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Monetary Policy and Macroeconomic Stability Revisited∗

Yasuo Hirose† Takushi Kurozumi‡ Willem Van Zandweghe§

Abstract

A large literature has established the view that the Fed’s change from a passive

to an active policy response to inflation led to U.S. macroeconomic stability after the

Great Inflation of the 1970s. We revisit this view by estimating a generalized New Key-

nesian model using a full-information Bayesian method that allows for indeterminacy

of equilibrium and adopts a sequential Monte Carlo algorithm. The estimated model

empirically outperforms canonical New Keynesian models that confirm the literature’s

view. It also points to substantial uncertainty about whether the policy response to

inflation was active or passive during the Great Inflation. More importantly, a more

active policy response to inflation alone does not suffice for explaining the U.S. macroe-

conomic stability, unless it is accompanied by a change in either trend inflation or policy

responses to the output gap and output growth. This extends the literature by empha-

sizing the importance of the changes in other aspects of monetary policy in addition

to its response to inflation.
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1 Introduction

What led to macroeconomic stability in the United States after the Great Inflation of the

1970s? A large literature has regarded the Great Inflation as a consequence of self-fulfilling

expectations in indeterminate equilibrium, which lasted until determinacy was restored by

changes in the Fed’s policy under the chairmanship of Paul Volcker and his successors.1

In particular, the literature has established the view that the U.S. economy’s shift from

indeterminacy to determinacy was achieved by the Fed’s change from a passive to an active

policy response to inflation. A monetary policy response to inflation is called active if it

satisfies the Taylor principle that the nominal interest rate should be raised by more than

the increase in inflation. Otherwise, it is called passive. Clarida, Gaĺı, and Gertler (2000)

demonstrate the literature’s view by estimating a Taylor (1993)-type monetary policy rule

during two periods, before and after Volcker’s appointment as Fed Chairman, and combining

the estimated rule with a calibrated New Keynesian (henceforth NK) model to analyze

determinacy. Lubik and Schorfheide (2004) confirm the view by estimating a Taylor-type rule

and an NK model jointly during similar periods using a full-information Bayesian approach

that allows for indeterminacy and sunspot fluctuations.2

This paper revisits the literature’s view by estimating a generalized NK (henceforth GNK)

model jointly with a Taylor-type rule.3 This model differs from canonical NK (henceforth

CNK) models used in the literature mainly in that some prices remain unchanged in each

period in line with micro evidence.4 Consequently, instead of a canonical one, a generalized

NK Phillips curve appears in the GNK model, with the distinct features that its coefficients

1Following the literature, this paper explains the U.S. macroeconomic stability from the perspective of

monetary policy. Other explanations emphasize a decline in the volatility of shocks to the U.S. economy

(e.g., Sims and Zha, 2006; Justiniano and Primiceri, 2008) or the development of inventory management

(e.g., Kahn, McConnell, and Perez-Quirós, 2002). Without relying on indeterminate equilibrium, Ascari,

Bonomolo, and Lopes (2019) account for U.S. macroeconomic instability during the Great Inflation by

allowing temporarily unstable dynamics that converge eventually to stable ones.

2See also Boivin and Giannoni (2006), Kimura and Kurozumi (2010), and Lubik and Matthes (2016)

among others for the monetary-policy explanation of U.S. macroeconomic stability after the Great Inflation.

3For a literature review on GNK models, see, e.g., Ascari and Sbordone (2014).

4For the micro evidence on price setting during and after the Great Inflation, see, e.g., Klenow and

Kryvtsov (2008), Nakamura and Steinsson (2008), and Nakamura et al. (2017).
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depend on the level of trend inflation and that it includes additional forward-looking terms

through which inflation responds to expected changes in future demand and discount rates

on future profits under nonzero trend inflation. These features cause the GNK model to

be more susceptible to indeterminacy than CNK models, as indicated by Hornstein and

Wolman (2005), Kiley (2007), Ascari and Ropele (2009), and Coibion and Gorodnichenko

(2011).5 Indeed, even an active policy response to inflation that generates determinacy in

CNK models can induce indeterminacy in the GNK model.6

Our estimation is performed using a full-information Bayesian approach based on Lubik

and Schorfheide (2004).7 In their approach, however, when a model is estimated over both de-

terminacy and indeterminacy regions of the model’s parameter space, its likelihood function

is possibly discontinuous at the boundary of each region. As a consequence, the Random-

Walk Metropolis-Hastings (henceforth RWMH) algorithm—which has been the most widely

used in Bayesian estimation—can get stuck near a local mode and fail to find the entire

posterior distribution for the model’s parameters. To deal with this difficulty, our paper

adopts the sequential Monte Carlo (henceforth SMC) algorithm developed by Herbst and

Schorfheide (2014, 2015). As they illustrate, the SMC algorithm can produce more reliable

estimates of model parameters than the RWMH algorithm when the parameters’ posterior

distribution is multimodal. This is particularly the case when the likelihood function of a

model to be estimated exhibits discontinuity as in our paper.

Our empirical analysis makes three main contributions to the literature. First of all, the

GNK model empirically outperforms CNK models during both periods before and after the

5See also Kurozumi (2014, 2016) and Kurozumi and Van Zandweghe (2016, 2017).

6Our GNK model extends the model of Coibion and Gorodnichenko (2011) that assumes firm-specific

labor. In Appendix A, we also consider another type of GNK model, which extends, in a similar fashion, the

model of Ascari and Ropele (2009) that assumes homogeneous labor. The different specifications of labor

yield distinct implications for the GNK Phillips curve. For instance, our model has no effect of relative

price distortion on the Phillips curve, whereas there is such an effect in the other model. For this point,

see Kurozumi and Van Zandweghe (2017). The present paper estimates the two types of GNK models and

shows that our model empirically outperforms the other.

7The full-information Bayesian approach of Lubik and Schorfheide (2004) has been used in previous

studies, such as Benati and Surico (2009), Bhattarai, Lee, and Park (2012, 2016), Doko Tchatoka et al. (2017),

and Hirose (2007, 2008, 2013, 2020).
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Volcker disinflation of 1979–1982. We consider two types of CNK models. One type is a

CNK counterpart to the GNK model and assumes that prices that remain unchanged in

the GNK model are updated by indexing to trend inflation as in Yun (1996).8 The GNK

model and its CNK counterpart are both augmented with backward-looking rule-of-thumb

price-setters as in Gaĺı and Gertler (1999) to take into account the possibility of intrinsic

inertia in inflation.9 The other type of CNK model instead incorporates, as in Smets and

Wouters (2007), price indexation to past and trend inflation, which has been extensively

used in empirical studies. The superior empirical performance of the GNK model relative

to the two CNK models indicates that the GNK model’s features that are more consistent

with the micro evidence on price setting also contribute to a better fit of the model to

U.S. macroeconomic time series, and thus the GNK model is more suitable for the analysis

of what led to U.S. macroeconomic stability after the Great Inflation.

Second, the U.S. economy was likely in the indeterminacy region of the GNK model’s

parameter space before 1979, while it likely entered the determinacy region after 1982, in

line with the result obtained in the literature. However, the estimated GNK model points

to substantial uncertainty about whether the policy response to inflation was active or pas-

sive during the pre-1979 period in the Taylor-type rule, which adjusts the interest rate for

contemporaneous values of inflation, the output gap, and output growth in the presence of

interest-rate smoothing.10 In the GNK model even an active policy response to inflation pos-

sibly fails to ensure determinacy, as noted above. The ambiguous result contrasts with the

literature’s finding that the policy response to inflation was surely passive during the Great

8This implies that the GNK model and its CNK counterpart coincide only when trend inflation is zero,

so that the GNK model does not literally generalize the CNK counterpart. Thus, we also consider an NK

model that nests both the GNK model and the CNK counterpart, and shows that the GNK model empirically

outperforms the nested model as well.

9Note that embedding such price-setters in the GNK model is still consistent with the micro evidence

that some prices remain unchanged in each period.

10Orphanides (2004) shows an active policy response to expected future inflation even before Volcker’s

appointment as Fed Chairman by estimating a Taylor-type rule using real-time data on the Federal Reserve

Board’s Greenbook forecast. A similar empirical result is obtained by Coibion and Gorodnichenko (2011),

who also argue for ambiguity about whether the Taylor principle was satisfied before the Volcker disinflation,

by presenting large standard errors of the estimated policy response to inflation.
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Inflation and that the subsequent change to an active response led to the U.S. economy’s

shift from indeterminacy to determinacy (in CNK models).11

Last but not least, the increase in the policy response to inflation from the pre-1979

to the post-1982 estimate alone does not suffice for explaining the U.S. economy’s shift to

determinacy, unless it is accompanied by either the estimated decline in trend inflation or

the estimated change in policy responses to the output gap and output growth. This finding

reveals that a lower rate of trend inflation (or equivalently a lower inflation target), a more

dampened response to the output gap, and a more aggressive response to output growth

play a key role in accounting for the U.S. economy’s shift, along with a more active response

to inflation. Therefore, our finding extends the literature by emphasizing the importance of

the changes in other aspects of monetary policy in addition to its response to inflation.

This paper is an extension of Lubik and Schorfheide (2004) and a complementary study

to Coibion and Gorodnichenko (2011). It strengthens the analysis of Lubik and Schorfheide

by adopting the SMC algorithm in their full-information Bayesian approach and estimating

the GNK model (jointly with the Taylor-type rule) as well as the CNK models, which are

similar to their model. While Lubik and Schorfheide estimate their model separately for the

determinacy and indeterminacy regions of the model’s parameter space, the SMC algorithm

enables us to conduct our estimation for both of the regions in one step. Coibion and

Gorodnichenko revisit the literature’s view by using a calibrated GNK model in an approach

analogous to Clarida, Gaĺı, and Gertler (2000).12 They offer the alternative view that the

U.S. economy’s shift to determinacy after the Great Inflation is due to their estimated

change in a Taylor-type rule and their calibrated fall in trend inflation.13 An advantage of

our analysis is that we estimate both trend inflation and the Taylor-type rule’s coefficients

as well as other structural model parameters under cross-equation restrictions and show that

11The CNK models considered in this paper confirm the literature’s view; that is, the policy response to

inflation was passive and the U.S. economy was likely in the indeterminacy region before 1979, while the

policy response became active and the economy likely entered the determinacy region after 1982.

12Arias et al. (2020) extend the analysis of Coibion and Gorodnichenko (2011) by employing a medium-

scale GNK model based on Christiano, Eichenbaum, and Evans (2005), which is estimated during a post-1984

period within the determinacy region of the model’s parameter space.

13In the estimation of the Taylor-type rule by Coibion and Gorodnichenko (2011), its constant term

contains not only trend inflation but also other factors. Thus they calibrate the level of trend inflation.
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our GNK model empirically outperforms the CNK models, giving strong support to our view

on the shift from indeterminacy to determinacy.14

The remainder of the paper proceeds as follows. Section 2 presents a GNK model with a

Taylor-type rule. Section 3 explains the estimation strategy and data. Section 4 shows the

results of the empirical analysis. Section 5 concludes.

2 Generalized New Keynesian Model

This paper investigates the source of the U.S. economy’s shift from indeterminacy of equi-

librium to determinacy after the Great Inflation by estimating a GNK model jointly with a

Taylor-type rule. This model differs from CNK models used in previous studies mainly in

that each period a fraction of prices remains unchanged in line with micro evidence.

In the model there are a representative household, a representative final-good firm, a con-

tinuum of intermediate-good firms, and a central bank. The model extends that of Coibion

and Gorodnichenko (2011) by introducing (external) habit formation in the household’s

consumption preferences, backward-looking rule-of-thumb price-setters among intermediate-

good firms as in Gaĺı and Gertler (1999), and interest-rate smoothing in the Taylor-type rule

so that the model has inertia in output, inflation, and the interest rate.15 This extension is

made because our estimation is conducted with a full-information Bayesian approach based

on Lubik and Schorfheide (2004), which may have a bias toward indeterminacy unless the

model can generate sufficient persistence in endogenous variables, as argued by Beyer and

Farmer (2007).

2.1 Households

The representative household consumes final goods C̃t, supplies a set of labor services {lt(i)},
each of which is specific to intermediate-good firm i ∈ [0, 1], and purchases one-period riskless

14Regarding the GMM estimation of the Taylor-type rule by Clarida, Gaĺı, and Gertler (2000), Mavroeidis

(2010) points to a weak-identification issue and emphasizes the need to make use of identifying assumptions

that can be derived from the full structure of their model.

15Note that incorporating the backward-looking rule-of-thumb price-setters enables us to embed inflation

inertia without contradicting the micro evidence that some prices remain unchanged in each period.
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bonds Bt so as to maximize the utility function

E0

∞∑
t=0

βt exp(zu,t)

[
log(C̃t − hCt−1)− 1

1 + 1/η

∫ 1

0

(lt(i))
1+1/η di

]

subject to the budget constraint

PtC̃t +Bt =

∫ 1

0

PtWt(i)lt(i)di+ rt−1Bt−1 + Tt,

where Et is the rational expectation operator conditional on information available in period

t, β ∈ (0, 1) is the subjective discount factor, h ∈ [0, 1] is the degree of habit persistence in

consumption preferences, η ≥ 0 is the elasticity of labor supply, Ct is aggregate consumption,

Pt is the price of final goods, Wt(i) is the real wage rate paid by intermediate-good firm i,

rt is the (gross) interest rate on bonds and is assumed to coincide with the monetary policy

rate, Tt consists of lump-sum taxes and transfers and firm profits received, and zu,t is a shock

to current preferences.16

Because the household’s consumption C̃t turns out to coincide with the aggregate con-

sumption Ct, the first-order condition for utility maximization with respect to consumption

becomes

Ξt =
exp(zu,t)

Ct − hCt−1

, (1)

where Ξt is the marginal utility of consumption, and the first-order conditions regarding

labor supply and bond holdings are given by

Wt(i) =
(lt(i))

1/η exp(zu,t)

Ξt
, (2)

1 = Et
β Ξt+1

Ξt

rt
πt+1

, (3)

where πt = Pt/Pt−1 is the (gross) inflation rate of the final-good price.

2.2 Firms

The representative final-good firm produces homogeneous goods Yt by combining intermedi-

ate goods {Yt(i)} so as to maximize profit

PtYt −
∫ 1

0

Pt(i)Yt(i) di

16Our GNK model considers firm-specific labor as in Coibion and Gorodnichenko (2011). Appendix A

analyzes another type of GNK model, which assumes homogeneous labor as in Ascari and Ropele (2009),

and shows that such a model empirically underperforms our GNK model. See also footnote 6.
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subject to the constant elasticity of substitution (henceforth CES) aggregator

Yt =

[∫ 1

0

(Yt(i))
(θ−1)/θ di

]θ/(θ−1)

,

where Pt(i) is the price of intermediate good i and θ > 1 is the elasticity of substitution

between intermediate goods.

The first-order condition for profit maximization yields the final-good firm’s demand

curve for intermediate good i

Yt(i) = Yt

(
Pt(i)

Pt

)−θ
, (4)

and thus the CES aggregator leads to

Pt =

[∫ 1

0

(Pt(i))
1−θ di

]1/(1−θ)
. (5)

The final-good market clearing condition is given by

Yt = Ct. (6)

Each intermediate-good firm i produces one kind of differentiated good Yt(i) under mo-

nopolistic competition using the production technology

Yt(i) = Atlt(i), (7)

where At denotes the technology level and follows the stochastic process

logAt = log a+ logAt−1 + za,t, (8)

where log a is the steady-state rate of technological change, which turns out to coincide with

the steady-state rate of output growth, and za,t is a (non-stationary) technology shock.

The first-order condition for cost minimization yields firm i’s real marginal cost

mct(i) =
Wt(i)

At
. (9)

Prices of intermediate goods are set on a staggered basis as in Calvo (1983). In each

period, a fraction λ ∈ (0, 1) of firms keeps prices unchanged, while the remaining fraction

1−λ sets prices in the following two ways. As in Gaĺı and Gertler (1999), a fraction ω ∈ [0, 1)

of price-setting firms uses a backward-looking rule of thumb, while the remaining fraction

1− ω optimizes prices.

8



The price set by the backward-looking rule of thumb is given by

P r
t = P a

t−1πt−1 or prt =
P r
t

Pt
=

(P a
t−1/Pt−1) πt−1

Pt/Pt−1

=
pat−1πt−1

πt
, (10)

where

P a
t = (P r

t )
ω (P o

t )
1−ω or pat =

P a
t

Pt
=

(
P r
t

Pt

)ω (
P o
t

Pt

)1−ω
= (prt )

ω (pot )
1−ω , (11)

and P o
t is the price set by optimizing firms in period t. The price P o

t maximizes the relevant

profit function

Et

∞∑
j=0

λjQt,t+j

(
Pt(i)

Pt+j
−mct+j(i)

)
Yt+j

(
Pt(i)

Pt+j

)−θ
,

where Qt,t+j is the stochastic discount factor between period t and period t+ j.

The first-order condition for the optimized price P o
t becomes

Et

∞∑
j=0

(βλ)j
Ξt+j
Ξt

Yt+j
Yt

j∏
k=1

πθt+k

(
pot

j∏
k=1

1

πt+k
− θ

θ − 1
mcot+j

)
= 0, (12)

where the equilibrium condition Qt,t+j = βjΞt+j/Ξt is used and mcot+j denotes period-t + j

real marginal cost of firms that optimize prices in period t. From (1), (2), (4), (6), (7), and

(9), it follows that the marginal cost is given by

mcot+j =

(
pot

j∏
k=1

1

πt+k

)−θ/η(
Yt+j
At+j

)1/η(
Yt+j
At+j

− h
Yt+j−1

At+j

)
. (13)

Under staggered price-setting, the final-good price equation (5) can be rewritten as

1 = (1− λ)
[
(1− ω)(pot )

1−θ + ω (prt )
1−θ
]
+ λπθ−1

t . (14)

2.3 Central bank

The central bank conducts monetary policy according to a Taylor (1993)-type rule. This rule

adjusts the policy rate rt in response to inflation πt, the output gap xt, and output growth

Yt/Yt−1 in the presence of policy-rate smoothing:

log rt = φr log rt−1+(1−φr)
[
log r + φπ(log πt − log π) + φx log xt + φΔy

(
log

Yt
Yt−1

− log a

)]
+zr,t,

(15)
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where the output gap is defined as

xt =
Yt
Y n
t

, (16)

Y n
t is the natural rate of output, zr,t is a monetary policy shock, r ≥ 1 is the steady-state

(gross) policy rate, π is the steady-state value of πt and represents the (gross) rate of trend

inflation, φr ∈ [0, 1) is the degree of policy-rate smoothing, and φπ, φx, φΔy are the degrees

of policy responses to inflation, the output gap, and output growth.

By considering flexible prices (i.e., λ = ω = 0) in the intermediate-good price equation

(12) and the final-good price equation (14) and combining the resulting two equations with

the marginal cost equation (13), we can derive the law of motion for the natural rate of

output (
Y n
t

At

)1+1/η

=
θ − 1

θ
+ h

(
Y n
t

At

)1/η Y n
t−1

At
. (17)

2.4 Equilibrium conditions

The equilibrium conditions consist of (1), (3), (6), (8), and (10)–(17). For the steady state

to be well defined, the following condition is assumed:

λmax(πθ−1, βπθ(1+1/η)) < 1. (18)

This assumption ensures that the two relevant discount factors βλπθ−1 and βλπθ(1+1/η) in

the optimal price-setting condition (12) combined with the real marginal cost equation (13)

are less than one.

Combining the equilibrium conditions, rewriting the resulting conditions in terms of the

detrended variables yt = Yt/At and ynt = Y n
t /At, and log-linearizing the conditions under

assumption (18) yields the GNK Phillips curve

π̂t = γb π̂t−1 + γfEtπ̂t+1 + κ ŷt +
hκλ
a− h

(ŷt − ŷt−1 + za,t) + ψt, (19)

where hatted variables denote log-deviations from steady-state values and ψt is an auxiliary

variable that evolves according to the forward-looking equation

ψt = γψEtψt+1 + κψ(Etŷt+1 − ŷt + Etza,t+1 + θEtπ̂t+1 − r̂t), (20)

so that the variable ψt drives inflation in response to expected changes in future demand

and discount rates on future profits under nonzero trend inflation. The coefficients in the

10



equations (19) and (20) are given by γb = ω/ϕ, γf = βλπθ(1+1/η)/ϕ, κ = κλ(1 + 1/η),

κλ = (1 − λπθ−1)(1 − βλπθ(1+1/η))(1 − ω)/[ϕ(1 + θ/η)], γψ = βλπθ−1, κψ = γψ(π
1+θ/η −

1)(1 − λπθ−1)(1 − ω)/[ϕ(1 + θ/η)], and ϕ = λπθ−1 + ω(1 − λπθ−1 + βλπθ(1+1/η)). Thus all

the coefficients in the GNK Phillips curve, γb, γf , κ, and κλ, depend on the level of trend

inflation π.

The remaining log-linearized equilibrium conditions are the spending Euler equation

ŷt =
h

a+ h
(ŷt−1 − za,t) +

a

a+ h
(Etŷt+1 + Etza,t+1)− a− h

a+ h
(r̂t − Etπ̂t+1 + Etzu,t+1 − zu,t),

(21)

the natural rate of output

ŷnt =
hη

a(1 + η)− h

(
ŷnt−1 − za,t

)
, (22)

the output gap

x̂t = ŷt − ŷnt , (23)

and the Taylor-type monetary policy rule

r̂t = φrr̂t−1 + (1− φr)[φππ̂t + φxx̂t + φΔy(ŷt − ŷt−1 + za,t)] + zr,t. (24)

Each of the three shocks zj,t, j ∈ {u, a, r} is assumed to follow the stationary first-order

autoregressive process

zj,t = ρjzj,t−1 + εj,t, (25)

where ρj ∈ [0, 1) is the autoregressive parameter and εj,t ∼ i.i.d.N(0, σ2
j ) is the innovation

to each shock.

2.5 Canonical New Keynesian models

The GNK model presented above is estimated and used for analyzing the source of the

U.S. economy’s shift from determinacy of equilibrium to indeterminacy after the Great In-

flation. Prior to the analysis, the GNK model is compared with two types of CNK models

in terms of empirical performance.

One type of CNK model is a CNK counterpart to the GNK model. It is based on Gaĺı

and Gertler (1999) and thus called the GG-CNK model. This model can be derived by

altering the GNK model so that firms that keep prices unchanged in the aforementioned

11



setting update prices using indexation to trend inflation π as in Yun (1996). Consequently,

the GG-CNK model consists of (21)–(25) and the NK Phillips curve

π̂t = γb,cnk π̂t−1 + γf,cnkEtπ̂t+1 + κcnk ŷt +
hκλ,cnk
a− h

(ŷt − ŷt−1 + za,t), (26)

where γb,cnk = ω/ϕ1, γf,cnk = βλgg/ϕ1, κcnk = κλ,cnk(1 + 1/η), κλ,cnk = (1 − λgg)(1 −
βλgg)(1−ω)/[ϕ1(1 + θ/η)], ϕ1 = λgg +ω(1− λgg + βλgg), and λgg represents the probability

of price indexation to trend inflation. This implies that the GNK model and its CNK

counterpart—the GG-CNK model—coincide only when trend inflation is zero (i.e., π = 1).

Hence, the GNK model does not literally generalize its CNK counterpart. Therefore, we

also consider an NK model that nests both the GNK and the GG-CNK models, by altering

the GNK model so that firms that keep prices unchanged in the model update prices using

indexation to trend inflation π with the degree α ∈ [0, 1]. This model, referred to as the

nested model, differs from the GNK model only in the coefficients of the GNK Phillips

curve (19) and the auxiliary-variable equation (20), which are given by γb = ω/ϕ, γf =

βλggπ
θ(1+1/η)(1−α)/ϕ, κλ = (1 − λggπ

(θ−1)(1−α))(1 − βλggπ
θ(1+1/η)(1−α))(1 − ω)/[ϕ(1 + θ/η)],

γψ = βλggπ
(θ−1)(1−α), κψ = γψ(π

(1+θ/η)(1−α) − 1)(1− λggπ
(θ−1)(1−α))(1− ω)/[ϕ(1 + θ/η)], and

ϕ = λggπ
(θ−1)(1−α)+ω(1−λggπ(θ−1)(1−α)+βλggπθ(1+1/η)(1−α)). The nested model includes the

GNK model and the GG-CNK model as the special cases of α = 0 and α = 1, respectively.

The other type of CNK model incorporates price indexation to past and trend inflation

as in Smets and Wouters (2007) and has been extensively used in empirical studies. This

model, called the SW-CNK model, can be derived by altering the GNK model so that

each period a fraction λsw of firms updates prices using indexation to recent past inflation

πt−1 and trend inflation π with the relative past-inflation weight ωsw ∈ [0, 1], while the

remaining fraction 1 − λsw sets prices optimally. The SW-CNK model differs from the

GG-CNK model only in the coefficients of the NK Phillips curve (26), γb,cnk, γf,cnk, κcnk,

and κλ,cnk, which are given by γb,cnk = ωsw/ϕsw, γf,cnk = β/ϕsw, κcnk = κλ,cnk(1 + 1/η),

κλ,cnk = (1− λsw)(1− βλsw)/[λswϕsw(1 + θ/η)], and ϕsw = 1+ βωsw, where ωsw denotes the

probability of price indexation to past inflation.
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3 Estimation Strategy and Data

This section describes the strategy and data for estimating the GNK model, the two types

of CNK models, and the nested model, which are all presented in the preceding section.

These models are estimated using a full-information Bayesian approach based on Lubik and

Schorfheide (2004). Specifically, each model’s likelihood function is constructed not only

for the determinacy region of the model’s parameter space but also for the indeterminacy

region.17 The likelihood function can then exhibit discontinuity at the boundary of each

region.18 As a consequence, the posterior distribution for parameters in the model is possibly

multimodal, and thus the widely used RWMH algorithm can get stuck near a local mode and

fail to find the entire posterior distribution for the parameters. To deal with this problem, the

SMC algorithm developed by Herbst and Schorfheide (2014, 2015) is adopted to generate

the posterior distribution.19 The SMC algorithm can overcome the problem inherent in

multimodality by building a particle approximation to the posterior distribution gradually

through tempering the likelihood function.

In this section we begin by describing the method for solving linear rational expectations

(henceforth LRE) models under indeterminacy. We then explain how Bayesian inferences

over both determinacy and indeterminacy regions of the parameter space are made with the

SMC algorithm. Moreover, we present the data and prior distributions used in estimation.

3.1 Rational expectations solutions under indeterminacy

Lubik and Schorfheide (2003) derive a full set of solutions to LRE models by extending

the solution algorithm developed by Sims (2002).20 Any LRE model can be written in the

17The full-information Bayesian approach of Lubik and Schorfheide (2004) allows for indeterminate equi-

librium by including a sunspot shock and its related arbitrary coefficient matrix in solutions to linear rational

expectations models. By estimating the coefficient matrix with a fairly loose prior, a set of particular solu-

tions that are the most consistent with data can be selected from a full set of solutions.

18With a univariate model, Lubik and Schorfheide (2004) illustrate discontinuity of the model’s likelihood

function that is constructed for both determinacy and indeterminacy regions of its parameter space.

19Creal (2007) is the first paper that uses an SMC algorithm in Bayesian estimation of a dynamic stochastic

general equilibrium model.

20Sims (2002) generalizes the solution algorithm of Blanchard and Kahn (1980) and characterizes one

particular solution in the case of indeterminacy. In this solution, the contribution to forecast errors of
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canonical form

Γ0(ϑ)st = Γ1(ϑ)st−1 +Ψ(ϑ)εt +Π(ϑ)ξt, (27)

where Γ0(ϑ), Γ1(ϑ), Ψ(ϑ), and Π(ϑ) are coefficient matrices that depend on model parameters

ϑ, st is a vector of endogenous variables including those expected at time t, εt is a vector

of fundamental shocks, and ξt is a vector of forecast errors. Specifically, in the GNK model,

these vectors are given by

st = [ŷt, π̂t, r̂t, ŷ
n
t , x̂t, ψt, zu,t, za,t, zr,t, Etŷt+1, Etπ̂t+1, Etψt+1]

′,

εt = [εu,t, εa,t, εr,t]
′,

ξt = [(ŷt − Et−1ŷt), (π̂t − Et−1π̂t), (ψt − Et−1ψt)]
′.

According to Lubik and Schorfheide (2003), a full set of solutions to the LRE model (27)

is of the form

st = Φx(ϑ)st−1 + Φε(ϑ, M̃)εt + Φζ(ϑ)ζt, (28)

where Φx(ϑ), Φε(ϑ, M̃), and Φζ(ϑ) are coefficient matrices, M̃ is an arbitrary matrix, and ζt ∼
i.i.d.N(0, σ2

ζ ) is a reduced-form sunspot shock, which is a non-fundamental disturbance.21

The matrix M̃ captures the correlation of the forecast errors ξt with the fundamental shocks

εt, and thus nonzero components in M̃ allow for the correlation of εt with the sunspot shock

ζt. In the case of determinacy, the solution (28) is reduced to

st = ΦD
x (ϑ) st−1 + ΦD

ε (ϑ) εt. (29)

Two features distinguish the solution (28) under indeterminacy. First, the dynamics of

the LRE model is driven not only by the fundamental shocks εt but also by the sunspot

shock ζt. Second, the solution is not unique due to the presence of the arbitrary matrix M̃ ,

that is, the LRE model induces indeterminate solutions. Thus, to specify the law of motion

of the endogenous variables st, the matrix M̃ must be pinned down.

fundamental shocks and that of sunspot shocks are orthogonal.

21Lubik and Schorfheide (2003) originally express the last term in (28) as Φζ(θ,Mζ)ζt, where Mζ is an

arbitrary matrix and ζt is a vector of sunspot shocks. For identification, Lubik and Schorfheide (2004) impose

the normalization Mζ = 1 with the dimension of the sunspot shock vector being unity. Such a normalized

shock is referred to as a “reduced-form sunspot shock” in that it contains beliefs associated with all the

expectational variables.
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The arbitrary matrix M̃ is inferred from the data used in estimation, following Lubik

and Schorfheide (2004). The prior distribution for M̃ is set so that it is centered around

the matrix M∗(ϑ) given in a particular solution. That is, M̃ is replaced with M∗(ϑ) +

M , and M is estimated with prior mean zero. The matrix M∗(ϑ) is selected so that the

contemporaneous impulse responses of endogenous variables to fundamental shocks (i.e.,

∂st/∂εt) are continuous at the boundary between determinacy and indeterminacy regions of

the parameter space. More specifically, for each set of ϑ, the procedure searches for a vector

ϑ∗ that lies on the boundary of the determinacy region, and selects M∗(ϑ) that minimizes

the discrepancy between ∂st/∂εt(ϑ,M
∗(ϑ)) and ∂st/∂εt(ϑ∗) using a least-squares criterion.

In the search for ϑ∗, the procedure finds ϑ∗ numerically by perturbing the parameter φπ in

the monetary policy rule (24), given the other parameters in ϑ.22

3.2 Bayesian inference with a sequential Monte Carlo algorithm

The LRE model is estimated using a full-information Bayesian approach that extends the

model’s likelihood function to the indeterminacy region of the parameter space. Following

Lubik and Schorfheide (2004), the likelihood function for a sample of observations XT =

[X1, ..., XT ]
′ is given by

p(XT |ϑ,M) = 1{ϑ ∈ ΘD} pD(XT |ϑ) + 1{ϑ ∈ ΘI} pI(XT |ϑ,M),

where ΘD and ΘI are the determinacy and indeterminacy regions of the parameter space;

1{ϑ ∈ Θi}, i ∈ {D, I} is the indicator function that equals one if ϑ ∈ Θi and zero otherwise;

and pD(XT |ϑ) and pI(XT |ϑ,M) are the likelihood functions of the state-space models that

consist of observation equations and either the determinacy solution (29) or the indetermi-

nacy solution (28). Then, by Bayes’ theorem, updating a prior distribution p(ϑ,M) with the

sample XT leads to the posterior distribution

p(ϑ,M |XT ) =
p(XT |ϑ,M)p(ϑ,M)

p(XT )
=

p(XT |ϑ,M)p(ϑ,M)∫
p(XT |ϑ,M)p(ϑ,M)dϑ · dM .

22We also considered an alternative prior for the indeterminacy solution. As in Bhattarai, Lee, and Park

(2016), this prior is centered at the solution proposed by Sims (2002) that is described in footnote 20. We

obtained similar posterior estimates to those which are shown in the subsequent section and confirmed the

robustness of our main results.
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To approximate the posterior distribution, we exploit the generic SMC algorithm with

likelihood tempering described in Herbst and Schorfheide (2014, 2015). In the algorithm, a

sequence of tempered posteriors are defined as

�n(ϑ) =
[p(XT |ϑ,M)]τnp(ϑ,M)∫

[p(XT |ϑ,M)]τnp(ϑ,M)dϑ · dM , n = 0, ..., Nτ .

The tempering schedule {τn}Nτ
n=0 is determined by τn = (n/Nτ )

χ, where χ is a parameter

that controls the shape of the tempering schedule. The SMC algorithm generates parameter

draws ϑ
(i)
n ,M

(i)
n and associated importance weights w

(i)
n —which are called particles—from

the sequence of posteriors {�n}Nτ
n=1; that is, at each stage, �n(ϑ) is represented by a swarm

of particles {ϑ(i)
n ,M

(i)
n , w

(i)
n }Ni=1, where N denotes the number of particles.23 For n = 0, ..., Nτ ,

the algorithm sequentially updates the swarm of particles {ϑ(i)
n ,M

(i)
n , w

(i)
n }Ni=1 through im-

portance sampling.24

Posterior inferences about parameters to be estimated are made based on the particles

{ϑ(i)
Nτ
,M

(i)
Nτ
, w

(i)
Nτ
}Ni=1 from the final importance sampling. The SMC-based approximation of

the marginal data density is given by

p(XT ) =
Nτ∏
n=1

(
1

N

N∑
i=1

w̃(i)
n w

(i)
n−1

)
,

where w̃
(i)
n is the incremental weight defined as w̃

(i)
n = [p(XT |ϑ(i)

n−1,M
(i)
n−1)]

τn−τn−1 . The pos-

terior probability of equilibrium determinacy can be calculated as25

P{ϑ ∈ ΘD|XT} =
1

N

N∑
i=1

1{ϑ(i)
Nτ

∈ ΘD}.

In the subsequent empirical analysis, the SMC algorithm uses N = 10, 000 particles and

Nτ = 200 stages. The parameter that controls the tempering schedule is set at χ = 2

following Herbst and Schorfheide (2014, 2015).

3.3 Data

Our estimation is performed using three U.S. time series on the quarterly frequency: the

per-capita real GDP growth rate (100Δ log Yt), the inflation rate of the GDP implicit price

23We make use of parallelization in the evaluation of the importance weights w
(i)
n for i = 1, ..., N .

24This process includes one step of a single-block RWMH algorithm.

25Based on the prior draws, the prior probability of equilibrium determinacy can be calculated in the same

manner.
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deflator (100 log πt), and the federal funds rate (100 log rt). The observation equations that

relate the data to model variables are given by⎡
⎢⎢⎢⎣

100Δ log Yt

100 log πt

100 log rt

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
ā

π̄

r̄

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
ŷt − ŷt−1 + za,t

π̂t

r̂t

⎤
⎥⎥⎥⎦ ,

where ā = 100(a− 1), π̄ = 100(π − 1), and r̄ = 100(r − 1).

To examine the U.S. economy’s shift from indeterminacy to determinacy, that is, U.S. macroe-

conomic stability after the Great Inflation of the 1970s, the estimation is conducted for two

periods: the pre-1979 period from 1966:Q1 to 1979:Q2 and the post-1982 period from 1982:Q4

to 2008:Q4.26 Following Lubik and Schorfheide (2004), the Volcker disinflation period from

1979:Q3 to 1982:Q3 is excluded.

3.4 Fixed parameters and prior distributions

Before the estimation, the elasticity of labor supply and the elasticity of substitution between

intermediate goods are fixed at η = 1 and θ = 9.32 to avoid an identification issue. The

former value is a standard one in the macroeconomic literature, while the latter is the

estimate of Ascari and Sbordone (2014). All the other parameters are estimated; their prior

distributions are shown in Table 1.27

The prior mean of the steady-state (quarterly) rates of output growth, inflation, and

nominal interest ā, π̄, r̄ is set at their respective averages over the period from 1966:Q1 to

2008:Q4. The prior distributions for the structural and policy parameters—h (spending

habit persistence); ω (fraction of backward-looking rule-of-thumb price-setters) or ωsw (rel-

ative weight on past inflation in price indexation); λ (probability of no price change), λgg

(probability of price indexation to trend inflation), or λsw (probability of price indexation to

past inflation); φr (policy-rate smoothing); φπ (policy response to inflation); φx (policy re-

sponse to the output gap); and φΔy (policy response to output growth)—are based on Smets

26Because the post-1982 period ends before the nominal interest rate reached its effective lower bound,

the non-linearity arising from the lower bound is not a critical issue for our estimation strategy.

27For the subjective discount factor β, the steady-state condition β = πa/r is used in estimation.
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and Wouters (2007).28 For the GNK model, these distributions lead to the prior probability

of equilibrium determinacy of 0.482, which is almost even, thus indicating that there is a

priori no substantial bias toward determinacy or indeterminacy. In the same vein, for the

SW-CNK model, the GG-CNK model, and the nested model, the prior mean of φπ is set at

1.125, 1.1, and 1.245, so that the prior probability of determinacy is 0.481, 0.485, and 0.484,

respectively.

Regarding the structural shocks, the prior distributions for the autoregressive parameters

ρi, i ∈ {u, a, r} are beta distributions with mean of 0.5 and standard deviation of 0.2, while

those for the standard deviations of the shock innovations σi, i ∈ {u, a, r} are inverse gamma

distributions with mean of 0.63 and standard deviation of 0.33. As for the indeterminacy

solution, the priors for the coefficients Mi, i ∈ {u, a, r} are normal distributions with mean

zero and standard deviation of unity, while that for the standard deviation of the sunspot

shock σζ is the same as those for the standard deviations of the structural shock innovations.

4 Results of Empirical Analysis

This section presents the results of the empirical analysis. First, we discuss the estimation

results. We then address the paper’s main question of what led to the U.S. economy’s shift

from indeterminacy of equilibrium to determinacy after the Great Inflation.

4.1 Estimation results

This subsection begins by comparing the empirical performance among the GNK model,

the two types of CNK models, and the nested model. Tables 2 and 3 report the posterior

estimates of these four models in the pre-1979 and the post-1982 periods, respectively. The

second to last row of each table presents the log marginal data densities log p(XT ) and shows

that the value for the GNK model (i.e., −128.05) is the largest in the pre-1979 period, while

that for the SW-CNK model (i.e., −64.43) is the largest in the post-1982 period. Besides,

in both periods, the GG-CNK model has the smallest values, and the values for the nested

28For α (the degree of price indexation to trend inflation in the nested model), the prior is the uniform

distribution between zero and unity.
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model are between those for the GNK model and for the GG-CNK model. Thus we focus

on the GNK model and the SW-CNK model in the subsequent analysis.

In light of the empirical result of Cogley and Sbordone (2008) that there is no need for

backward-looking components in an NK Phillips curve when drift in trend inflation is taken

into account, we estimate the GNK and the SW-CNK models with no inertia in inflation

(i.e., ω = 0 in the GNK model and ωsw = 0 in the SW-CNK model). Table 4 shows the

posterior estimates of the GNK and the SW-CNK models with no inflation inertia in the

pre-1979 and the post-1982 periods. The log marginal data densities log p(XT ) shown in

the second to last row of the table indicate two findings. First, the GNK and the SW-CNK

models without inflation inertia exhibit higher densities than those with it in both periods:

for the GNK (SW-CNK) model, −121.23 > −128.05 (−124.62 > −130.43) in the pre-1979

period and −53.66 > −65.98 (−56.87 > −64.43) in the post-1982 period. Second, the GNK

model with ω = 0 has larger densities than the SW-CNK model with ωsw = 0 in both

periods. Therefore, the GNK model with no inertia of inflation is more suitable than any

other models considered for the analysis of what led to U.S. macroeconomic stability after

the Great Inflation, which has been addressed using CNK models in previous literature.

In other words, the feature of the GNK model that some prices remain unchanged in each

quarter is not only more consistent with micro evidence on price setting, but also contributes

to a better fit of the model to the U.S. macroeconomic time series.

The posterior probability of equilibrium determinacy P{ϑ ∈ ΘD|XT} is reported in the

last row of Table 4. For both the GNK model with ω = 0 and the SW-CNK model with

ωsw = 0, the probability of determinacy is almost zero in the pre-1979 period, whereas

it is unity in the post-1982 period. Hence, both models share the estimation result that

the U.S. economy was likely in the indeterminacy region of the parameter space before

1979, while the economy likely entered the determinacy region after 1982, in line with the

result obtained in previous literature. However, there is an important difference between the

estimation results of the two models. In the CNK model, the policy response to inflation

φπ—its posterior mean of 0.44 and the 90 percent highest posterior density (HPD) interval

of [0.07, 0.74]—was definitely passive in the pre-1979 period and then became active—the

posterior mean of 2.85 and the 90% HPD interval of [1.93, 3.65]—in the post-1982 period.

This result is consistent with that obtained in the literature, and thus the CNK model
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confirms the literature’s view that ascribes the U.S. economy’s shift from indeterminacy to

determinacy after the Great Inflation to the Fed’s change from a passive to an active policy

response to inflation. On the other hand, the GNK model exhibits substantial uncertainty

about whether the policy response to inflation was active or passive—the posterior mean

of 1.25 and the 90% HPD interval of [0.22, 2.23]—during the pre-1979 period, in contrast

with the literature’s view.29 It is worth noting that, despite such uncertainty, the posterior

probability of indeterminacy is almost unity in the pre-1979 period, because even an active

policy response to inflation possibly fails to ensure determinacy in the GNK model, as

indicated by Ascari and Ropele (2009) and Coibion and Gorodnichenko (2011).30 Because

the GNK model outperforms the CNK model during both periods in terms of the fit to the

data, our finding is more compelling than the literature’s view.

In the GNK model with ω = 0, the second and sixth columns of Table 4 show that four

of the estimated parameters changed their posterior mean estimates substantially between

the pre-1979 and the post-1982 periods.31 First, trend inflation fell by more than half from

π̄ = 1.44 to π̄ = 0.69 in quarterly terms. Second, the policy response to inflation more

than doubled from φπ = 1.25 in the pre-1979 period to φπ = 3.00 in the post-1982 period.

Third, the policy response to the output gap decreased by more than half from φx = 0.29

to φx = 0.10. Fourth, the policy response to output growth increased by more than three

times from φΔy = 0.14 to φΔy = 0.54. These four changes suggest that the Fed in the post-

1982 period was inclined not only to conduct a disinflation policy by lowering its implicit

inflation target to a moderate level and raising the policy response to inflation, but also to

29According to the posterior distribution, the posterior probability of the policy response to inflation being

active during the pre-1979 period in the GNK model is 0.58.

30For an estimated Taylor-type rule, Orphanides (2004) obtains an active response to expected future

inflation during the pre-1979 period and thus claims that self-fulfilling expectations cannot be the source of

U.S. macroeconomic instability during the Great Inflation. This claim, however, does not necessarily hold

for the GNK model because an active policy response to inflation—the Taylor principle—is not a sufficient

condition for determinacy. In Appendix B, we derive a long-run version of the Taylor principle—that in the

long run the nominal interest rate should be raised by more than the increase in inflation—for the GNK

model. This version of the Taylor principle serves as a necessary condition for determinacy in GNK models,

as shown by Kurozumi (2014, 2016) and Kurozumi and Van Zandweghe (2016, 2017).

31We conducted the (local) identification analysis proposed by Iskrev (2010) and confirmed that all the

estimated parameters of the GNK model with no inflation inertia (i.e., ω = 0) are identified.
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disregard the output gap and put more emphasis on output growth as an indicator of real

economic activity. The last finding is compatible with the argument of Orphanides (2001),

who suggests that monetary policy should put less emphasis on the output gap because such

a gap involves great uncertainty about the measurement of unobservable potential output.

Comparing the estimated standard deviations of the structural shock innovations in the

GNK model with ω = 0 between the pre-1979 and the post-1982 periods, one may wonder

why those of the preference and technology shock innovations are smaller in the pre-1979

period than in the post-1982 period, although the U.S. economy was much more volatile in

the former period. The reasons are twofold. First, the economy during the pre-1979 period

is estimated as in indeterminate equilibrium, where the sunspot shock can arise and generate

greater macroeconomic volatility. Table 5 reports the variances of output growth, inflation,

and the interest rate implied by the model with and without the sunspot shock, as well as

those in the data. In the presence of the shock, the variances of the three variables implied

by the model in the pre-1979 period are, respectively, 1.72, 0.47, and 0.44, which are all

larger than their counterparts in the post-1982 period, 0.64, 0.12, and 0.28. Then, if the

sunspot shock were absent from the model, the variance of inflation would decrease from

0.47 to 0.03 during the pre-1979 period, indicating the importance of the sunspot shock in

explaining the high variability of inflation during that period.

Second, the propagation of shocks is altered under indeterminacy with the weaker mone-

tary policy responses to inflation and output growth during the pre-1979 period.32 Figures 1

and 2 display the impulse responses of the three observed variables (i.e., output growth,

inflation, and the interest rate) to an estimated one-standard-deviation innovation of each

shock in the GNK model with ω = 0, as well as the SW-CNK model with ωsw = 0, during

the pre-1979 and the post-1982 periods, respectively, using the posterior mean estimates

of model parameters.33 The solid lines show that the responses of output growth to the

32Technically, the solution under indeterminacy can generate richer dynamics and induce higher volatilities

of endogenous model variables than that under determinacy, because fewer roots of the matrix Φx(ϑ) in the

solution (28) are suppressed.

33Figure 2 has no panels for impulse responses to the sunspot shock. This is because in both models, the

posterior probability of equilibrium determinacy during the post-1982 period is unity, and thus there is no

role of the sunspot shock in the period.
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structural shocks in the GNK model are larger in the pre-1979 period than in the post-1982

period, even though the estimated standard deviations of the preference and technology

shock innovations are smaller in the former period. This contributes to the larger variance

of output growth in the pre-1979 period (i.e., 1.72) than that in the post-1982 period (i.e.,

0.64).

Figure 1 also illustrates some crucial differences between the GNK and the SW-CNK

models in the impulse responses during the pre-1979 period (while Figure 2 exhibits little

substantial difference between them during the post-1982 period). In the SW-CNK model,

the technology shock generates not only a negative comovement between inflation and output

growth but also a positive one between inflation and the interest rate during the pre-1979

period. This can account for the Great Inflation, where high inflation and low economic

growth—stagflation—occurred with an accommodative monetary policy (i.e., the passive

monetary policy). As shown in Table 4, the estimated standard deviation of the technology

shock innovation σa is larger in the SW-CNK model than in the GNK model, which suggests

that the shock plays a greater role in the former model. By contrast, in the GNK model,

the technology shock brings about a weak response of inflation and a negative comovement

between inflation and the interest rate, which are both ascribed to the weak policy response

to inflation. Instead of the technology shock, the sunspot shock generates a strong response

of inflation and a positive comovement between inflation and the interest rate, as well as a

negative one between inflation and output growth. Thus, in the GNK model, the sunspot

shock can successfully replicate the stagflation as observed in the Great Inflation.

4.2 Source of the U.S. economy’s shift from indeterminacy to de-

terminacy

This subsection addresses the paper’s main question of what led to the U.S. economy’s shift

from indeterminacy to determinacy after the Great Inflation. In light of the estimation

results in the preceding subsection, the present analysis examines the source of the shift by

focusing on the changes in trend inflation and policy responses to inflation, the output gap,

and output growth from the pre-1979 to the post-1982 estimates in the GNK model with no

inflation inertia (i.e., ω = 0).
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Figure 3 illustrates how the determinacy region of the GNK model’s parameter space for

the annualized trend inflation rate 4π̄ and the policy response to inflation φπ expands with

changes in the other model parameters. In each panel of the figure, the marks “×”, “∗”, and
“o” respectively represent the pairs of (4π̄pre79, φpre79π ), (4π̄pre79, φpost82π ), and (4π̄post82, φpost82π ),

where π̄pre79 and φpre79π denote the posterior mean estimates of the trend inflation rate and

the policy response to inflation during the pre-1979 period presented in the second column

of Table 4, and π̄post82 and φpost82π denote those during the post-1982 period presented in the

sixth column of the table.34

Panel (a) shows the case in which all the model parameters (except trend inflation and

the policy response to inflation) are fixed at the pre-1979 estimates (presented in the second

column of Table 4). In this panel, the pair of the pre-1979 estimates of trend inflation

and the policy response to inflation (4π̄pre79, φpre79π )—which is represented by “×”—lies in

the indeterminacy region of the parameter space, in line with the estimation result that

the posterior probability of determinacy during the pre-1979 period is almost zero. The

panel also demonstrates that the pair of the pre-1979 estimate of trend inflation and the

post-1982 estimate of the policy response to inflation (4π̄pre79, φpost82π )—which is denoted by

“∗”—is also located within the indeterminacy region. This indicates that the increase in

the policy response to inflation from the pre-1979 estimate φpre79π to the post-1982 estimate

φpost82π alone does not suffice for explaining the shift from indeterminacy to determinacy.

Moreover, the pair of the post-1982 estimates of trend inflation and the policy response to

inflation (4π̄post82, φpost82π )—which is represented by “o”—lies inside the determinacy region.

This finding suggests that the shift can be explained by the fall in trend inflation from the

pre-1979 estimate 4π̄pre79 to the post-1982 estimate 4π̄post82 along with the increase in the

policy response to inflation.

Panel (b) displays the case in which the policy responses to the output gap and output

growth, φx and φΔy, are set at the post-1982 estimates (presented in the sixth column

of Table 4), keeping the other model parameters fixed at the pre-1979 estimates. As the

difference between panels (a) and (b) shows, the change in the policy responses to the

output gap and output growth from the pre-1979 to the post-1982 estimates significantly

34In each panel of Figure 3, the boundary between determinacy and indeterminacy regions coincides with

that given by the long-run version of the Taylor principle presented in Appendix B.

23



expands the determinacy region. As a consequence, in panel (b), while the pair of the

pre-1979 estimates of trend inflation and the policy response to inflation (4π̄pre79, φpre79π ) is

still located in the indeterminacy region, that of the pre-1979 estimate of trend inflation

and the post-1982 estimate of the policy response to inflation (4π̄pre79, φpost82π ) lies inside the

determinacy region. This finding indicates that the decrease in the policy response to the

output gap and the increase in the response to output growth, along with the rise in the

response to inflation, can account for the shift from indeterminacy to determinacy, regardless

of the fall in trend inflation.35

Panel (c) presents the case in which all the model parameters are set at the post-1982

estimates. In this panel, the pair of the post-1982 estimates of trend inflation and the policy

response to inflation (4π̄post82, φpost82π ) is located inside the determinacy region, in line with

the estimation result that the posterior probability of determinacy during the post-1982

period is one. Panel (c) is not so different from panel (b), suggesting that the change from

the pre-1979 to the post-1982 estimates of all the model parameters other than trend inflation

and the policy responses to inflation, the output gap, and output growth plays a minor role

in accounting for the shift from indeterminacy to determinacy.

These panels demonstrate that the increase in the policy response to inflation from the

pre-1979 to the post-1982 estimate alone does not suffice for explaining the U.S. economy’s

shift from indeterminacy to determinacy after the Great Inflation, unless it is accompanied

by either the estimated fall in trend inflation or the estimated change in policy responses

to the output gap and output growth. Taking into consideration that trend inflation is

equivalent to the central bank’s inflation target in the model, this finding indicates that the

changes in the Fed’s implicit inflation target and policy responses to real economic activity

have played a key role in the shift to determinacy, in addition to its more active response to

inflation.

35In a GNK model with a Taylor-type rule, the destabilizing role of the policy response to the output gap

is indicated by Ascari and Ropele (2009), while the stabilizing role of the policy response to output growth

is pointed out by Coibion and Gorodnichenko (2011).
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5 Conclusion

This paper has revisited a large literature’s view that U.S. macroeconomic stability after the

Great Inflation of the 1970s was achieved by the Fed’s change from a passive to an active

policy response to inflation. We have estimated a GNK model jointly with a Taylor-type

rule during two periods, before and after the Volcker disinflation of 1979–1982, by adopting

an SMC algorithm in a full-information Bayesian approach based on Lubik and Schorfheide

(2004). Our estimation results have shown that, in both periods, the GNK model (with

no inertia in inflation) empirically outperforms two types of CNK models used in previous

literature. This indicates that the GNK model is more suitable than the two CNK models

for analyzing the source of the U.S. macroeconomic stability.

According to the estimated GNK model, the U.S. economy was likely in the equilibrium-

indeterminacy region of the model’s parameter space before 1979, while it likely entered the

determinacy region after 1982, in line with the result obtained in the literature. However,

there is considerable uncertainty as to whether the policy response to (current) inflation was

active or passive during the pre-1979 period, which contrasts with the literature’s view that

the policy response was surely passive during the Great Inflation and that the subsequent

change to an active response led to the U.S. economy’s shift from indeterminacy to determi-

nacy. Moreover, we have demonstrated that the increase in the policy response to inflation

from the pre-1979 to the post-1982 estimate alone does not suffice for explaining the shift,

unless it is accompanied by the change from the pre-1979 to the post-1982 estimates of either

trend inflation or the policy responses to the output gap and output growth. This finding

extends the literature on the role of monetary policy in achieving U.S. macroeconomic sta-

bility after the Great Inflation, by emphasizing the importance of the changes in the Fed’s

implicit inflation target and policy responses to real economic activity.
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Appendix

A Another GNK Model (with Homogeneous Labor)

The GNK model employed in this paper considers firm-specific labor, as in Coibion and

Gorodnichenko (2011). In this section we analyze another type of GNKmodel, which assumes

homogeneous labor as in Ascari and Ropele (2009), and compare it with our GNK model in

terms of empirical performance.

A.1 Households

In the GNK model with homogeneous labor, the representative household supplies such labor

services lt. The utility function is of the form

E0

∞∑
t=0

βt exp(zu,t)

[
log(C̃t − hCt−1)− 1

1 + 1/η
l
1+1/η
t

]
,

and the budget constraint is given by

PtC̃t +Bt = PtWtlt + rt−1Bt−1 + Tt,

where Wt is the real wage rate of homogeneous labor.

The first-order conditions for utility maximization with respect to consumption and bond

holdings turn out to coincide with those in our GNK model (i.e., (1) and (3)), while that

regarding labor supply is given by

Wt =
l
1/η
t exp(zu,t)

Ξt
. (30)

A.2 Firms

As for firms, there is no change in the setting of final-good firms, whereas all intermediate-

good firms’ first-order conditions for cost minimization lead to identical real marginal cost

mct(i) =
Wt

At
= mct. (31)

Moreover, the first-order condition for the optimized price P o
t becomes

Et

∞∑
j=0

(βλ)j
Ξt+j
Ξt

Yt+j
Yt

j∏
k=1

πθt+k

(
pot

j∏
k=1

1

πt+k
− θ

θ − 1
mct+j

)
= 0. (32)
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The labor market clearing condition, along with the demand curve (4), yields

lt =

∫ 1

0

lt(i)di =
Yt
At

Δt, (33)

where Δt denotes relative price distortion and is given by

Δt =

∫ 1

0

(
Pt(i)

Pt

)−θ
di. (34)

Using (1), (6), (30), and (33), the real marginal cost (31) becomes

mct =

(
Yt
At

)1
η
(
Yt
At

− h
Yt−1

At

)
Δ

1
η

t . (35)

Under Calvo-style staggered price-setting, the relative price distortion equation (34) can

be rewritten as

Δt = λπθtΔt−1 + (1− λ)
[
(1− ω)(pot )

−θ + ω (prt )
−θ
]
. (36)

A.3 Equilibrium conditions

There are no changes in the settings of the central bank and the natural rate of output, and

thus the equilibrium conditions consist of (1), (3), (6), (8), (10), (11), (14), (16), (17), (32),

(35), and (36). For the steady state to be well defined, the following condition is assumed:

λmax(πθ−1, πθ) < 1. (37)

Combining the equilibrium conditions, rewriting the resulting conditions in terms of the

detrended variables yt = Yt/At and y
n
t = Y n

t /At, and log-linearizing the conditions under the

assumption (37) yields (21)–(22) as well as

π̂t = γb,hπ̂t−1 + γf,hEtπ̂t+1 + κhŷt +
hκλ,h
a− h

(ŷt − ŷt−1 + za,t) +
κλ,h
η

Δ̂t + ψt, (38)

Δ̂t = λπθΔ̂t−1 +
θλπθ−1(π − 1)

1− λπθ−1
π̂t, (39)

ψt = γψ,hEtψt+1 + κψ,h(Etŷt+1 − ŷt + Etza,t+1 + θEtπ̂t+1 − r̂t), (40)

where the coefficients are given by γb,h = ω/ϕh, γf,h = βλπθ/ϕh, κh = κλ,h(1 + 1/η), κλ,h =

(1− λπθ−1)(1− βλπθ)(1− ω)/ϕh, γψ,h = βλπθ−1, κψ,h = γψ,h(π − 1)(1− λπθ−1)(1− ω)/ϕh,

and ϕh = λπθ−1 + ω(1− λπθ−1 + βλπθ).

The GNK model with homogeneous labor differs from our GNK model (with firm-specific

labor) in that the GNK Phillips curve (19) depends additionally on the relative price distor-

tion Δ̂t.
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A.4 Empirical performance

The GNK model with homogeneous labor is also estimated, using the same estimation strat-

egy and data as described in the paper. Table 6 reports the posterior estimates of the

GNK model with homogeneous labor in the pre-1979 and the post-1982 periods. The sec-

ond to last row of the table presents the log marginal data densities log p(XT ) and shows

that the model without inertia of inflation has a larger value than that with it in both pe-

riods: −126.13 > −130.31 in the pre-1979 period and −55.89 > −62.80 in the post-1982

period. Thus, there is no need for inflation inertia in the GNK model with homogeneous

labor, in line with our GNK model. Turning to the comparison of the two types of GNK

models (with no inflation inertia, i.e., ω = 0), our GNK model has larger values of the log

marginal data density than the other in both periods: −121.23 > −126.13 in the pre-1979

period and −53.66 > −55.89 in the post-1982 period. Therefore, our GNK model empirically

outperforms the GNK model with homogeneous labor.

B Long-run Version of the Taylor Principle

This section presents the long-run version of the Taylor principle in the GNK model of the

paper. To obtain it, the long-run inflation elasticity of output is derived. The GNK Phillips

curve (19), the variable ψt’s equation (20), and the spending Euler equation (21) imply that

the elasticity is given by

εy =
1− γb − γf − κψ(θ−1)

1−βλπθ−1

κ
. (41)

Then, from the Taylor-type rule (24), it follows that the long-run version of the Taylor

principle is represented as

φπ + φxεy > 1. (42)
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Table 1: Prior distributions for parameters of the GNK model, the two types of CNK models,
and the nested model

Parameter Distribution Mean St. dev.
ā Normal 0.370 0.150
π̄ Normal 0.985 0.750
r̄ Gamma 1.597 0.250
h Beta 0.700 0.100
ω/ωsw Beta 0.500 0.150
λ/λgg/λsw Beta 0.500 0.050
φr Beta 0.750 0.100
φπ Gamma 1.5/1.125/1.1/1.245 0.750
φx Gamma 0.125 0.100
φΔy Gamma 0.125 0.100
α Uniform 0.500 0.289
ρu Beta 0.500 0.200
ρa Beta 0.500 0.200
ρr Beta 0.500 0.200
σu Inverse gamma 0.627 0.328
σa Inverse gamma 0.627 0.328
σr Inverse gamma 0.627 0.328
σζ Inverse gamma 0.627 0.328
Mu Normal 0.000 1.000
Ma Normal 0.000 1.000
Mr Normal 0.000 1.000

Notes: The prior mean of the policy response to inflation φπ is set at 1.5 for the GNKmodel, 1.125 for the SW-

CNK model, 1.1 for the GG-CNK model, and 1.245 for the nested model. The prior probability of equilibrium

determinacy is then 0.482 for the GNK model, 0.481 for the SW-CNK model, 0.485 for the GG-CNK model,

and 0.484 for the nested model. Inverse gamma distributions are of the form p(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2

,

where ν = 4 and s = 0.5.
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ā
0.
37
4

[0
.1
96
,
0.
55
6]

0.
41
0

[0
.2
38
,
0.
57
4]

0.
41
0

[0
.2
23
,
0.
57
6]

0.
35
6

[0
.1
58
,
0.
54
2]

π̄
0.
72
4

[0
.5
60
,
0.
89
8]

0.
69
2

[0
.5
33
,
0.
83
7]

0.
67
9

[0
.4
91
,
0.
87
3]

0.
75
9

[0
.4
78
,
0.
94
7]

r̄
1.
45
1

[1
.1
88
,
1.
73
2]

1.
42
7

[1
.1
80
,
1.
69
4]

1.
38
5

[1
.1
19
,
1.
67
2]

1.
47
1

[1
.1
26
,
1.
76
5]

h
0.
65
3

[0
.5
70
,
0.
72
8]

0.
59
0

[0
.5
10
,
0.
66
5]

0.
60
5

[0
.5
23
,
0.
68
2]

0.
65
7

[0
.5
83
,
0.
72
3]

ω
/ω

sw
0.
06
9

[0
.0
27
,
0.
11
5]

0.
13
6

[0
.0
51
,
0.
22
0]

0.
06
9

[0
.0
26
,
0.
11
0]

0.
07
0

[0
.0
26
,
0.
11
3]

λ
/λ

g
g
/λ

sw
0.
49
0

[0
.4
11
,
0.
55
8]

0.
43
4

[0
.3
67
,
0.
49
7]

0.
43
5

[0
.3
65
,
0.
50
3]

0.
48
9

[0
.3
94
,
0.
55
3]

φ
r

0.
68
0

[0
.6
08
,
0.
76
5]

0.
67
5

[0
.5
90
,
0.
76
4]

0.
61
7

[0
.5
30
,
0.
70
1]

0.
65
0

[0
.5
58
,
0.
73
1]

φ
π

2.
60
0

[1
.9
71
,
3.
31
4]

2.
65
7

[1
.8
79
,
3.
31
7]

2.
35
8

[1
.7
95
,
2.
89
3]

2.
48
5

[1
.7
41
,
3.
24
3]

φ
x

0.
13
2

[0
.0
01
,
0.
26
6]

0.
11
5

[0
.0
02
,
0.
23
6]

0.
08
5

[0
.0
02
,
0.
16
8]

0.
13
5

[0
.0
02
,
0.
26
9]

φ
Δ
y

0.
47
6

[0
.2
81
,
0.
66
7]

0.
53
3

[0
.3
16
,
0.
71
6]

0.
40
9

[0
.2
39
,
0.
56
5]

0.
42
4

[0
.2
53
,
0.
62
8]

α
–

–
–

–
–

–
0.
47
5

[0
.0
03
,
0.
84
7]

ρ
u

0.
90
9

[0
.8
74
,
0.
95
4]

0.
91
5

[0
.8
82
,
0.
94
9]

0.
91
4

[0
.8
81
,
0.
94
9]

0.
88
6

[0
.8
62
,
0.
95
1]

ρ
a

0.
14
2

[0
.0
14
,
0.
24
6]

0.
08
8

[0
.0
14
,
0.
15
6]

0.
09
5

[0
.0
11
,
0.
16
7]

0.
18
1

[0
.0
13
,
0.
29
2]

ρ
r

0.
67
4

[0
.5
77
,
0.
76
2]

0.
62
9

[0
.5
43
,
0.
72
6]

0.
67
2

[0
.5
98
,
0.
75
3]

0.
69
6

[0
.6
20
,
0.
78
0]

σ
u

2.
22
9

[1
.4
55
,
3.
04
3]

2.
09
3

[1
.4
41
,
2.
71
4]

1.
97
4

[1
.4
05
,
2.
51
2]

1.
98
3

[1
.3
77
,
2.
97
3]

σ
a

1.
58
1

[1
.2
24
,
1.
93
8]

1.
36
1

[1
.1
04
,
1.
61
4]

1.
41
0

[1
.1
37
,
1.
68
5]

1.
51
4

[1
.2
13
,
2.
01
9]

σ
r

0.
22
9

[0
.1
77
,
0.
28
0]

0.
23
2

[0
.1
83
,
0.
28
1]

0.
25
5

[0
.1
93
,
0.
31
9]

0.
24
1

[0
.1
79
,
0.
29
9]

σ
ζ

1.
01
9

[0
.3
21
,
1.
77
1]

–
–

–
–

0.
50
1

[0
.3
00
,
0.
70
7]

M
u

-0
.5
00

[-
1.
85
4,

0.
85
7]

–
–

–
–

0.
59
1

[-
0.
69
6,

2.
06
8]

M
a

0.
27
7

[-
0.
81
8,

1.
47
8]

–
–

–
–

-0
.2
77

[-
1.
55
3,

1.
01
4]

M
r

0.
65
4

[-
0.
99
9,

2.
24
6]

–
–

–
–

0.
43
0

[-
1.
07
2,

1.
89
7]

lo
g
p(
X
T
)

−6
5.
97
7

−6
4.
43
3

−7
7.
51
1

−7
0.
99
2

P
{ϑ

∈
Θ
D
|X

T
}

0.
98
8

1.
00
0

1.
00
0

0.
93
0

N
o
te
s:

T
h
is
ta
b
le
sh
ow

s
th
e
p
o
st
er
io
r
m
ea
n
a
n
d
9
0
p
er
ce
n
t
h
ig
h
es
t
p
os
te
ri
o
r
d
en
si
ty

in
te
rv
a
ls
b
a
se
d
o
n
1
0
,0
0
0
p
a
rt
ic
le
s
fr
o
m

th
e
fi
n
a
l
im

p
o
rt
a
n
ce

sa
m
p
li
n
g

in
th
e
S
M
C

a
lg
o
ri
th
m
.
In

th
e
ta
b
le
,
lo
g
p
(X

T
)
re
p
re
se
n
ts

th
e
S
M
C
-b
a
se
d
a
p
p
ro
x
im

a
ti
o
n
of

lo
g
m
a
rg
in
a
l
d
a
ta

d
en

si
ty

a
n
d
P
{ϑ

∈
Θ

D
|X

T
}d

en
o
te
s
th
e

p
os
te
ri
o
r
p
ro
b
a
b
il
it
y
of

eq
u
il
ib
ri
u
m

d
et
er
m
in
a
cy
.

35



T
ab

le
4:

P
os
te
ri
or

es
ti
m
at
es

of
th
e
G
N
K

an
d
th
e
S
W

-C
N
K

m
o
d
el
s
w
it
h
n
o
in
er
ti
a
in

in
fl
at
io
n

P
re
-1
97
9
p
er
io
d

P
os
t-
19
82

p
er
io
d

G
N
K

m
o
d
el
:
ω
=

0
S
W

-C
N
K

m
o
d
el
:
ω
sw

=
0

G
N
K

m
o
d
el
:
ω
=

0
S
W

-C
N
K

m
o
d
el
:
ω
sw

=
0

P
ar
am

et
er

M
ea
n

90
%

in
te
rv
al

M
ea
n

90
%

in
te
rv
al

M
ea
n

90
%

in
te
rv
al

M
ea
n

90
%

in
te
rv
al

ā
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Table 5: Variances of observed variables in the data and implied by the GNK model with
no inflation inertia

Output growth Inflation Interest rate
Pre-1979 period:
Data 1.031 0.299 0.284
GNK model: ω = 0 1.717 0.473 0.436
GNK model: ω = 0 and no sunspot shock 1.692 0.026 0.173

Post-1982 period:
Data 0.420 0.068 0.391
GNK model: ω = 0 0.638 0.120 0.275

Note: This table shows the variances of the three observed variables—output growth, inflation, and the

interest rate—in the data and those implied by the GNK model with no inflation inertia (i.e., ω = 0) using

the posterior mean estimates of parameters.
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Figure 1: Impulse responses during the pre-1979 period in the GNK and the SW-CNK
models with no inflation inertia

(a) Preference shock εu,t
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(b) Technology shock εa,t
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(c) Monetary policy shock εr,t
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(d) Sunspot shock ζt
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Note: This figure shows the impulse responses of output growth, inflation, and the interest rate in terms
of deviations from steady-state values, to a one-standard-deviation innovation to each of the preference,
technology, monetary policy, and sunspot shocks, using the posterior mean estimates of parameters in the
GNK model with ω = 0 and the SW-CNK model with ωsw = 0 during the pre-1979 period.
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Figure 2: Impulse responses during the post-1982 period in the GNK and the SW-CNK
models with no inflation inertia

(a) Preference shock εu,t
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(b) Technology shock εa,t
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(c) Monetary policy shock εr,t
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Note: This figure shows the impulse responses of output growth, inflation, and the interest rate in terms
of deviations from steady-state values, to a one-standard-deviation innovation to each of the preference,
technology, and monetary policy shocks, using the posterior mean estimates of parameters in the GNK
model with ω = 0 and the SW-CNK model with ωsw = 0 during the post-1982 period.
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Figure 3: Equilibrium-determinacy region of the GNK model’s parameter space

(a) Pre-1979 estimates of all model parameters
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(c) Post-1982 estimates of all model parameters
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Notes: For the annualized trend inflation rate 4π̄ and the policy response to inflation φπ, the figure illustrates

the equilibrium-determinacy region of the GNK model’s parameter space. In each panel, the marks “×”,

“∗”, and “◦” respectively represent the pairs of (4π̄pre79, φpre79
π ), (4π̄pre79, φpost82

π ), and (4π̄post82, φpost82
π ),

where π̄pre79 (π̄post82) and φpre79
π (φpost82

π ) denote the mean estimates of the trend inflation rate and the

policy response to inflation in the pre-1979 (post-1982) period.
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