors may not be sufficiently reliable to approximate the

correlation of asset returns.

A more direct approach to observe the correlation structure is thus to calculate a sample

linear correlation matrix of asset returns during a defined observation period. Although the

sample linear correlation matrix approach may suffer from insufficient positive definiteness,

especially in large portfolios, several methods have been proposed to recover positive

definiteness including a shrinkage estimator (Ledoit and Wolf [2003]). Nonetheless, the

sample linear correlation matrix can still be significantly distorted by the fat-tailedness of

returns. An MGARCH model is useful to work around this problem; here, fat-tailedness

is removed, or significantly reduced, by controlling volatility fluctuation. In the context of

the CCC– or DCC–GARCH models, the correlation matrix is defined as the correlation of

standardized residuals, which is independently and identically distributed (i.i.d.). Thus, we

use DCC–GARCH to model the conditional correlation matrix of Japanese stock returns.

3.2 DCC–GARCH

Let (Ω, F , {F t}, P) be a filtered probability space equipped with the filtration {F t} of

its σ-field F on a set Ω and probability measure P on (Ω, F). Consider multiple asset

returns as a stochastic vector process rt that is assumed to be described as

rt = E (rt|F t−1) + εt (1)

where E (·|·) denotes a conditional expectation operator with respect to the measure P,

F t−1 is the filtration (information set) at time t − 1, generated by the observed series rt

up to and including t − 1, and εt is a vector of unpredictable residuals.

Assuming the predictable conditional (time-varying) mean and volatility of rt, equation

(1), is written as1

rt = µt + H
1/2
t zt,

µt = E (rt|Ft−1) , E (zt) = 0, Var (zt) = IN

(2)

where µt is a vector of conditional means at time t, Ht is an N × N (N is the number

of returns) symmetric positive definite matrix, which is a conditional variance–covariance
1 The description of MGARCH models follows Bollerslev [1990] and Ghalanos [2014] with some modifica-

tions.
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matrix of rt, Var (·) is a variance operator, and zt is a vector of i.i.d. standardized

residuals, the mean and variance of which are 0 and IN : an identity matrix of order N ,

respectively.2 Further, zt follows a multivariate distribution, although this distribution is

only specified when estimating the model.

As for the matrix process Ht, there are generally two approaches, namely modeling the

conditional covariance matrix Ht directly (e.g., VECH or BEKK models) and modeling

the conditional correlation matrix indirectly by using a correlation matrix (e.g., CCC and

DCC models). We adopt the latter approach in which only the variance part of Ht is

modeled explicitly.

Three factors must be considered when running a multivariate model: the interactions

of the individual mean processes and volatility processes as well as the correlation structure

of the standardized residuals. For the interactions mentioned above, we follow the standard

simplified settings frequently used to reduce the computational burden of the parameter

estimation. The two sub-models are then implemented as the mean and volatility models.

Mean model

The conditional mean process is modeled separately for each stock return to allow us to

estimate each autoregressive moving average (ARMA) model independently as

rt = µ +
P∑

i=1
Airt−i +

Q∑
j=1

Bjεt−j + εt (3)

where Ai and Bj are diagonal matrices.3

Variance model

The equation of the volatility dynamics comprises a simple vector form of the univariate

GARCH(p, q) model as

ht = ω +
q∑

i=1
Siεt−i ⊙ εt−i +

p∑
j=1

T jht−j (4)

2 The variance of rt is confirmed to be Ht as

Var (rt|Ft−1) = Vart−1 (rt) = H
1/2
t Vart−1 (zt)

(
H

1/2
t

)′

= Ht

where Var (·|·) is a conditional variance operator. Note that Ht is assumed to be deterministic in the
context of the GARCH model. The correlation of rt is equivalent to that of zt, since H

1/2
t does not

affect the correlation.
3 The degree (P, Q) can take different values for every stock return, while the values and diagonal elements

of Ai and Bi are determined empirically.
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where ⊙ denotes the Hadamard operator (the entry-wise product), ht is the diagonalized

matrix of Ht, and both Si and T j are diagonal matrices.4 Note that equation (4) only

models the variance of rt as ht; the covariance of rt is not modeled. Note also that equation

(4) with the diagonal coefficient matrices means that there are no inter-temporal volatility

spillover effects between stock returns.5 While this assumption enables us to estimate the

univariate GARCH model separately, such a simplification may be too restrictive and can

lead to a biased estimation result. This point is the major drawback of this modeling

approach.

Further, it is possible to adopt a more flexible GARCH structure; however, we adopt

the simple linear GARCH model to reduce the model fitting burden for a large number of

stock returns.

The above-mentioned mean and variance models can be estimated by fitting the uni-

variate ARMA–GARCH model to historical data on individual stock returns.

Correlation structure (CCC and DCC)

The third part to be implemented is the correlation of the residuals zt, which is the same

as the correlation of returns rt, as mentioned earlier. The CCC of Bollerslev [1990] is

a typical unconditional correlation model, in which an N × N positive definite constant

correlation matrix R is defined as

Ht = DtRDt =
[
ρkl

√
hkk·thll·t

]
k, l=1, ..., N

(5)

where Dt is a diagonal matrix with the elements of Ht as
(√

h11·t, . . . ,
√

hNN ·t
)

and ρkl

is the unconditional correlation of the returns between stock k and l.

The DCC–GARCH model proposed by Engle [2002] replaces R in the CCC with

dynamic correlation Rt:

Ht = DtRtDt =
[
ρkl·t

√
hkk·thll·t

]
k, l=1, ..., N

(6)

where ρkl·t is the conditional correlation of returns between stock k and l at time t. DCC

has been widely used to implement dynamic correlation in MGARCH.

4 The degree (p, q) can take different values for every stock return, while the values and diagonal elements
of Si and T i are determined empirically.

5 We have not defined H
1/2
t in equation (2). The decomposition from Ht to H

1/2
t is apparent for the

diagonal matrix ht.
√

ht is defined as the volatility of rt.
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Correlation dynamics

DCC is more flexible than CCC; however, the number of parameters in Rt increases

significantly when the number of stocks becomes large. Moreover, because the correlation

matrix can change depending on time t, ensuring that every correlation matrix satisfies

the positive definite condition throughout the entire period is a challenge. Engle [2002]

satisfied this constraint by modeling a dynamic correlation process with the proxy variable

Qt.6 The proxy variable Qt is modeled as

Qt = Q̄ +
m∑

i=1
ai

(
zt−iz

′
t−i − Q̄

)
+

n∑
j=1

bj

(
Qt−i − Q̄

)

=

1 −
m∑

i=1
ai −

n∑
j=1

bj

 Q̄ +
m∑

i=1
aizt−iz

′
t−i +

n∑
j=1

bjQt−j

(7)

where ai and bj are non-negative scalars and Q̄t is the unconditional matrix of the stan-

dardized residual zt. The DCC model with time lags in conditional correlation is described

as DCC (m, n). The parameter ai shows the sensitivity of Qt to previous shocks, while

the parameter bj represents the persistence of correlation in previous periods. The concept

of dynamic modeling is similar to volatility process modeling in the GARCH model. The

correlation matrix Rt is then obtained by rescaling Qt such that,

Rt = diag (Qt)
− 1

2 Qtdiag (Qt)
− 1

2 . (8)

The positive definiteness of Qt as well as Rt is ensured by the following conditions:

ai ≥ 0, bj ≥ 0,
m∑

i=1
ai +

n∑
j=1

bj < 1. (9)

For more details on the DCC–GARCH, see Engle and Sheppard [2001] and Engle [2002].

An inconsistency problem exists when estimating Q̄ in equation (7) with variance

targeting. Aielli [2011] pointed out that Q̄ is not the unconditional covariance matrix of

zt, as E
[
ztz

′
t

]
= E [Rt] ̸= E

[
Q̄

]
. Instead, the author proposed CDCC, which includes a

corrective term for bias adjustment.7

While DCC–GARCH models have many technical limitations,8 the parsimonious pa-

rameterization of the dynamic correlation is helpful for our empirical study. We hence

choose unrestricted scalar DCC–GARCH to model the conditional correlation, even though

improved estimation performance can be expected by applying more complicated models.
6 We follow the notation of the DCC–GARCH of Engle [2002] with some modifications.
7 Some studies have already addressed this issue, including Engle and Kelly [2012].
8 The limitations of DCC–GARCH models are discussed in more detail in Caporin and McAleer [2013]
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4 Model fitting and estimation results

4.1 Building reduced size sample portfolios

Data on stock returns

Before discussing our approach for fitting the DCC–GARCH model, we first identify the

stock return data and define the whole universe of stocks. The data frequency is daily; the

period runs from the beginning of January 2008 to the end of December 2013 to include

the two major financial shocks examined herein: the Lehman shock (2008) and the Great

Earthquake (2011). The whole universe of stocks comprises those listed on the First

Section of the Tokyo Stock Exchange that have complete daily price data (at close) for

the given period. These selection criteria have been introduced to avoid any inconsistency

in the time series when calculating the correlations. The total number of stocks in the

universe is 1,354 in 33 sectors. Price data are converted into daily log-returns.

Dimension reduction of the correlation matrix

To achieve unbiased observations, we need a data set that covers all the stocks in the uni-

verse such as a market portfolio rather than one that focuses on specific stocks. However,

using such a large portfolio complicates the correlation analysis, since a 1,300 × 1,300

correlation matrix is too large to fit a single DCC–GARCH model. We hence propose

creating sample portfolios to reduce the magnitude of the data. Specifically, we overcome

the complexity of a large-scale correlation structure not by building a more generalized

and complicated model but by reducing the data structure to apply a simple but robust

model. The main issue here is the selection of individual stocks to be included in the

sample portfolios. Some stock index portfolios such as the Nikkei225 are options, but

more flexible choices with wider coverage would be preferred.

To create reduced size sample portfolios, one approach would be to divide the whole

universe into several homogeneous groups. This approach is similar to common factor mod-

eling, but without the need to identify those factors. If such a grouping were available,

observing changes in within-group and between-group correlations in a reduced dimen-

sion could be possible. Further, the groups would not only be homogeneous but also be

balanced in size to avoid bias and concentration problems.

The standard sector classification that comprises 33 sectors is frequently used to cat-

egorize stocks. Sample portfolios can be created by selecting representatives from these

33 sectors based on certain criteria. Such a sector classification approach, however, has
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a fundamental problem in that the distribution of group size is significantly unbalanced.

Moreover, it is not necessarily consistent with the comovement of stock returns, since

the classification is based on the definitions of the business sectors. The use of sector

classification to select sample portfolios may thus cause bias to arise.

Against this background, a more data-oriented grouping of stock returns was studied

in Isogai [2014]. Fourteen homogeneous and balanced groups of stocks were identified by

applying correlation clustering based on complex networks theory as shown in Table 1.

Homogeneity means that the stocks grouped together show a higher level of correlation

than those that belong to different groups. The correlation matrix is calculated by fitting

the CCC–GARCH model to avoid the distortion effect caused by the fat-tailedness of

returns. Two major categories of groups—cyclical and defensive—are also identified and

adopted to create the sample portfolios. For more detailed information on the clustering

algorithm, see Isogai [2014].9 Two types of sample portfolios are created based on this

grouping.

9 The total number of stocks is slightly smaller in this study than in Isogai [2014] because some stocks
had been delisted from the Tokyo Stock Exchange. The data period has also been updated.
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Group portfolios

The first type of sample portfolio is a set of partial portfolios, which covers only specific

groups identified by the correlation clustering mentioned above. The large-scale single

correlation matrix is separated into 14 diagonal blocks. The 14 sample portfolios are then

created based on the grouping to observe within-group dynamic correlation. The number

of stocks in these 14 groups is around 100 on average, which is still large for estimating

the dynamic correlation of returns when using the DCC–GARCH model. Thus, a second

round of dimension reduction is required to specify the individual stocks to be included in

each sample portfolio.

To identify and select the stocks in each group, we adopt the eigenvector centrality

measure, which is frequently used in network analyses. Network centrality is one of the

structural characteristics of a node in a network; an individual with a higher centrality

measure is often more likely to be a leading individual according to network theory.10 The

eigenvector centrality of a node is defined as an element of the eigenvector of a network

adjacency matrix with the maximum eigenvalue. Here, a node corresponds to a stock,

while a network corresponds to the group to which the stock belongs. The eigenvector

centrality measure is designed to provide a higher score to a node that has more links to

a node with many links. In the context of stock returns, the eigenvector centrality of a

stock is higher when it is correlated more with a stock that is highly correlated with other

stocks.

Technically, the centrality measure is generally assumed to take a positive value.11 Our

network adjacency matrix is designed to be a non-negative regular matrix; therefore, we

can safely define the eigenvector centrality measure. For more detailed information on the

eigenvector centrality measure, see Newman [2008].

Finally, the stocks that have the 20 largest eigenvector centrality values are selected

to create a sample portfolio for each group. The coverage of the total number of stocks

selected is about 20% of the total stocks.12 The 14 individual group models are built on the

selected 20 stocks. We define these sample portfolios as group portfolios, the correlation

matrices of which are all of equal size. Note that the selection of the stocks depends on

10 Typical centrality measures include degree centrality, closeness centrality, and betweenness centrality.
11 The Perron–Frobenius theorem ensures that the eigenvector centrality measure takes a positive number.

This theorem ensures that there is a unique eigenvector of matrix A with the largest positive eigenvalue;
further, the eigenvector is positive and any non-negative eigenvector of A is a positive multiple of the
vector, on condition that A is a non-negative regular matrix.

12 The 20 largest values were used by balancing the coverage of stocks in the universe and the complexity
of the parameter estimation and evaluation.
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the centrality measure used; therefore, other centrality measures may suggest a different

set of stocks.

Market portfolio

The second type of sample portfolio covers the entire market. To reduce the dimensions

of the correlation matrix of the whole universe, an equally weighted stock portfolio is first

created for each group. Note that each group portfolio includes all of the stocks that

belong to the group at this stage. Then, the return index of each portfolio is calculated

as the mean of the individual stock returns in each group. The 14 return indexes can be

regarded as the underlying factors of the development of the stock market, since any stock

could belong to one of these 14 groups. Lastly, a single sample portfolio is created as an

equally weighted portfolio of the 14 return indexes to observe market-wide or between-

group (between-factor) dynamic correlation.

Non-constant correlation test

As mentioned in Section 1, the choice of dynamic or static correlation is rather an empirical

issue that depends on the actual return data. Before delving into the details of the

DCC–GARCH model estimation, it is informative to examine if the static correlation is

statistically acceptable for our data.

In that context, we perform the non-constant correlation test proposed by Engle and

Sheppard [2001] for the market portfolio and group portfolios. The GARCH(1, 1) model,

which is uniformly assumed to be a typical GARCH model, is first fitted to the individual

return data on every portfolio to calculate standardized residuals. The constant correlation

is then calculated from the standardized residuals. The null hypothesis (H0) is Rt = R̄.

The test is based on an artificial regression of the outer products of the residuals on a

constant and lagged outer products to explore if there is any time dependency between

Rt and Rt−1, · · · , Rt−i. The numbers of lags are set to 5 and 10.

Table 2 shows the test results. In many cases, we can safely reject the null hypothesis

in favor of the dynamic correlation model rather than the static one. This result provides

strong motivation to estimate the DCC–GARCH model with a more detailed specification,

although the test assumes a simple univariate GARCH(1, 1) model and has some technical

limitations.13

13 Engle and Sheppard [2001] discussed the technical difficulties associated with testing the null of constant
correlation against an alternative of dynamic correlation. More recently, McCloud and Hong [2011]
proposed a specification test for the constant and dynamic structures of conditional correlations, which
is based on a generalized spectrum approach. Other testing approaches and their technical limitations

13



Table 2: Constant correlation test

5 lags 10 lags
Stat P-value Stat P-value

Market 14.800 0.022 18.567 0.069

Cyclical GA 22.618 0.001 24.566 0.011
GB 39.777 0.000 65.617 0.000
GC 11.613 0.071 30.414 0.001
GD 35.870 0.000 44.261 0.000
GE 46.986 0.000 52.558 0.000
GF 60.859 0.000 64.939 0.000

Defensive GG 29.062 0.000 32.831 0.001
GH 12.087 0.060 22.925 0.018
GI 18.305 0.006 27.586 0.004
GJ 22.597 0.001 30.010 0.002
GK 59.057 0.000 64.219 0.000
GL 84.126 0.000 87.503 0.000
GM 93.684 0.000 105.109 0.000
GN 28.176 0.000 39.241 0.000

Note: “Stat” is the test statistic of the non-constant correlation test proposed by Engle and
Sheppard [2001], which is asymptotically distributed as a chi-squared distribution. P-value
is calculated for the null hypothesis (H0): Rt = R̄. For more details of the test, see Engle
and Sheppard [2001].

4.2 Modeling the dependency of returns using the copula function

To estimate the parameters of the DCC–GARCH model by using MLE, the likelihood

function needs to be specified. Two approaches can be used to build the conditional

joint distribution of return rt in equation (2). The first approach assumes a multivariate

distribution (e.g., the multivariate normal) to specify the density function to maximize the

log-likelihood with respect to the model parameters. In the case of the normal distribution,

the maximization process can be simplified by separating the first-stage estimation of the

individual GARCH models from the second-stage DCC parameter estimation. However,

because the assumption of a normal distribution might not apply in every case, we select

an alternative approach based on the copula function to model the dependency structure

of the residuals.

The concept of the copula of an arbitrary distribution is a function to connect the

marginal distributions to a joint distribution. The joint distribution function F (x1, ..., xn)

of a vector of variables X = (X1, . . . , Xn) with marginal distribution functions

are also summarized there.

14



F1 (x1) , . . . , Fn (xn) can be represented by the copula function C (·) as

F (x1, ..., xn) = C (F1 (x1) , ..., Fn (xn)) (10)

under absolutely continuous margins (Sklar’s Theorem, Sklar [1959]). Considering that

x1, ..., xn = F −1
1 (u1) , ..., F −1

n (un), the copula is obtained uniquely as

C (u1, ..., un) = F
(
F −1

1 (u1) , ..., F −1
n (un)

)
(11)

where F −1
i (·) is the quantile function of the i-th marginal distribution. Consequently, the

joint density function f (x) of X can be described as

f (x1, ..., xn) = c (F1 (x1) , ..., Fn (xn))
n∏

i=1
fi (xi) (12)

where fi(xi) is the marginal distribution of xi and c (·) is the density function of the copula.

The joint density of returns rt is defined as a combination of the copula density and the

density of the i.i.d. residual zt, as described by equation (12).

As for the marginal distribution of the individual residuals zt, we assume one of the

(standardized) normal, Student t, and skew t distributions.14 The parameter set to be

estimated for the i-th return includes the ARMA–GARCH parameters as θAG
i and distri-

butional parameters of zi as θi. The parameters in θi depend on the distribution type: θi

includes ξi and νi for the skew t, νi for the Student t, and none for the normal, where νi

and ξi are the shape and skew parameters, respectively. As such, the use of the copula

enables the flexible modeling of the marginal distributions. Further, the separation of

the fat-tailedness of residuals and tail dependency between them enables a more precise

parameter estimation. On the contrary, the multivariate distribution approach assumes

the same marginal distribution for all stocks.

The dependence structure of the marginals is modeled by using a copula; specifically,

we select the Student t-copula, since we assume possible tail dependency between the

residuals. The Student t-copula can handle tail dependency, whereas the Gaussian copula

cannot. The Student t-copula is defined as

CSt (u|ν, R) = tν·R
(
t−1
ν (u1) , . . . , t−1

ν (un)
)

(13)

where R is a correlation matrix, ν is a shape parameter, tν ( ) is the cdf of the univariate

Student t-distribution, and tν·R is the cdf of the multivariate Student t-distribution. The

14 We use the skew t-distribution defined by Fernández and Steel [1998].
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density function of the Student t-copula is defined as

cSt (u|ν, R) =
Γ

(
ν+n

2
) (

Γ
(

ν
2

))n
(
1 + ν−1q′R−1q

)−(ν+n)/2

√
|R|

(
Γ

(
ν+n

2
))n Γ

(
ν
2

) ∏n
i=1

(
1 + q2

i
ν

)−(ν+1)/2 (14)

where q = (q1, ..., qn) is defined such that qi = t−1
ν (ui) for i = 1, . . . , n. For more details

on the Student t-copula, see Demarta and McNeil [2005].

Then, the conditional joint density of returns rt can be defined as a combination of the

copula density and density of the i-th residual zi·t based on equation (12), substituting N

(the number of stocks) for n:

f
(
rt|µt,

√
ht, Rt, ν̄

)
= cSt (u1·t, . . . , uN ·t|Rt, ν̄)

N∏
i=1

1√
hi·t

fi·t (zi·t|θi) (15)

where ui·t = Fi(ri·t|µi·t,
√

hi·t, θi), cSt (·) is the Student t-copula density defined in equation

(14), and ν̄ is the shape parameter of the Student t-copula.15

The log-likelihood function LL (θ|rt) is given by the density function (15) as

LL (θ|rt) = LLR (Rt, ν̄)

+LLV

((
θ1, µ1·t,

√
h1·t

)
, . . . ,

(
θN , µN ·t,

√
hN ·t

))
= LLR (a1, . . . , aN , b1, . . . , bN , ν̄)

+LLV1

(
θ1, θAG

1

)
+, . . . , +LLVN

(
θN , θAG

N

)
(16)

where θ is the whole parameter set, LLR (·) is the Copula–DCC part with the DCC

parameters (a, b) as in equation (7), and LLVi (·) is the univariate ARMA–GARCH part

with a set of parameters θAG
i for stock i (i = 1, . . . , N).

As such, the log-likelihood can easily be separated into two parts when maximizing∑p
t=1 LL (·), where p is the length of the time series data: the joint Copula–DCC part and

the individual univariate GARCH part. The two parts of the log-likelihood function can

be safely maximized independently without any shared parameters between them. Thus,

the individual ARMA–GARCH parameters as well as their distributional parameters are

estimated first for the individual stocks by maximizing LLV i; then, the Copula–DCC

parameters are estimated by maximizing LLR.

4.3 Estimation results of DCC–GARCH

The DCC–GARCH model is simply fitted to the market portfolio and 14 group portfolios,

independently. When estimating the DCC–GARCH model for the market portfolio, the
15 1√

hi·t

in equation (15) is the Jacobian of the variable transformation between rt and zt.
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univariate ARMA–GARCH models are first fitted to the individual group return indexes

defined in Section 4.1 based on the two-step estimation approach described in Section 4.2.

The ARMA–GARCH lags and residual distribution should be determined to identify the

model (model selection). The multiple models with different lag patterns and choices of

residual distribution are then estimated by using MLE, and the model with the highest

AIC is selected for every return index. In the second step, the DCC lags are determined

similarly by selecting the model with the highest AIC from the alternatives. Specifically,

the Copula–DCC model is fitted to the standardized residuals to estimate the DCC model

parameters by using MLE. The whole likelihood maximization process shown in equation

(16) is thus completed. Similar to the market portfolio, the univariate ARMA–GARCH

model is first fitted to the individual stock returns when estimating the DCC–GARCH

model for the group portfolios. The remaining estimation process is the same as that for

the market portfolio.

Table 3 shows the estimation results for the DCC parameters.16 The results of the

univariate ARMA–GARCH model for the market portfolio are summarized in Table 4 (for

the cyclical groups) and Table 5 (for the defensive groups). The estimation results of the

univariate ARMA–GARCH model for the group portfolios are omitted because of space

limitations.

16 We used the R (http://cran.r-project.org/) package “rmgarch” (Ghalanos [2014]) for the parameter
estimation.
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The DCC order (m, n) in equation (7) is almost (1, 1) or (1, 2) as shown in Table 3.

The lag order m for ai in equation (7) is 1 in all cases. The parameter ai indicates the

degree of responses of Qt to the past covariances of shocks in equation (7). The result

that the order m = 1 means that the effect of past shocks on Qt, and hence the correlation

Rt, do not last longer. The lag order n for bj is 1 for the market portfolio and 1 or 2

for both the cyclical and the defensive group portfolios. The parameter bj indicates the

degree of persistence of Qt as well as Rt. The order n = 1 (or 2) corresponds to the DCC

parameter b1 (and b2) in Table 3.

The DCC parameters a1 are all non-zero positive numbers with enough significance,

but are very small numbers (< 0.02) compared with b1 and b2. Both b1 and b2 take

relatively large numbers. We calculate b1 + b2 to compare the relative persistence of

the sample portfolios; b1 + b2 is higher than 0.9 for some of them including the market

portfolio.17 Hence, we can say that DCC is more realistic for the sample portfolios than

CCC is, which assumes that ai = bj = 0 in equation (7). These findings are similar to

those of previous studies that have estimated DCC models.

The DCC parameter estimates, especially b1 and b2, vary widely between the groups,

implying that the correlation dynamics may differ across them. Indeed, the parameter

estimates vary even within the cyclical and defensive groups. We explore the pattern of

correlation changes in every group more in detail in Section 5.2. The shape parameters of

the Student t-copula range between about 14 and 29. These relatively high values mean

that the tail dependency of the standardized residuals seems to be limited, if any.

Tables 4 and 5 summarize the estimation results of the univariate ARMA–GARCH

model for the market portfolio. The parameter set depends on the individual ARMA–

GARCH lag degrees and distribution types of standardized residuals. The distribution is

selected to be the skew t in most instances with the Student t in one group based on the

AIC. The estimates of the shape parameters of the skew t and Student t show values below

10 in many of the defensive groups, but higher values in many of the cyclical groups. A

lower shape value means that the standardized residuals still exhibit fat-tailedness even

after the fat-tailedness of stock returns is reduced by adjusting the volatility by using

GARCH. An important advantage of the copula approach is that it can handle such

heterogeneities in marginal distributions very well.

17 The values of a1+b1+b2 are all below 1, which indicates that the condition of equation (9) is satisfied.
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We conducted goodness of fit tests to ensure that the model assumptions are satisfied.

Specifically, the selection of the distribution type (shown as “Cdist” in Table 4) of the

standardized residuals should be confirmed. The absence of the serial correlation of the

standardized residuals should also be ensured, since the i.i.d. condition is assumed in

equation (2). We performed the Anderson–Darling test for the goodness of fit of the

selected distribution and the Ljung–Box test for the auto-correlation. These two tests are

portmanteau tests in which only the null hypothesis is well specified.

Table 6 shows the test results for the market portfolio. In every case, the Anderson–

Darling test results with high p-values show that the null hypothesis cannot be rejected

at the 10% significance level (or much higher significance level in most cases). We can

say that there is no significant misspecification with regard to the distribution of the

standardized residuals. As for the Ljung–Box test results, the null hypothesis of no serial

correlation cannot be rejected at the 10% significance level in most cases (excluding GF).

These test results suggest that the model assumptions are generally well satisfied.

We also conducted the same tests for the group portfolios. No significant misspecifi-

cation or serial correlation problem was detected. The test results are omitted owing to

space limitations.

Further, to confirm the stability of the estimation result of the DCC–GARCH model,

we fit the same model to two sub-period data sets of the market portfolio that have

almost the equal numbers of trading days. We find that the parameter estimates differ

little between the whole period and sub-period cases. The same check is then performed

for the group portfolios and the results are similar.

5 Dynamic changes in correlation intensity

5.1 A measure of correlation intensity

The parameters of the DCC–GARCH were estimated for the market portfolio and group

portfolios presented in Section 4. In this section, we calculate DCC Rt in equation (8).

Because one instance of Rt exists at a time, the total number of correlation matrices is

the same as the length of the return series (i.e., larger than 1,300). The dimension of Rt

is 20 × 20 for every group portfolio and 14 × 14 for the market portfolio. It is difficult to

observe the time series development of Rt as it is in matrix form. We hence need a further

dimension reduction of Rt.

The eigenvalues of the correlation matrix can be used as a vector of proxies for the
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Table 6: Goodness of fit test (Market portfolio)

Anderson–Darling test Ljung–Box test
Cdist AD P-value LB P-value

Cyclical GA sstd 0.356 0.891 5.873 0.555
GB sstd 0.510 0.737 8.472 0.293
GC sstd 0.769 0.504 8.175 0.417
GD sstd 0.728 0.536 11.429 0.179
GE sstd 0.345 0.901 8.278 0.407
GF sstd 0.578 0.669 17.617 0.024

Defensive GG std 0.499 0.748 3.341 0.911
GH sstd 0.348 0.898 6.034 0.643
GI sstd 1.096 0.311 6.087 0.638
GJ sstd 1.828 0.114 10.560 0.228
GK sstd 0.248 0.971 9.999 0.189
GL sstd 0.465 0.783 10.131 0.181
GM sstd 0.601 0.647 8.373 0.398
GN sstd 1.296 0.234 10.269 0.247

Note: “Cdist” is the conditional distribution of standardized residual zt in equation (2); “std” and “sstd” stand
for the Student t and skew t distribution, respectively. AD is the test statistics for the Anderson–Darling test
for the null hypothesis (H0) that assumes the conditional distribution as the one specified by “cdist.” A
higher p-value for AD means a lower risk of the misspecification of the conditional distribution. LB is the
test statistics for the Ljung–Box test applied to the standardized residuals. The null hypothesis is that the
data are independently distributed without any observed correlations. The number of lags tested is 10 and
the degree of freedom is adjusted appropriately considering the number of parameters in the model.

correlation intensities on the corresponding axes. A larger eigenvalue indicates a stronger

correlation. The positive maximum eigenvalue of Rt is the proxy for the correlation

intensity on the first axis with the largest variance.18 If the maximum eigenvalue is large

enough, other eigenvalues may have limited influence on the correlation intensity of Rt. In

that case, the time series of the maximum eigenvalues approximate well the development

of the correlation intensity between stock returns.

To answer the first and second research questions, we focus on the time series of the

maximum eigenvalues of Rt.19 We first calculate a series of Rt by using the estimated

DCC–GARCH model for the market portfolio and group portfolios. Then, the time series

of the maximum eigenvalue of Rt are calculated for every sample portfolio.

18 This indicates “the maximum amount of the variance of the variables which can be accounted for with
a linear model by a single underlying factor” (Friedman and Weisberg [1981]).

19 The changes in a correlation matrix have two components: correlation intensity (eigenvalues) and direc-
tion (eigenvectors). We focus on correlation intensity to observe any dynamic changes, assuming that
intensity has a larger influence on portfolio risk. When simulating the quantitative impact of correlation
changes in Section 5.3, changes in both intensity and direction are considered with different Rt.
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Eigenvalues and random matrix theory

Table 7 summarizes the eigenvalues of Rt and unconditional correlation matrix R. The

three largest eigenvalues (EV1, EV2, and EV3) are listed from the whole set. Note that

the length of the corresponding eigenvector is normalized to one for all eigenvalues.20

“Min” and “max” represent the minimum and maximum values of the time series of the

eigenvalues of Rt, respectively. “Uncon” represents the eigenvalue of R. The maximum

eigenvalue (EV1) is much larger than the second and third eigenvalues (EV2 and EV3) for

the market portfolio and for all individual group portfolios, suggesting that EV1 mostly

determines correlation intensity. If so, we can now focus on the time series development

of the maximum eigenvalue as a proxy for correlation intensity.

Random matrix theory provides a reliable measure for distinguishing informative eigen-

values from uninformative ones. The Marc̆enko–Pastur distribution is a good approxima-

tion to the density of the eigenvalues of the correlation matrix of randomized returns.21

We are, however, interested in which of the eigenvalues are meaningful by examining

the largest eigenvalue of the correlation matrix of randomized returns. Importantly, we

must know the threshold value that the maximum eigenvalue of the correlation matrix of

randomized returns can take. If an eigenvalue of a correlation matrix is larger than the

threshold value, we can safely say that it is meaningful.

To determine the threshold, we need to know the limiting distribution of the maxi-

mum eigenvalue of the randomized return correlation matrix with the same size as the

sample correlation matrix. Johnstone [2001] showed that the asymptotic distribution of

the properly rescaled largest eigenvalue of the white Wishart population covariance matrix

is the Tracy–Widom distribution, which provides the limiting distribution of the maximum

eigenvalue, while the Marc̆enko–Pastur distribution suggests the boundary of the distribu-

tion of eigenvalues. For more mathematical details on eigenvalues and the Tracy–Widom

distribution, see Johnstone [2001] and Tracy and Widom [2009, 1996, 1994].

The distribution function of the Tracy–Widom distribution Fβ (·) has three types of

definitions depending on the value of β (1, 2, and 4).22 We set β as 1, which provides the

most conservative (largest) quantile value (to be used as a threshold) compared with the

20 A symmetrical and positive definite matrix Rt has orthonormal eigenvectors.
21 The largest and smallest eigenvalues of a Wishart matrix almost surely converge to the respective

boundaries of the support of the Marc̆enko–Pastur distribution when the true covariance matrix is an
identity matrix (Marčenko and Pastur [1967], Johnstone [2001]).

22 The value of β depends on the assumption of the correlation matrix structure: β = 1 for the Gaussian
orthogonal ensemble, β = 2 for the Gaussian unitary ensemble, and β = 4 for the Gaussian symplectic
ensemble.
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other settings. The distribution function F1 (·) is defined as

F1 (x) = exp
(

−1
2

∫ ∞

x
q (y) dy

)
(F2 (x))

1
2 (17)

F2 (x) = exp
(

−
∫ ∞

x
(y − x) q2 (y) dy

)
(18)

where q is the unique solution to the ordinary differential equation called the Painlevé

(type II) equation. For more exact and complete definitions, see Tracy and Widom [1996].

We calculate the 99th percentile of the Tracy–Widom distribution (β = 1) to identify the

non-random eigenvalues that are beyond this value (Table 7). The 99th percentile value

of the Marc̆enko–Pastur distribution is also calculated for reference.23

Table 7 shows that the minimum value of the maximum eigenvalues (EV1) of Rt during

the data period is larger than the 99th percentile of the Tracy–Widom distribution in all

sample portfolios as indicated by “∗” in the EV1 column. This finding means that these

maximum eigenvalues are all meaningful enough. Next, we find that the minimum value

of EV2 is larger than the 99th percentile of the Tracy–Widom distribution only in one

group portfolio, while the maximum value of EV2 is larger than the threshold only in four

sample portfolios (the market portfolio and three group portfolios). This finding means

that EV2 is only meaningful at certain points of time during the period.24 Finally, the

maximum value of EV3 is larger than the threshold only in one group portfolio. Hence,

EV3 does not convey meaningful information.

23 We use R package “RMTstat” to calculate the density and quantiles of the Tracy–Widom and Marc̆enko–
Pastur distributions.

24 EV2 is only meaningful in GL (one of the defensive groups), including Electric Power and Gas. GG (one
of the defensive groups), including Banks, has the largest maximum of EV1, which implies very strong
correlations in regional banks.
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5.2 Dynamic changes in maximum eigenvalues

The time series of the maximum eigenvalue of a conditional correlation matrix Rt reveals

that the correlation intensity changes dynamically in the market portfolio and group port-

folios. This means that both the between-group and the within-group correlations of stock

returns change over time. We next describe the changes in the cyclical and defensive group

portfolios as well as the market portfolio more in detail.

Cyclical group portfolios

Figure 1 depicts how the correlation intensities of the cyclical groups change over time.

There are two charts for every group in Figure 1. The top chart shows the time series de-

velopment of the maximum eigenvalues of Rt as a proxy measure for correlation intensity.

The bottom chart shows the mean volatilities, calculated as the mean of the conditional

volatilities of individual stock returns estimated by using the univariate GARCH model.

The two dotted vertical lines indicate the trading date closest to the Lehman shock and

Great Earthquake in that order.

Overall, correlation intensity changes dynamically in every group. Sharp increases

in within-group correlation intensity are observed after the Lehman shock and Great

Earthquake, with sharp increases in volatility observed as well. The differences between

the two events, however, vary by group. While the persistence of increased correlation

intensity as well as mean volatility is observed in many groups, the degrees of persistence

differ.

In groups GA, GB, and GC, for example, mean volatility is much higher after the

Lehman shock than it is after the Great Earthquake. These groups include stocks in Elec-

tric Appliances and Transportation Equipment, both of which are more export-oriented

sectors.25 The larger increases in volatility suggest that the stock returns in these groups

were affected more by the overseas shock. Further, the maximum eigenvalues increased

significantly after both events; however, their peak levels are not necessarily higher after

the Lehman shock compared with after the Great Earthquake. In GC, the maximum

eigenvalue is the highest after the Great Earthquake, whereas the peak levels in GA and

GB are similar for the two events.

By contrast, in GD, GE, and GF, which are relatively less export-oriented, mean volatil-

ity increased markedly after both events. The maximum eigenvalue also increased after

25 For more details on the correspondence between the groups and business sectors, see Table 4 of Isogai
[2014].
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both events in GD and GE, while the degree of increase after the Great Earthquake was

limited in GF.26 In summary, the pattern of changes in correlation intensity seems to be

significantly different by group.

Defensive group portfolios

Figures 2 and 3 show how the correlation intensity of the defensive groups changes over

time. The maximum eigenvalue of Rt changes dynamically in every group as observed

in the cyclical groups. Sharp increases in within-group correlation intensity are observed

after both events; mean volatility also increased significantly after both. Comparing the

changes after the two events, the peak levels of the maximum eigenvalues are higher after

the Great Earthquake than they are after the Lehman shock in many groups. This trend

seems to be more evident in the defensive groups, which are less export-oriented, than in

the cyclical groups.

The persistence of increased correlation intensity and mean volatility is observed in

many groups to different degrees. In GH, correlation intensity increased after the Lehman

shock, whereas the maximum eigenvalue decreased significantly after the Great Earth-

quake. GH includes many construction companies like GF in the cyclical category; hence,

the same type of temporal correlation breakdown with a greater impact occurred at that

time. In GL, a typical defensive group, which includes Electric Power and Gas, Pharma-

ceutical, and Foods, a sharp increase in correlation intensity is observed after the Great

Earthquake. In GI (Information and Communication; Land Transportation) and GN (Re-

tail Trade; Foods), sharp increases are also observed after the Great Earthquake. Note that

the mean volatilities of these groups have similar peak levels after both events, excluding

GG (Regional banks) and GH.

Hence, the combination of the observations from the cyclical and defensive groups con-

firms that within-group correlation intensity changes over time, with a significant increase

in crisis periods accompanied by a sharp rise in volatility. Further, we find significant

differences in the changes in correlation intensity as well as volatility across the groups.

Market portfolio

Figure 4 shows the time series development of the maximum eigenvalue of Rt of the market

portfolio as well as mean conditional volatility. Recall that the market portfolio comprises

26 The stock prices of some construction companies in GE showed an unusual pattern after the Great
Earthquake; sharp increases were partially observed, which seemingly contributed to the lower correla-
tion intensity at that time.
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Figure 1: Maximum eigenvalue of the correlation matrix: Cyclical
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Figure 2: Maximum eigenvalue of the correlation matrix: Defensive 1
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Figure 3: Maximum eigenvalue of the correlation matrix: Defensive 2

14 equally weighted index returns calculated from the 14 individual group portfolios, as

mentioned in Section 4.1. The correlation matrix Rt shows the between-group or market-

wide factor correlation of the market portfolio. We see that mean volatility increased

significantly after both events, whereas the peak levels were similar.

Figure 4 clearly shows that between-group correlation changes over time as observed in

the within-group correlations. The market-wide factor correlation also intensified during

crisis periods as in many of the cyclical and defensive groups. Moreover, the maximum

eigenvalue peaked after the Great Earthquake, while the persistence of increased correla-

tion intensity was also observed.

The trends of the maximum eigenvalue after the Lehman shock are complicated. This

value increased considerably after the shock and remained at relatively high levels before

dropping sharply. Nonetheless, the peak level after the Lehman shock is lower than that

after the Great Earthquake. Further, an upward trend is observed after the sharp de-

crease, which lasted for around two years, although a lack of information prevents us from

clarifying the background of these movements.

5.3 Impact of correlation changes on portfolio risk

Having confirmed that both within-group and between-group correlation intensities change

over time, we are now interested in answering the third research question. To evaluate the

influence on the risk of the sample portfolios, we conduct a numerical simulation analysis.
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Figure 4: Maximum eigenvalue of the correlation matrix: Market

The simulation focuses on the changes in correlation intensities and their influence on the

portfolio risk measures: VaR and ES.

Relative changes in correlation intensity and volatility

Table 8 summarizes the maximum eigenvalues of the conditional correlation matrix Rt and

mean volatilities of both the market and the group portfolios. This table also compares the

relative changes in the maximum eigenvalue and mean volatility. The maximum eigenval-

ues are calculated as the mean values during the 20 trading days after the Lehman shock

and Great Earthquake to smooth fluctuations. Moreover, the maximum eigenvalue of the

unconditional correlation matrix R is used as the benchmark for the relative comparison.

We can make two main observations here. First, the changes in the maximum eigenval-

ues from the unconditional one are relatively small compared with those of mean volatil-

ity, while the fluctuation in correlation intensity is also much smaller than that of mean

volatility for the sample portfolios.27 Second, the changes in the maximum eigenvalues are

significantly different across the sample portfolios, while the changes in mean volatilities

also differ across the sample portfolios, but not to a significant degree. At an event level,
27 Because the maximum eigenvalue and mean volatility are measured by using different scales, the same

changes in the two factors may influence the risk amount of the sample portfolio to a different degree.
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Table 8: Maximum eigenvalues and mean conditional volatilities

Maximum eigenvalue Mean volatility
Group ID Uncon (a) L (b) E (c) b−a

a (%)
c−a

a (%) Uncon (a) L (b) E (c) b−a
a (%)

c−a
a (%)

Market 11.61 11.67 12.21 0.54 5.16 0.014 0.027 0.035 86.78 143.20

Cyclical
GA 13.38 13.33 13.75 -0.37 2.77 0.025 0.034 0.033 36.00 32.00
GB 12.99 13.26 13.66 2.08 5.19 0.027 0.046 0.038 72.15 42.60
GC 11.14 11.17 11.71 0.26 5.15 0.026 0.036 0.041 34.72 55.44
GD 10.50 10.93 11.53 4.11 9.82 0.027 0.044 0.053 63.22 97.11
GE 9.74 10.13 10.46 4.01 7.37 0.023 0.038 0.049 63.24 111.05
GF 9.37 10.05 9.52 7.27 1.56 0.032 0.050 0.072 56.64 126.78

Defensive
GG 14.90 15.05 15.45 0.98 3.69 0.019 0.030 0.030 61.51 60.34
GH 10.70 10.84 10.62 1.32 -0.73 0.022 0.037 0.040 67.22 78.88
GI 10.39 10.35 11.09 -0.40 6.74 0.018 0.028 0.034 56.35 87.27
GJ 10.42 10.60 11.15 1.77 7.02 0.019 0.029 0.037 52.19 97.12
GK 10.33 10.52 10.93 1.87 5.82 0.019 0.031 0.037 64.40 94.09
GL 10.51 10.28 11.56 -2.14 10.02 0.017 0.023 0.029 39.05 74.50
GM 8.80 9.15 9.53 4.01 8.26 0.016 0.032 0.039 97.81 138.21
GN 8.54 8.32 9.23 -2.53 8.03 0.018 0.032 0.037 71.50 101.19

Note: “Uncon” of the maximum eigenvalue column denotes the maximum eigenvalue of the unconditional
correlation matrix R. “Uncon” of the mean volatility column is the mean of the volatilities estimated by CCC–
GARCH. L and E denote the Lehman shock and Great Earthquake, respectively. The maximum eigenvalues
of L and E are calculated as the means of the maximum eigenvalues of the conditional correlation matrix Rt

during the 20 trading days after the two events. The mean volatilities of L and E are calculated as the means
of conditional volatility during the 20 trading days after the two events.

the changes are much larger after the Great Earthquake in terms of both the maximum

eigenvalue and mean volatility.28

Impact study of correlation changes: A numerical simulation

We next present the results of a numerical simulation conducted to compare quantitatively

the impact of correlation changes on the risk amount of the sample portfolios: the market

portfolio and the 14 group portfolios. Three factors are required when calculating portfolio

risk: volatility, correlation, and the distribution of the probabilistic variable. The timing

of the evaluation and confidence level should also be specified.

The timing here is set as two trading days after the Lehman shock and Great Earth-

quake.29 The estimated conditional volatility and correlation on these two trading days

28 Please note that because the sharp rise in volatility was slightly delayed after the Lehman shock, whereas
it occurred immediately after the Great Earthquake, this lag might overemphasize the changes after the
latter event.

29 The selected trading days are October 15, 2008 and March 16, 2011, when the maximum eigenvalue
peaked for most of the sample portfolios.
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are specified in the simulation. To randomly sample the residuals, we use the Student

t-copula, which has the same parameters, namely the conditional correlation matrix and

shape parameter, as those estimated by the DCC–GARCH model presented in Section 4.3.

A sample data set is generated by randomly sampling 100,000 draws from the Student

t-copula for every sample portfolio. These data are then converted into individual returns

by the quantile functions of the marginal distributions; finally, the portfolio returns are

calculated by applying the conditional volatilities.

Note that the initial portfolio value is normalized to 1; therefore, the portfolio value

after the one-day holding period is calculated as the 1 + the sum of individual simulated

returns. The portfolio risk measures (VaR and ES) are calculated by using the historical

simulation method:

VaRp [X] = − inf {x|Pr [X ≤ x] > 1 − p} , 0 < p < 1

ESp [X] = E [−X| − X ≥ VaRp [X]] , 0 < p < 1
(19)

where X is portfolio returns and p is the confidence level of these risk measures (set at

99%).

We calculate the risk measures for the sample portfolios with both unconditional and

conditional correlations to observe the differences between these two cases. The case

with the unconditional correlation is regarded as the benchmark. For comparison, VaR

and ES are also calculated with the Gaussian copula and unconditional correlation, the

combination of which is the most naive assumption when measuring risk.

Simulation results

Tables 9 and 10 summarize the simulation results for VaR and ES, respectively. These

results show that the VaR and ES of the sample portfolios increased in many cases when

calculated using conditional correlation. This finding means that changes in correlation

intensity can have a non-negligible positive impact on portfolio risk.

In Table 9, the VaR values of the market portfolio with the conditional correlation is

about 1.2% and 3.1% (b→a and e→d, respectively) larger than those with the uncondi-

tional correlation after the Lehman shock and Great Earthquake, respectively. The ES

of the market portfolio is also about 0.3% and 3.7% larger, as shown in Table 10. The

impact is larger after the Great Earthquake than after the Lehman shock, as shown by

the larger maximum eigenvalue, implying that the larger maximum eigenvalues after the

Great Earthquake contribute to the larger impact.
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In the case of the cyclical and defensive group portfolios, a similar tendency is observed

as that in the market portfolio, although the impact differs considerably by group because

of the different correlation intensities. The VaR and ES values with the conditional cor-

relation are larger than those with the unconditional correlation in most groups. The

VaR value with the conditional correlation is larger by about 11% (GM, after the Great

Earthquake) at the maximum but is similar (GF and GH, both after the Great Earth-

quake) at the minimum. The ES value is also larger by about 13% (GM, after the Great

Earthquake) at the maximum and similar (GF and GH, both after the Great Earthquake)

at the minimum. These higher levels of the maximum eigenvalues seemingly contribute to

the larger risk amount compared with the unconditional case, although the impacts differ

significantly in both cyclical and defensive groups.30

When we use the Gaussian copula, the differences (between VaR and VaR* in Table

9; ES and ES* in Table 10) become larger, since this copula underestimates the risk

without considering the tail dependency of the residuals unlike the Student t-copula. The

existence of the tail dependency of returns is confirmed; however, the differences from

the unconditional cases are still not large in many of the sample portfolios. The tail

dependency is rather limited for the GARCH-filtered standardized residuals, as shown by

the higher level of the shape parameters listed in Table 3.

30 In some cyclical groups (GB, GD, and GE), the order of the maximum eigenvalues is not consistent with
that of the risk amount, although the differences in VaR and ES changes are not large. This inconsistency
is probably because of the differences in the random sample sets as well as the smaller eigenvalues and
direction of the eigenvector of the conditional correlation contributing to the risk differently.

35



Ta
bl

e
9:

Im
pa

ct
of

co
rr

el
at

io
n

ch
an

ge
s:

Va
R

U
nc

on
di

tio
na

l
Le

hm
an

sh
oc

k
G

re
at

Ea
rt

hq
ua

ke
C

on
di

tio
na

l
U

nc
on

di
tio

na
l

C
ha

ng
es

C
on

di
tio

na
l

U
nc

on
di

tio
na

l
C

ha
ng

es
G

ro
up

ID
M

ax
ei

gv
M

ax
ei

gv
Va

R
(a

)
Va

R
(b

)
Va

R
*

(c
)

(b
→

a)
%

(c
→

a)
%

M
ax

ei
gv

Va
R

(d
)

Va
R

(e
)

Va
R

*
(f

)
(e

→
d)

%
(f

→
d)

%

M
ar

ke
t

11
.6

1
12

.0
6

0.
12

4
0.

12
3

0.
12

1
1.

21
2.

61
12

.3
7

0.
12

8
0.

12
4

0.
12

2
3.

12
4.

66

C
yc

lic
al

G
A

13
.3

8
13

.9
8

0.
12

1
0.

11
8

0.
11

7
1.

95
3.

11
13

.8
6

0.
08

1
0.

08
0

0.
08

0
1.

05
1.

86
G

B
12

.9
9

13
.9

8
0.

14
0

0.
13

4
0.

13
3

4.
97

5.
14

14
.1

2
0.

08
9

0.
08

6
0.

08
5

3.
57

3.
86

G
C

11
.1

4
11

.8
8

0.
10

9
0.

10
5

0.
10

3
4.

30
5.

67
12

.3
7

0.
09

8
0.

09
3

0.
09

2
6.

19
7.

20
G

D
10

.5
0

11
.7

6
0.

14
6

0.
13

8
0.

13
7

5.
27

6.
51

11
.7

7
0.

14
0

0.
13

4
0.

13
2

4.
40

6.
11

G
E

9.
74

11
.0

2
0.

12
5

0.
11

7
0.

11
5

7.
65

8.
71

11
.3

7
0.

13
7

0.
12

8
0.

12
6

7.
60

8.
80

G
F

9.
37

11
.2

4
0.

16
4

0.
15

0
0.

14
6

9.
50

12
.4

0
10

.1
3

0.
16

7
0.

16
7

0.
16

3
-0

.4
3

2.
31

D
ef

en
siv

e
G

G
14

.9
0

15
.5

1
0.

11
0

0.
10

7
0.

10
7

2.
81

2.
67

15
.7

8
0.

08
8

0.
08

5
0.

08
5

3.
37

3.
28

G
H

10
.7

0
11

.6
6

0.
12

4
0.

11
6

0.
11

6
6.

34
6.

23
10

.6
3

0.
09

7
0.

09
8

0.
09

8
-0

.2
9

-0
.6

0
G

I
10

.3
9

10
.8

6
0.

08
7

0.
08

4
0.

08
4

3.
49

3.
38

11
.5

3
0.

09
3

0.
08

7
0.

08
7

6.
68

7.
38

G
J

10
.4

2
11

.2
4

0.
09

6
0.

09
3

0.
09

0
2.

66
5.

80
11

.8
6

0.
10

5
0.

10
0

0.
09

8
4.

90
7.

78
G

K
10

.3
3

11
.2

4
0.

11
0

0.
10

5
0.

10
3

5.
21

7.
10

11
.6

5
0.

10
4

0.
09

9
0.

09
8

5.
57

6.
70

G
L

10
.5

1
11

.1
0

0.
08

0
0.

07
8

0.
07

7
2.

33
4.

56
12

.4
3

0.
08

8
0.

08
3

0.
08

1
6.

09
8.

39
G

M
8.

80
9.

97
0.

11
5

0.
10

7
0.

10
7

7.
52

7.
12

10
.5

4
0.

12
4

0.
11

2
0.

11
2

11
.0

0
10

.9
5

G
N

8.
54

8.
80

0.
08

9
0.

08
7

0.
08

6
1.

81
2.

69
9.

87
0.

09
8

0.
09

1
0.

09
1

6.
83

7.
92

N
ot

e:
“U

nc
on

di
ti

on
al

”
an

d
“c

on
di

ti
on

al
”

re
pr

es
en

t
th

e
co

rr
el

at
io

n
m

at
ri

x
ty

pe
.

“M
ax

ei
gv

”
st

an
ds

fo
r

th
e

m
ax

im
um

ei
ge

nv
al

ue
of

th
e

co
rr

el
at

io
n

m
at

ri
x.

T
he

in
it

ia
l

po
rt

fo
lio

va
lu

e
is

se
t

to
1

fo
r

ea
ch

po
rt

fo
lio

.
V

aR
is

ca
lc

ul
at

ed
at

th
e

99
%

co
nfi

de
nc

e
le

ve
l.

V
aR

*
is

ca
lc

ul
at

ed
fr

om
th

e
es

ti
m

at
io

n
re

su
lt

of
th

e
D

C
C

–G
A

R
C

H
m

od
el

w
it

h
th

e
G

au
ss

ia
n

co
pu

la
.

36



Ta
bl

e
10

:
Im

pa
ct

of
co

rr
el

at
io

n
ch

an
ge

s:
ES

U
nc

on
di

tio
na

l
Le

hm
an

sh
oc

k
G

re
at

Ea
rt

hq
ua

ke
C

on
di

tio
na

l
U

nc
on

di
tio

na
l

C
ha

ng
es

C
on

di
tio

na
l

U
nc

on
di

tio
na

l
C

ha
ng

es
G

ro
up

ID
M

ax
ei

gv
M

ax
ei

gv
ES

(a
)

ES
(b

)
ES

*
(c

)
(b

→
a)

%
(c

→
a)

%
M

ax
ei

gv
ES

(d
)

ES
(e

)
ES

*
(f

)
(e

→
d)

%
(f

→
d)

%

M
ar

ke
t

11
.6

1
12

.0
6

0.
14

5
0.

14
5

0.
14

2
0.

28
2.

22
12

.3
7

0.
15

0
0.

14
6

0.
14

4
3.

68
4.

40

C
yc

lic
al

G
A

13
.3

8
13

.9
8

0.
14

3
0.

13
9

0.
13

6
2.

35
5.

02
13

.8
6

0.
09

6
0.

09
5

0.
09

2
1.

72
4.

33
G

B
12

.9
9

13
.9

8
0.

16
5

0.
15

8
0.

15
6

4.
58

5.
99

14
.1

2
0.

10
6

0.
10

2
0.

10
0

3.
69

5.
24

G
C

11
.1

4
11

.8
8

0.
13

1
0.

12
6

0.
12

3
3.

96
6.

44
12

.3
7

0.
12

0
0.

11
2

0.
10

9
7.

69
10

.2
8

G
D

10
.5

0
11

.7
6

0.
17

5
0.

16
6

0.
16

2
5.

60
8.

04
11

.7
7

0.
16

9
0.

16
1

0.
15

7
4.

82
7.

29
G

E
9.

74
11

.0
2

0.
15

3
0.

14
1

0.
13

8
8.

65
11

.3
1

11
.3

7
0.

16
6

0.
15

5
0.

15
1

7.
67

10
.4

8
G

F
9.

37
11

.2
4

0.
20

1
0.

18
2

0.
17

5
9.

99
14

.7
6

10
.1

3
0.

20
2

0.
20

2
0.

19
4

-0
.2

5
3.

99

D
ef

en
siv

e
G

G
14

.9
0

15
.5

1
0.

13
5

0.
13

0
0.

12
9

3.
46

4.
75

15
.7

8
0.

10
8

0.
10

4
0.

10
3

3.
82

5.
13

G
H

10
.7

0
11

.6
6

0.
14

9
0.

14
2

0.
13

8
5.

34
7.

99
10

.6
3

0.
11

8
0.

11
9

0.
11

6
-0

.4
0

1.
85

G
I

10
.3

9
10

.8
6

0.
10

6
0.

10
2

0.
10

0
3.

58
5.

70
11

.5
3

0.
11

3
0.

10
6

0.
10

4
6.

06
8.

05
G

J
10

.4
2

11
.2

4
0.

11
6

0.
11

2
0.

10
8

3.
60

7.
71

11
.8

6
0.

12
9

0.
12

1
0.

11
7

6.
38

10
.4

0
G

K
10

.3
3

11
.2

4
0.

13
6

0.
12

7
0.

12
4

6.
63

9.
79

11
.6

5
0.

12
9

0.
12

1
0.

11
7

6.
75

9.
90

G
L

10
.5

1
11

.1
0

0.
10

0
0.

09
7

0.
09

3
3.

08
7.

50
12

.4
3

0.
11

0
0.

10
3

0.
09

9
6.

86
10

.6
6

G
M

8.
80

9.
97

0.
14

3
0.

13
1

0.
12

9
9.

19
11

.3
8

10
.5

4
0.

15
5

0.
13

8
0.

13
5

12
.8

1
15

.0
3

G
N

8.
54

8.
80

0.
10

9
0.

10
6

0.
10

3
2.

79
5.

64
9.

87
0.

12
0

0.
11

1
0.

10
8

8.
14

11
.2

6

N
ot

e:
“U

nc
on

di
ti

on
al

”
an

d
“c

on
di

ti
on

al
”

re
pr

es
en

t
th

e
co

rr
el

at
io

n
m

at
ri

x
ty

pe
.

“M
ax

ei
gv

”
st

an
ds

fo
r

th
e

m
ax

im
um

ei
ge

nv
al

ue
of

th
e

co
rr

el
at

io
n

m
at

ri
x.

T
he

in
it

ia
l

po
rt

fo
lio

va
lu

e
is

se
t

to
1

fo
r

ea
ch

po
rt

fo
lio

.
E

S
is

ca
lc

ul
at

ed
at

th
e

99
%

co
nfi

de
nc

e
le

ve
l.

E
S*

is
ca

lc
ul

at
ed

fr
om

th
e

es
ti

m
at

io
n

re
su

lt
of

th
e

D
C

C
–G

A
R

C
H

m
od

el
w

it
h

th
e

G
au

ss
ia

n
co

pu
la

.

37



VaR backtesting

In addition to the numerical impact simulation, we conducted another test to evaluate the

model performance of DCC–GARCH in comparison with CCC–GARCH. We assume that

DCC–GARCH shows better VaR backtesting performance compared with CCC–GARCH

if DCC captures the correlation changes that affect VaR values, while CCC, by definition,

does not.31

The VaR value is calculated over the whole in-sample period at the 99% confidence level

by using the DCC– and CCC–GARCH models with the parameters estimated in Section

4.3. The holding period is one trading day. The conditional volatilities are updated daily

by the univariate GARCH using the previous time series of return data. The number

of VaR exceedances is counted for every sample portfolio to compare the theoretically

expected number of exceedances. The two types of VaR backtests proposed by Kupiec

[1995] and Christoffersen and Diebold [2006] are conducted to evaluate the frequency of

exceedances statistically.

Table 11 shows the results of the VaR backtesting. The p-values are calculated for the

null hypothesis (H0): the VaR model is correctly specified. The null hypothesis cannot be

rejected in six groups (GC, GD, GG, GH, GJ, and GN) for DCC and in five groups (GC,

GD, GG, GJ, and GN) for CCC at the 5% significance level in both tests.32 Even for the

groups in which the null hypothesis is rejected, the exceedance counts are closer to the

expected level (14) in four groups (GB, GF, GI, and GK) in DCC than in CCC, while they

diverge in two groups (GA and GL). These results suggest that DCC performs better than

CCC in terms of VaR backtesting.

31 VaR backtesting is normally conducted as an out-of-sample test with a rolling model parameter esti-
mation. We simplified the test, since our VaR backtesting is conducted only to compare the relative
performance of DCC and CCC. As for ES backtesting, technical issues that are related to the elicitability
concept have been much debated since Gneiting [2011]. Recently, Acerbi and Szekely [2014] proposed
a new backtesting method for ES that uses a MonteCarlo hypothesis test. We do not cover the ES
backtesting here, since the issue is beyond our scope.

32 The VaR backtesting results may seem to be unsatisfactory for formulating risk management strategies.
As described in Sections 3.2 and 4.2, we assume a simple GARCH model for univariate returns and a
scalar DCC model with the Student t-copula for their dependency structure. For improved backtesting
performance, this modeling framework needs to be reexamined; however, this investigation is beyond
the scope of the present study.
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6 Discussion

The correlation of asset returns is a key issue for quantitative risk measurement and

portfolio investment control. In this empirical study, we propose a data-driven approach

to observe the dynamic changes in the correlation matrices of Japanese stock returns

by using an MGARCH model, namely DCC–GARCH. While it is difficult to fit any

multivariate model with conditional correlation to the whole universe of stock returns

(about 1,400 stocks according to our definition), we overcome the high dimensionality

problem by fitting a reduced size MGARCH model with DCC to two types of sample

portfolios: the market portfolio and group portfolios.

When building these sample portfolios, we apply the clustering method originally de-

veloped in complex networks theory. The unconditional correlation matrix of the whole

universe is first estimated by using the CCC–GARCH model. The universe is then divided

into 14 sub-groups with two large categories: cyclical and defensive. The group portfolios

are next built with 20 representative stocks selected by using a network centrality measure.

These portfolios cover each segment of the universe as homogeneous groups. The market

portfolio is finally built as a set of the 14 mean return indexes of the individual groups.

We fit the scalar DCC–GARCH model to the return data of the market and group

portfolios to observe the between-group and within-group correlation dynamics, respec-

tively. The likelihood function of DCC–GARCH is built by using the Student t-copula

considering the tail dependency of returns. The parameter estimation results show that

DCC–GARCH is more realistic than CCC–GARCH, confirming that both within-group

and between-group correlations change over time and that the dynamics are significantly

different for the sample portfolios.

The conditional correlation matrices are calculated from the DCC–GARCH estimation

results for all sample portfolios. Then, the time series of the maximum eigenvalues of

the conditional correlation matrices are calculated to observe the dynamic changes in

correlation intensity. The findings confirm that both the between-group and the within-

group correlations intensified after the Lehman shock and Great Earthquake; however, the

patterns of changes are significantly different across the sample portfolios.

We also explore the impact of correlation changes on the risk of sample portfolios by

using a numerical simulation. The VaR and ES values of the market and group portfolios

with the conditional correlation are compared with those with the unconditional corre-

lation, assuming the highest level of conditional volatilities after the Lehman shock and
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Great Earthquake. The results show that the dynamic change in the correlation matrix

has non-negligible positive influences on the risk of the stock portfolio. The comparative

VaR backtesting results also suggest that DCC performs better than CCC.

These empirical findings suggest a number of discussion points. The first point relates

to technical limitations when modeling correlations. Although DCC–GARCH can model

dynamic correlation and the copula-based two-step estimation procedure can also incor-

porate the heterogeneity of individual return distributions efficiently, it remains difficult

to evaluate the changes in the estimated correlation matrix. We adopted the maximum

eigenvalue of a correlation matrix as the proxy measure for correlation intensity. The max-

imum eigenvalue reveals the dynamic changes in correlation intensity as a scalar indicator,

which helps us follow the pattern of these changes. Nevertheless, the maximum eigenvalue

is still not directly linked to the calculation of portfolio risk. More strictly, the changes

in the eigenvector of a correlation matrix can also influence portfolio risk, demanding a

simulation analysis of the quantitative impact of correlation changes on portfolio risk.

As for the impact study, the simulation results depend on the modeling assumptions of

DCC–GARCH: no volatility spillover is considered. Further, the correlation dynamics can

be described differently by other more structural dynamic correlation models. To quan-

tify the effect of volatility spillovers on dynamic correlation, we must estimate conditional

correlation or covariance by using other types of multivariate models including the BEKK

model.

The second discussion point is the practical aspects of DCC–GARCH. Since DCC–

GARCH provides a consistent framework with which to combine conditional mean, volatil-

ity, and correlation to measure portfolio risk, it is thus flexible to capture any time-varying

changes in those three factors. Despite the technical limitations of DCC–GARCH, its com-

pact and flexible modeling framework with parsimonious parameters and easy parameter

estimation procedure are valuable from a practical viewpoint of risk control. For example,

the conditional approach is beneficial for stress testing portfolio risk by using possible

combinations of extreme volatilities and correlation matrices. In brief, we need extreme

but plausible scenarios for meaningful stress testing. The estimated historical time series

of the conditional correlation matrix as well as conditional volatility can further provide

a set of realistic combinations of volatility and correlation, which may not be available

with a static correlation matrix, in order to set the stress level. Moreover, the eigenvalues

may be used to adjust correlation intensity when building the scenarios, although further

study is required to clarify their quantitative impact.
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Another discussion point is the high dimensionality of the correlation matrix of stock

returns. We adopt the reduced size of sample portfolios to monitor the whole stock

market, since we are interested in a more general portfolio with wider coverage rather

than a specifically targeted portfolio. The clustering algorithm is based on the correlation

matrix of the whole universe of stock return data, which is calculated by assuming the use

of CCC–GARCH. The volatility interaction between stocks is thus not considered. Using

other methods to estimate the correlation matrix may lead to different group samples.

This point is an important caveat to this study. Nevertheless, our dimension reduction

method works well, even for a very large number of assets with fat-tailed returns, while

group size as well as the size of sample portfolios can be modified flexibly. The method of

selecting representatives from a group based on a network centrality measure can also be

easily applied to other groupings.

7 Conclusion

In this study, the dynamic correlation of Japanese stock returns is modeled by using

DCC–GARCH, which is fitted to reduced size sample portfolios. It is confirmed that the

correlation matrix changes over time in both the market portfolio and the group portfolios.

Significant differences in the patterns of the changes between the sample portfolios are also

identified, with sharp increases in correlation intensity observed during crisis periods.

The presented findings suggest two possible directions for future research. First, our

empirical findings depend on the assumption of no volatility spillovers. A more generalized

multivariate model could thus be applied to similar types of sample portfolios if the size

was appropriately reduced. Second, it would be meaningful to test if the same result would

be obtained when other clustering methods are used to create a set of reduced size sample

portfolios. A higher level of coverage of stocks in a sample portfolio is another issue to

be considered. We used a simple scalar DCC–GARCH model; however, more generalized

and complicated DCC models including BDCC and AG–DCC would improve estimation

performance. Moreover, with regard to issues related to correlation intensity, a more

detailed study of the relationship between the eigenvalues and portfolio risk would be an

interesting topic. Finally, a practical application of the estimation of dynamic correlation

change to portfolio risk management needs to be explored.
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