Possibilities and Challenges in Economic Capital Management

Risk expressions including VaR and their utilization in management

July 11,2007

Mizuho-DL Financial Technology Co.,Ltd

Toshifumi Ikemori

Self-Introduction

Mizuho-DL Financial Technology Co.,Ltd.

[Profile]

Subsidiary of Mizuho Financial Group specialize in financial technology

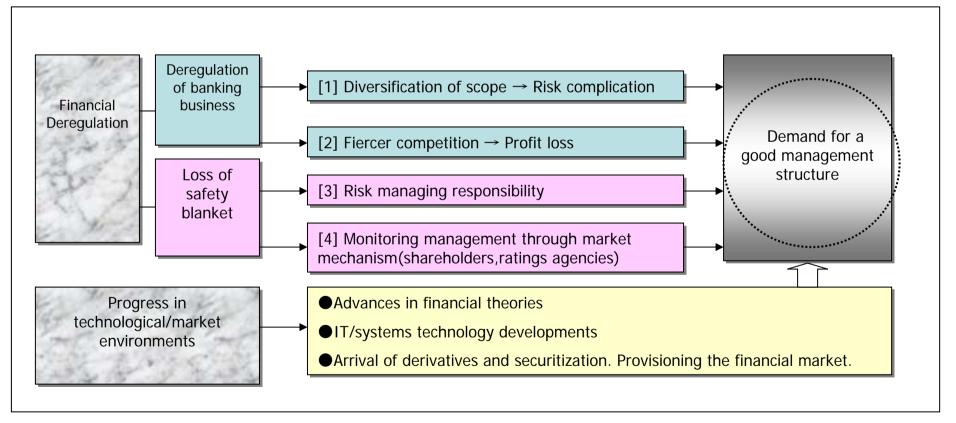
- Address : Ote Center Bldg. 12F Otemachi, Chiyoda-ku, Tokyo
- Capital 200 million yen
 (Shareholders : Mizuho Corporate Bank, Dai-ichi Mutual Life, Sompo Japan)
- Scope of business: Financial technology development for shareholding group members, as well as general technological consultation for corporate clients

New financial products/schemes

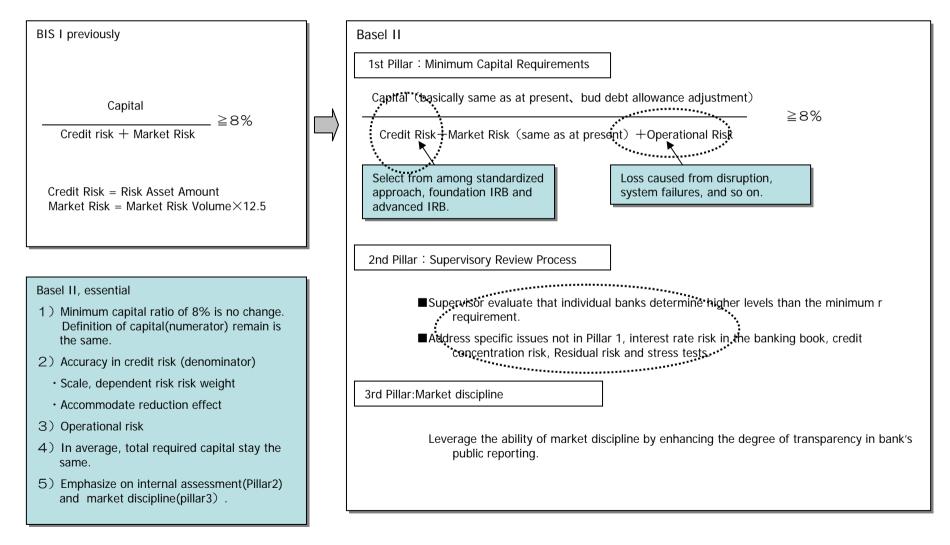
Risk management (market, credit, commodity, catastrophe, weather and their consolidation)

Investment/allocation (portfolio selection, performance measurement)

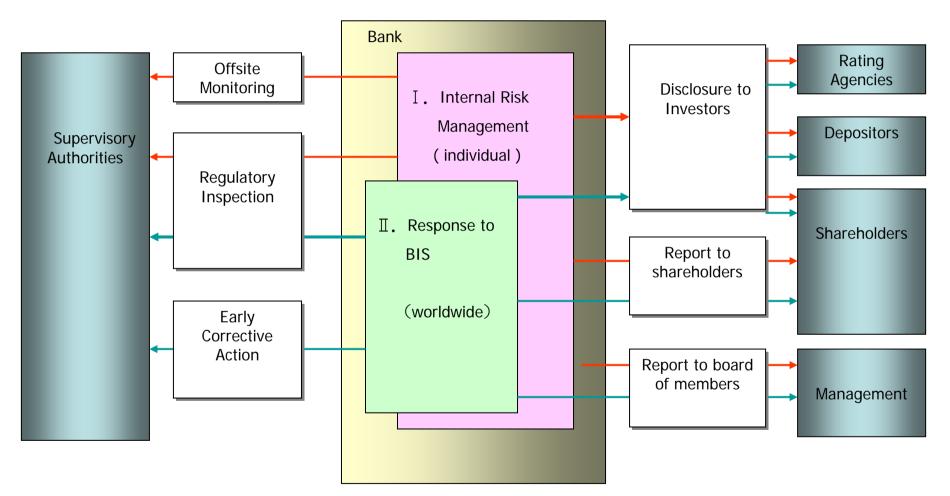
Contents


- 1. Historic setting of a Risk management
- 2. Measuring risk
- 3. Mathematical foundation of risk measures
- 4. Some examples of risk measure
- 5. Practical uses in risk measurement
- 6. Towards integrated risk management beyond regulatory requirments

1. Historic setting of risk management


1-1. Where we stand

- [points] OImpact of Financial deregulation [1] diversification of banking operations, [2] intensified competition among and beyond financial sectors.
 - ODeregulation paraphrase to loss of governmental protection. Thus, demands for [3] good risk management structures and [4] decent external monitoring.


OTechnological advances and market environments are ready for sorting out a risk management structure.

1-2. Worldwide Re-regulation trend in Mgt. : Outline of New Basel II

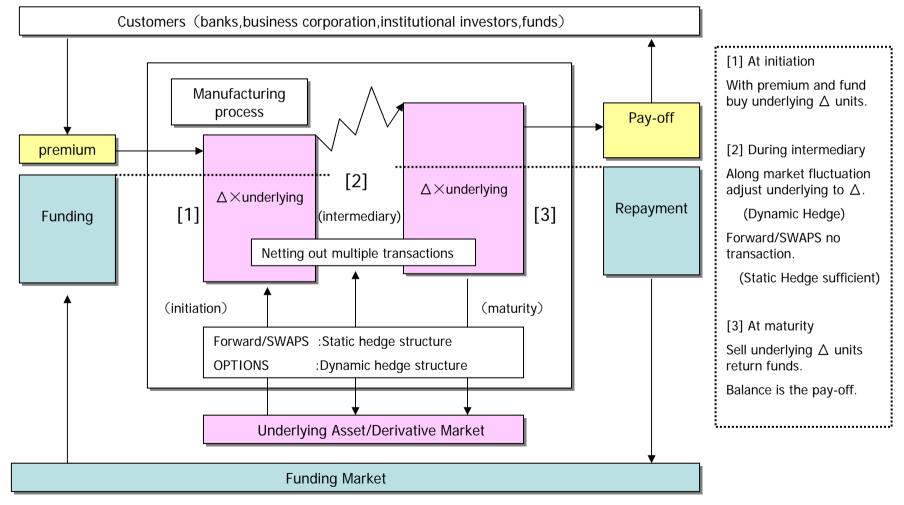
1-3. Double perspective Risk Management (= I . Internal Risk Management, and II. Response to BIS)

2. Measuring Risk

2-1. Chronicle of risk measurement

- 1) Investment world before H. Markowitz, risk is something deal within one's "Guts", not something considered to be measured. (Against The Gods :P. Bernstein)
- 2) Risk was a major player in two ground breaking theories of financial engineering.

OPortfolio theory (H. Markowitz : 1952)


- Defined risk as the deviation of return on investment
- Mathematically, analyze risk reduction effect of diversification

Option pricing theory (F. Black & M. Scholes :1973)

- Demonstrate option replication using dynamic hedging method with underlying and risk free assets.
- An option risk is expressed in terms of sensitivity(delta) against underlying movement.

(Note) Delta sensitivity indicator specifies derivative risk

【Cases】 ■Forward /swap is static hedge, constant delta.■Option is dynamic hedge, variable delta.

3) The mid-1990s, J. P. Morgan and other banks pushed VaR as a market risk measurement standard.Basel Committee adopted for trading books.

Henceforth, VaR was accepted as de facto standard for risk measurement.

4) Maximum loss under a given stress scenario can be a measurement of the risk in cases :

Of risk regulations on US mortgage banks

Of interest rate risk on banking books. Recently BIS II regulation Pillar2.

- 5) Subsequently, the following areas are active in discussion, research and practical developments in risk measurement after or about year 2000:
 - [1] Mathematical foundation building on risk measurement
 - [2] Reduction of a coherent risk measurement to practice
 - [3] Relationship between risk measure and financial economics
 - [4] Wide application of risk measurement to financial practices

3. Mathematical foundation of risk measures

3-1. Definitions

Let Ω be a set of states of nature, is finite.

 \blacksquare X is a random variable that indicates the final net worth $X(\omega)$ of position of each element ω of Ω .

\blacksquare A risk measure is a real number $\rho(X)$.

Indicates degrees of loss due to the transaction.

Let $0 \le p(\omega) \le 1$ be the probability of the event ω takes place.

$$\sum_{\omega \in \Omega} p(\omega) = 1$$

 \odot A non-empty set Q of probability measures, such as ρ on the space Ω , is considered as a set of generalize scenarios.

3-2. Coherent risk measure

ERisk measure $\rho(X)$ is <u>coherent</u>

when following conditions are met.

1) Subadditivity $\rho(X+Y) \leq \rho(X) + \rho(Y) \quad \forall X, Y \in \Gamma$ 2) Positive homogeneity $\lambda \geq 0 \Rightarrow \rho(\lambda X) = \lambda \rho(X)$ 3) Monotonicity $X \leq Y \Rightarrow \rho(X) \geq \rho(Y)$ 4) Transition invariance $m \in R \qquad \rho(X+m) = \rho(X) - m$

Copyright © 2007 Mizuho-DL Financial Technology Co., Ltd. All rights reserved.

3-3. Acceptable transaction set

 \blacksquare A set of transactions *A* is <u>acceptable</u>

when

1

) The acceptance set A contains L₊.

$$A \supset L_{+} = \{X \mid \forall \omega \in \Omega, X(\omega) \ge 0\}$$

2) The acceptance set A satisfies $A \cap L_{-} = \{X \mid \forall \omega \in \Omega, X(\omega) < 0\} = \phi$

3) The acceptance set A is convex.

 $X, Y \in A \implies tX + (1-t)Y \in A \qquad 0 \le t \le 1$

4) The acceptance set A is a positively homogeneous cone.

$$X \in A, \quad \lambda > 0 \quad \Rightarrow \quad \lambda \cdot X \in A$$

3-4. Correspondence between Acceptance Sets and Measures of risks

Let A be an acceptable set. A risk measure from A is defined as $\rho_{A,r}(X) = \inf \{m \mid mr + X \in A\}$ r: interest rate of the term

Let ρ be a given risk measure. Define a subset of financial transactions limited by the measure ρ , $A_{\rho} = \{X \in \Pi \mid \rho(X) \le 0\}$ Π : set of all financial transactions

■The following relation exist

1) if *B* is acceptable, then $\rho_{B,r}$ is coherent. And $A_{\rho_{B,r}} = \overline{B}$, \overline{B} is closure of *B*

2) if ρ is coherent, then A_{ρ} is closed and acceptable set.

And $\rho_{A_{\rho},r} = \rho$

Copyright © 2007 Mizuho-DL Financial Technology Co., Ltd. All rights reserved.

3-5. Representation Theorem

The risk measure defined on the scenario set Q is defined as

$$\rho_Q(X) = \sup\left\{E_p\left[-\frac{X}{r}\right] \mid p \in Q\right\}$$

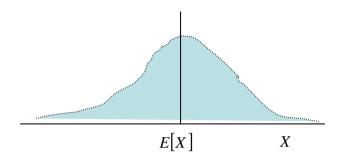
The scenario-based measure ρ_Q is, in fact, a coherent risk measure.

Conversely, if ρ is coherent risk measure,

there exists a set Q of future scenarios, such that

$$\rho(X) = \rho_Q(X) = \sup\left\{E_p\left[-\frac{X}{r}\right] \mid p \in Q\right\}$$

4. Some examples of risk measure

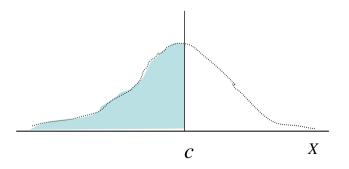

4-1. Variance (STD DEV) based and lower partial moments based

■ Given P/L R.V. X of a transaction.

■ Variance (STD DEV) based :

$$V[X] = E[(X - E[X])^{2}]$$

$$\sigma[X] = \sqrt{E[(X - E[X])^{2}]}$$


■ Lower partial moment based (degree of k) :

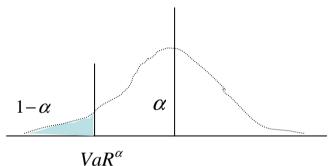
$$LPM_{k}[c, X] = E\left[\max(c - X, 0)^{k}\right]$$
$$NLPM_{k}[c, X] = LPM_{k}[c, X] = E\left[\max(c - X, 0)^{k}\right]^{\frac{1}{k}}$$

Eg; k = 1 : Expected Regret

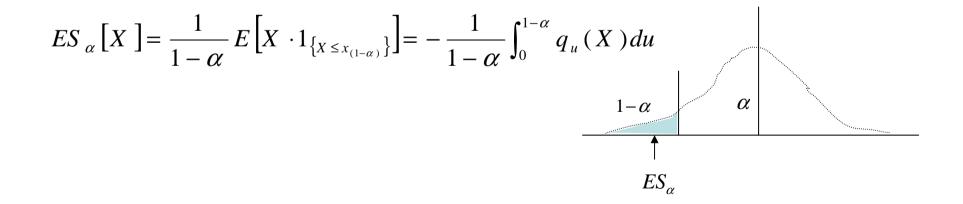
$$ER[X] = E[\max(c - X, 0)]$$
Eg; k = 2 : Semi-Variance

$$SV[X] = E[\max(E[X] - X, 0)^{2}]$$

Copyright @ 2007 Mizuho-DL Financial Technology Co., Ltd. All rights reserved.


4-2. Value at Risk and Expected Shortfall

 $\blacksquare \alpha$ percentile


$$x_{(\alpha)} = q_{\alpha}(X) = \inf \left\{ x \in R : P[X \le x] \ge \alpha \right\}$$

 \blacksquare VaR (confidence level α)

$$VaR_{\alpha}(X) = -x_{(1-\alpha)} = q_{\alpha}(-X)$$

ES (confidence level α)

Copyright © 2007 Mizuho-DL Financial Technology Co., Ltd. All rights reserved.

4-3. Spectral risk measure

■ Define spectral risk measure $M_{\phi}(X)$ as $M_{\phi}(X) = -\int_{0}^{1} x_{(u)} \cdot \phi(u) \cdot du$ where $\phi \in L([0,1])$, $x_{(u)} = -F_{X}^{-1}[u]$, $F_{X}[u] = \Pr[X \le x]$

•
$$\phi$$
 is a spectral weight function, weighs risk aversion.
if $\|\phi\| = 1$, $\phi > 0$, a decreasing function, ϕ is admissible.
where $\|\phi\| = \int_0^1 \phi(u) du$

 $\blacksquare \ M_{\phi}(X) \quad \text{is coherent} \ \Leftrightarrow \ \phi \quad \text{is admissible}$

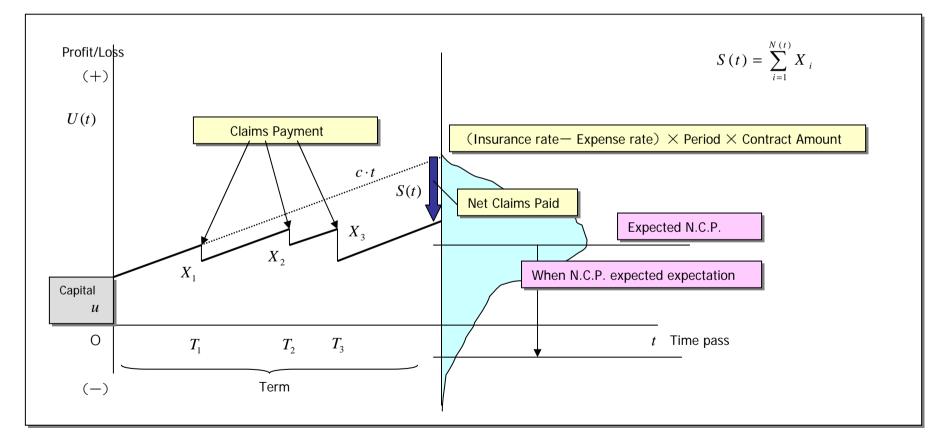
Eg; when
$$\phi(u) = \frac{1}{\alpha} \mathbb{1}_{\{0 \le u \le \alpha\}}$$
, $ES_{\alpha}[X] = M_{\phi}(X)$

Eg; when $\phi(u) = \delta(u - \alpha)$, $VaR_{\alpha}[X] = M_{\phi}(X)$

Copyright © 2007 Mizuho-DL Financial Technology Co., Ltd. All rights reserved.

5. Practical uses in risk measurement

■Application can be found for example.


- 1) Financial products pricing
 - Insurance valuation principle
 - · Risk adjusted loan rate
- 2) Hedge
 - Dynamic hedge
 - Minimum variance hedge
- 3) Portfolio optimization
 - Portfolio selection : Maximize profit given a risk tolerance.
- 4) Provision [toward accounting application]
 - · General provision and credit risk measurement.
- 5) Methods of aggregate risks and risk capital allocation
 - Allocation by risk contribution, and so on.
- 6) Performance evaluation reflecting risk
 - Risk Adjusted Return on Capital(RARoC), Shareholder Value added(SVA), and so on.

6. Towards integrated risk management beyond regulatory requirements

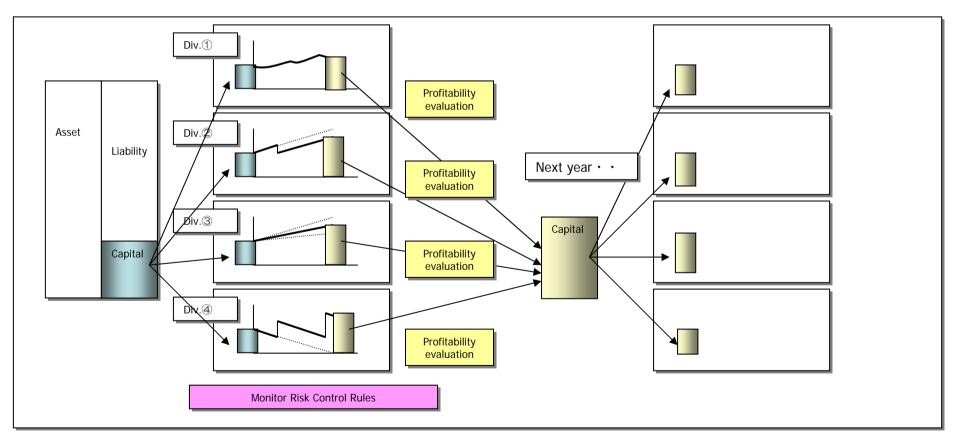
6-1. Risk in actuarial theory

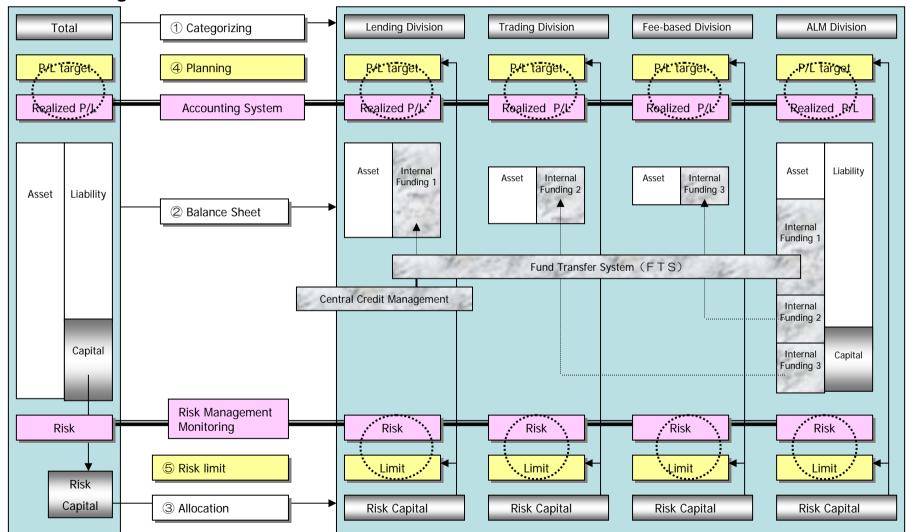
O Insurance payment events are uncertainty in insurance business. Annual premium income $c \cdot t$ is approximately reckonable.

ONet claims paid S(t) per annum is a random variable.

Copyright $\textcircled{\sc opt}$ 2007 Mizuho-DL Financial Technology Co., Ltd. All rights reserved.

6-2. Role of Integrated Risk Management in Bank Management

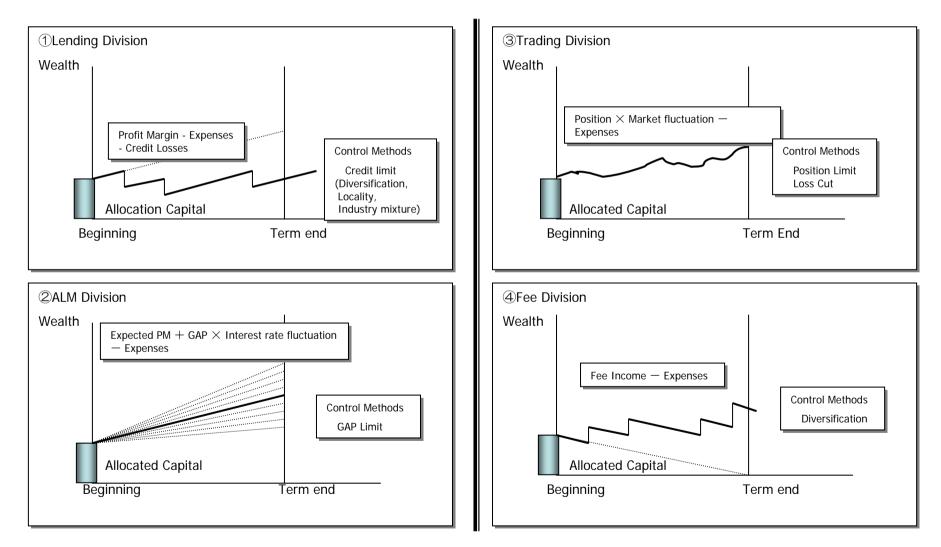

[point]


OBank is Collection of Risk generating Bodies.

OBuilding Profit on Allocated Capital via Controlling Risk

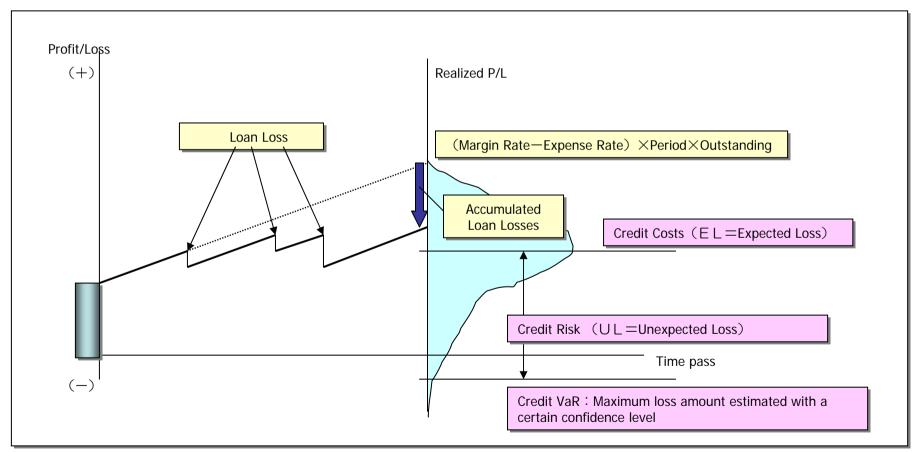
OAppraisal at End of Accounting Term (RAPM=Risk Adjusted Performance Measurement)

OAvoid Bankruptcy within a Confidence Level



6-3. Management Framework

Copyright @ 2007 Mizuho-DL Financial Technology Co., Ltd. All rights reserved.



Copyright O 2007 Mizuho-DL Financial Technology Co., Ltd. All rights reserved.

(Note) Lending Division P/L : Anatomy

OLending loss is a random variable (=Credit Risk) . Annual profit margin is computable approximately.

OAnnual P/L(=Net Income Gain – OP. Cost – Loan Loss) is a random variable.

Copyright © 2007 Mizuho-DL Financial Technology Co., Ltd. All rights reserved.

(Note) P/L Process

■Lending Division

$$W_{Loan}(0) : \text{Capital Allocation to lending division. = Initially Allocated Capital}$$

$$\widetilde{W}_{Loan}(T) = W_{Loan}(0) + \int_{0}^{T} d\widetilde{W}_{Loan}(t)$$

$$d\widetilde{W}_{Loan}(t) = \sum_{i=1}^{N} X_{i} \cdot dt - C_{Loan} \cdot dt - \sum_{i=1}^{N} X_{i}(1-\theta_{i}) \cdot d\widetilde{N}_{i}(t)$$
(1)
where
$$X = \sum_{i=1}^{N} X_{i} : \text{Loan portfolio} \qquad X_{i} : \text{Individual Loan}$$

$$\pi_{-i} : \text{Profit Margin = Loan Rate - Internal Funding Rate} \qquad N_{i}(t)$$

$$C_{Loan} : \text{Operating Cost per time unit}$$

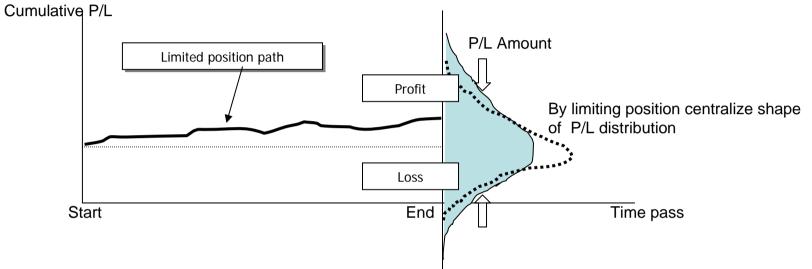
$$\theta_{i} : \text{Default Recovery Rate}$$

$$\widetilde{N}_{i}(t) : \text{Default indicating Jump process}$$

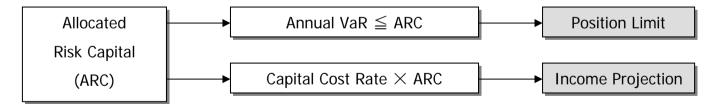
$$\widetilde{N}_{i}(t) = \begin{cases} 1 \qquad default \qquad until-t \\ 0 \qquad not - default \qquad until-t \end{cases}$$

$$P \left[d\widetilde{N}_{i}(t) = \widetilde{N}_{i}(t + dt) - N_{i}(t) = 1 \mid N_{i}(t) = 0 \right] = \lambda \cdot dt$$
(2)

t = 0 : Initial time,


$$P[\tilde{N}_{i}(t) = 0 | N_{i}(0) = 0] = e^{-\lambda \cdot t} \approx 1 - \lambda \cdot t$$

$$P[\tilde{N}_{i}(t) = 1 | N_{i}(0) = 0] = 1 - e^{-\lambda \cdot t} \approx \lambda \cdot t$$
(3)


Copyright $\textcircled{\mbox{\scriptsize C}}$ 2007 Mizuho-DL Financial Technology Co., Ltd. All rights reserved.

(Note) Income Projection and Position Limits

(1) Limiting position controls loss events, costing earning opportunities. (see below)

(2) Income projection and risk control plans are, to be consistent, set accordingly with a risk capital allocation.

• Beginning of term : Allocate capital to each department who sets income projection and risk control plan.

- During the term : To make sure risk control rules are kept. (daily monitoring)
- End of term : Outcome (P/L) is evaluated relative to the risk taken.

(Note) Expected Annual P/L and Loan Pricing

Plan expected annual income over the necessary target for individual contract i

$$\begin{split} \widetilde{W}_{Loan}(1) &= W_{Loan}(0) + (\sum_{i=1}^{N} X_{i} \cdot \pi_{i} - C_{Loan}) \cdot \int_{0}^{1} dt - \sum_{i=1}^{N} X_{i} \cdot (1 - \theta_{i}) \cdot \widetilde{N}_{i}(1) \quad : \text{ Wealth in one year term} \\ E[\widetilde{W}_{Loan}(1) - W_{Loan}(0)] &= \sum_{i=1}^{N} X_{i} \cdot \pi_{i} - C_{Loan} - \sum_{i=1}^{N} X_{i}(1 - \theta_{i}) \cdot E[\widetilde{N}_{i}(1)] \\ &= (\sum_{i=1}^{N} X_{i}(\pi_{i} - c_{Loan}(X_{i})) - \sum_{i=1}^{N} X_{i}(1 - \theta_{i}) \cdot \lambda \\ &= \sum_{i=1}^{N} X_{i}(\pi_{i} - c_{Loan}(X_{i})) - (1 - \theta_{i})\lambda) \end{split}$$
(4)

Denote
$$\Gamma_i$$
 as allocated risk capital for customer i, ρ as the capital cost rate.
It follows

$$X_{i}(\pi_{i} - c_{Loan}(X_{i}) - (1 - \theta_{i})\lambda) > \rho \cdot \Gamma_{i}$$
(5)

Therefore, the necessary profit margin is

$$\pi_i > c_{Loan}(X_i) + (1 - \theta_i)\lambda + \rho \cdot \frac{\Gamma_i}{X_i}$$
(6)

■ This expression is aka pricing guideline.

■In above formulation observe basic expressions in credit risk measurements.

$$\widetilde{L} = \sum_{i=1}^{N} X_i (1 - \theta_i) \widetilde{N}_i (1) \qquad EL = E[\widetilde{L}] = \sum_{i=1}^{N} X_i (1 - \theta_i) \lambda$$

Copyright @ 2007 Mizuho-DL Financial Technology Co., Ltd. All rights reserved.

(Note) How to limit the risk (in simplified case)

To control losses less than given risk capital $W_{Loan}(0)$ within a certain confidence level.

Assume that [1] uniform lending amount (X/N), [2] common recovery rate, [3] mutually independent default events. Annual P/L variance is

$$V[\tilde{W}_{Loan}(1) - W_{Loan}(0)] = \sum_{i=1}^{N} \frac{X^{2}}{N^{2}} (1 - \theta)^{2} V[\tilde{N}_{i}(1)]$$

= $\sum_{i=1}^{N} \frac{X^{2}}{N^{2}} (1 - \theta)^{2} \lambda \cdot (1 - \lambda) = \frac{X^{2}}{N} (1 - \theta)^{2} \lambda \cdot (1 - \lambda)$ (7)

The confidence level sets loss upper limits to be that ϕ times standard deviation. Suppose expected loss is covered by the profit margin.

$$UL^{2} = \phi^{2} \cdot V[\tilde{L}] = \phi^{2} \cdot \frac{X^{2}}{N} (1 - \theta)^{2} \lambda \cdot (1 - \lambda) < W_{Loan} (0)^{2}$$
(8)

Thus, the necessary diversification number N_{\min} of companies is expected as

$$N_{\rm min} > \phi^2 \cdot \frac{X^2}{W_{Loan} (0)^2} (1 - \theta)^2 \lambda \cdot (1 - \lambda)$$
(9)

Copyright © 2007 Mizuho-DL Financial Technology Co., Ltd. All rights reserved.

6-5. Check points for integrated risk management

(1) Grasping the total risk amount is the key; Coverage, independence and separation.

①Coverage Operational risk, risk of fee business, individual risk of stock portfolio, and so on.

②Separation EaR and VaR for banking book, equity risk and credit risk, settlement risk, correlated risk issue, and so on.

③Consistency Is every risk measurement comparable and consistent? (risk occurrence period, confidence level and others)

(2) Measure risk compare to probability measure.

①Realized P/L or including unrealized portion for manageable control.

Which is the choice when compared with risk capital?

②Before or after tax?

■When the profit is adjusted to the risk?

(3) Measure risk from two essential stand points.

①Whether risk is controlled under a feasible loss coverage. (Depositors, supervisory authorities, and ratings agencies view points)

②Whether profit sufficient in enough to meat the risk? (Shareholders and ratings agencies view points)

(4) Let alone measurement, risk controlling structure must be established.

- Founding on risk capital
 - Earning targets (Mark beyond cost of capital for example)
 - Transaction limiting protocol (effectiveness risk control, conformity with target ratings)
- ②Are individual transaction protocol consistent?
 - Position limits and stop-loss rules
 - How to incorporate rational on credit limits, diversification, locality and industry mixture.
- ③Is monitoring working?
 - \cdot Frequency, reporting lines
 - \cdot Rule making and revision
 - · Enforcement, discipline and punishment

(5) Organize divisional managerial concepts rationally

- ①Fund Transfer System
- ②Central Credit Management (concentration, transferring between dept. of credit)
- ③Risk capital allocation (theory behind)
- ④Diversification cross departments and risk categories
- ⑤Performance evaluation (encouragement, compliance, global vs. local optima, and so on)