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Abstract

This paper proposes advanced lending operations and credit risk assessment
using purchase order information from borrower firms. Purchase order infor-
mation from a borrower firm is useful for financial institutions to evaluate the
actual business conditions of the firm. This paper shows the application of pur-
chase order information to lending operations and credit risk assessment, and
reveals its effectiveness. First, we illustrate purchase order financing, which
is the lending method backed by purchase order information from borrowers.
With purchase order financing, firms that consistently receive purchase or-
ders from credit-worthy firms can borrow money under more favorable lending
terms than the usual lending terms based on the financial statements of the
borrower firm. Second, we propose real-time credit risk monitoring of firms.
Financial institutions can monitor the actual business conditions of borrower
firms by evaluating the firm’s asset value using purchase order information.
A combination of traditional firm monitoring using financial statements and
high-frequency monitoring using purchase order information enables financial
institutions to assess the business conditions of borrower firms more precisely
and efficiently. Then, with high-frequency data, financial institutions can give
borrower firms appropriate support if necessary on a timely basis.
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1 Introduction
Information on commercial transactions, such as purchase order (PO) information, is
considered useful for financial institutions to assess the business conditions of borrower
firms.1 However, the use of PO information is not widespread among financial practice
in Japan. One of the reasons is that there are no PO data collection systems which
financial institutions are able to use. Another reason is that the effectiveness of
using PO information are not clear. However, advancing information technology in
finance, “FinTech”, is promoting the use of PO information in financial businesses
with the realization of an information system that collects information on commercial
transactions, for example, the financial EDI (Electronic Data Interchange). Thus, this
paper shows the usefulness of PO information in financial businesses, particularly for
lending operations.

For traditional loan application screening, borrower firms are mainly evaluated us-
ing their financial statements which are made regulary, e.g. annualy. More precisely,
financial institutions evaluate firms by their past financial statements, and lending
approval depends on the existence of collateral. There are several problems with
this traditional method of lending application judgment. First, financial statements,
which should describe actual business conditions, may not describe them accurately,
particularly in the case of non-listed small or medium-size firms. Second, because
the financial statements represent static information that only describes firm state-
ments at one point in time, financial institutions cannot recognize possible changes
in a firm’s condition when using only the financial statements. Third, as almost all
financial institutions evaluate firms with similar method, the lending offers are likely
to concentrate on the firms that is given high credit rating from their financial state-
ments while others, such as startup firms, are likely to find it difficult to borrow the
necessary amount of fund.

Financing based on commercial transaction information is expected to address the
problems associated with traditional lending methods.2 This paper focuses on PO
information and illustrates the advanced lending operations using PO information.
PO information is provided by the potential borrower (seller) to the lender and shows
the level of PO volume received from customers (buyer) indicating the projected
business conditions of the borrower firm. Then, lenders can evaluate the potential
borrower firm by their PO information. For example, if a firm receives consistent POs
from credit-worthy firms, there is a strong likelihood that the firm will get proceeds of
sales soon. In that case, backed by the PO information, financial institutions can lend
to the firm under favorable lending terms. Another application of PO information is

1 In this paper, commercial transactions indicate manufacturing, purchasing, shipments, and
payment and settlement. PO information includes attributions of buyers, date of purchase
order receipts, product attributions, PO amount, shipment date, and product prices.

2 One example of finance-based commercial transaction information is asset based lending
(ABL). See Udell (2004) for details.
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real-time monitoring of the business conditions of the borrower firm. If the financial
institutions obtain real-time PO information, they can immediately identify changes in
the business conditions and credit quality of the borrower firm. Figure 1 summarizes
the idea of advanced lending operations using PO information.

Seller 
(Sup-
plier) 

Buyer 

Commercial transaction 
information, 

 e.g., PO information 

Financial 
institutions 

Advanced lending operations 
・Lending backed by commercial   
  transactions（PO financing） 
・Real-time corporate valuation 

Use of PO information 
by financial institution 

Valuation 

Actual business 
condition 

Order 

Shipment 

Payment 

Fig. 1: Advanced lending operations using PO information

We address two specific subjects on advanced lending operations using PO infor-
mation. The first subject is the lending backed by PO information called purchase
order financing (PO financing). PO financing is a scheme under which a firm borrows
from financial institutions when the firm receives a PO. Then, the firm repays the
financial institution from the sales.

The second subject is the real-time valuation and monitoring of borrower firms,
which provide information of business conditions. We propose a quantitative credit
risk model using PO information and demonstrates real-time firm monitoring using
the model. Typically, firm monitoring is exercised on a regular basis through the anal-
ysis of financial statements. These traditional monitoring methods do not provide a
real-time snapshot of the changes in business conditions. In addition, traditional
monitoring methods rely heavily on costly human resources and time. On the other
hand, monitoring with PO information enables financial institutions to capture pre-
cise business conditions on a real-time basis, which is not the case when only financial
statements are used. Moreover, a valuation system combined with automated sys-
tems for getting PO data and credit risk models using PO information can enhance
effectiveness of monitoring.
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We demonstrate a case study that shows the effect of PO information on firm
monitoring with real PO samples provided by Kojima Industries Corporation.3

This paper is organized as follows. Section 2 illustrates PO financing. Section
3 introduces real-time firm monitoring using PO information. Section 4 concludes.
Appendix describes details of the quantitative credit risk model based on PO infor-
mation, which is used for real-time firm monitoring illustrated in Section 3.

2 PO financing
In usual business activities, the receipt of a PO means that the firm is going to receive
proceeds of sales soon. PO financing is the lending method that assumes repayment
from the proceeds of sales.

For PO financing, a firm borrows from financial institutions when it receives a PO.
Then, the borrower firm repays the financial institutions from the proceeds of sales.
Figure 2-(a) illustrates the structure of PO financing. The structure of PO financing
is the following: 1. Receipt of PO. 2. Funding provided by financial institutions. 3.
Shipment of ordered products. 4. Collection of proceeds of sales. 5. Repayment to
financial institutions from proceeds of sales.

Buyer 

1.Receive PO 
2.Borrow 

3.Shipment 

4. Proceeds of   
     Sales 

5.Repayment 

Seller 
Financial 
Institu-
tions 

(a) PO financing

Buyer 

1.Receive PO 

4.Bill discount 

2.Shipment 

3. Issue bill  Seller 
Financial 
Institu-
tions 

5.Repayment 

(b) Discounted billing

Fig. 2: Lending backed by PO information

PO financing has been used to finance operating capital, particularly when the
period between receiving orders and collecting proceeds of sales is long. Suppose

3 The data is non-public informaion. Kojima Industries Corporation has been tackling empirical
experiments on advanced accounting works using financial EDI. The firm has been expecting
advanced financing using PO information, and they are cooperative in providing their PO data
to us. Kunihiko Kaneko, who is a director of the firm, joined the workshop on “finance based
on commercial flows”, hosted by the Center for Advanced Financial Technology, Financial
System and Bank Examination Department, Bank of Japan. Kaneko made presentation on
the empirical experiments coducted by the firm on financial EDI .
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that the seller (borrower firm) completes the shipment of ordered products, the main
risk to which financial institutions are exposed is the default risk of buyer. Another
example of a financing method in which the main risk is the default risk of buyer is
discounted billing (see Figure 2-(b).)

Now, we illustrate the effectiveness of PO financing with the sample data of PO
volume provided by Kojima Industries Corporation. Kojima Industries Corporation
manufactures interior and exterior automobile components. The capital of the firm is
450 million yen and annual sales are 151.1 billion yen.4 The main customers (buyers)
of the firm are auto manufacturers such as Toyota Motor Company, Toyota Auto
Body Company, Toyota Motor East Japan Incorporated, Hino Motors, and Daihatsu
Motor Company. The cumulative PO amount between January 2011 and December
2013 shows that approximately 90% of PO volume is ordered by buyers with AA
credit rating.5 Therefore, using PO financing, Kojima Industries Corporation can
borrow capital up to 90% of its PO volume with AA credit rating quality lending
terms.

PO financing is useful especially for small or medium-size firms. Although a firm
is considered small, if it receives POs from high credit-quality buyers, the firm can
borrow with favorable terms backed by the high credit quality of its buyers.

3 Quantitative credit risk monitoring based on PO

information
This section provides an automatic quantitative monitoring method with a quanti-
tative credit risk model using PO data. Particularly, we present a credit risk model
based on PO information and demonstrate a case study that shows the effectiveness
of the model.

In our model, the asset value of the borrower firm is derived from its PO infor-
mation, and the borrower defaults when the asset value goes below the debt value.
Figure 3 shows the structure of our model. First, (a) we construct a time-series
model of PO volume transition for each buyer. Here, the correlation of PO volumes
among corresponding buyers, which is caused by changes in business circumstances,
are considered in the PO volume time-series model. In addition, to capture the risk
of losing POs, (b) default models of buyers with default correlations among buyers
are considered. Particularly, we employ the default correlation model for which a
buyer defaults when the credit quality hits the default barrier, and the transitions of
credit quality of buyers are correlated. Then, (c) proceeds of sales are calculated by
the sum of the POs with a time lag between receiving POs and collecting proceeds of

4 The data source is the Kojima Industries Corporation website (http://www.kojima-tns.co.jp/)
as of August 29, 2016.

5 Credit ratings are given by R&I (Rating and Investment Information, Inc.) and JCR (Japan
Credit Rating Agency, Ltd.), which are famous rating institutions in Japan. We ignore the
notches of credit ratings (e.g. + and −) through this paper.
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sales. If a buyer defaults before collecting sales, the firm receives only the recovery
which is a part of the PO amount. Next, (d) we calculate the cost of producing and
supplying products. Then, we obtain profits or losses from the difference between
the sales and the costs. In addition, we adjust profits or losses by adding calculated
impairment losses. Finally, we renew the asset value by adding obtained profits and
losses to the previous asset value. If there are losses, the asset value is reduced. The
supplier defaults when the asset value falls below the debt value. See Appendix for
the model details.
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Fig. 3: Overview of the credit risk model based on PO information

The sample data for the case study are the historical PO records of Kojima In-
dustries Corporation. The sample data are the monthly PO records from January
2011 to December 2014. Figure 4 shows the transition of monthly PO volumes in our
samples. We recognize seasonality in PO volumes, for example, there is a relative
decrease in PO volume every August and December. To handle the seasonality of PO
volumes, we employ an autoregressive-type model of the PO volume ratio, which is
calculated as the ratio of the PO volume to the PO volume of the same month in the
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Note: The plotted values are standardized monthly PO volumes, setting the value of January 2011
as 100.

Fig. 4: Transition of monthly PO volumes in our sample PO data

We provide numerical examples that show the influence of changes in POs and the
credit quality of buyers on the probabilities of default (PDs) of Kojima Industrial
Corporation. Using sample data for January 2011 to December 2013, we estimated
model parameters and calculated one-year forward PDs of the firm for every month in
2014. In addition to calculating PDs under the realized PO scenario on PO volumes
and credit qualities of buyers, we calculated PDs under stressed PO scenarios in which
the credit rating of buyers declines.

Figure 5 shows the estimated PDs under the realized PO scenario. The level of
estimated PDs is quite low, reflecting the high credit quality (low default risk) of the
buyers and the stability of the PO volume. In addition, we recognize in Figure 5 that
the estimated PDs increase reflecting the decrease in the PO volumes.

Figure 6 shows estimated PDs under the stressed PO scenarios in which the credit
rating of buyers decline in May 2014. Figure 6 shows that the PD of Kojima Industries
Corporation increases reflecting the lower credit ratings of buyers.

These results show that credit risk modeling based on PO information enables fi-
nancial institutions to monitor the credit risk affected by change in business conditions
of the borrower firms, such as PO volumes and the credit quality of buyers, on a real-
time basis. This real-time monitoring of borrower firms represents advanced default
prediction in lending operations and reduces the costs associated with traditional
monitoring methods, which require substantial human resources and time.

Real-time credit risk monitoring of listed firms is typically conducted with structural
credit risk models using their market stock prices. However, the monitoring method
is not applicable to the monitoring of unlisted firms whose stock values are usually
non-observed. On the other hand, credit risk monitoring using PO information can
be applied to both listed and unlisted firms.
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Fig. 5: Estimated one-year PDs (solid line) of Kojima Industries Corporation and cumula-
tive one-year PO volumes observed for each month (bar plots)
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4 Conclusion
This paper illustrated the advanced lending operations using PO information. First,
we explained PO financing, which is the lending method backed by PO information.
With PO financing, financial institutions can finance firms that have low credit quality
and cannot get money without enough collateral. From another perspective, PO
financing enables the firm with the high credit quality of their customers (buyers) to
finance with favorable terms. For small, medium-size, and startup firms, the lending
terms using PO financing would be better than the lending terms backed by only the
financial statements.

Second, we proposed a quantitative credit risk model based on PO information and
showed a case study with real-time monitoring of a firm’s business conditions using the
model. The results of the case study reveal the effectiveness of using PO information
to monitor the credit risks of borrower firms. The method of obtaining PDs proposed
in this paper can reduce the cost of monitoring borrower firms. If borrower firms
supply PO information to financial institutions regularly, the borrower firms could be
offered appropriate business support from financial institutions on a timely basis.

The advantages of using PO information for lending operations can increase the
market competitiveness of the supply chain. That is, PO financing and firm monitor-
ing using PO information lead to reduction in the financial costs of the borrower firm,
which is a supplier in the supply chain, and this method reduces product prices. This
cost reduction for buyers enables them to become more cost competitive. This then
leads to sales growth and financial improvements for the buyers. Such improvements
in a buyer’s condition create a virtuous cycle of improvements in the supply chain.6

To realize the advanced lending operations and receive the benefits of PO infor-
mation use, PO data collection systems, such as financial EDI, are required. The
discussion on the implementation of financial EDI is ongoing in Japan. After realiza-
tion of financial EDI, PO information will be used widely in the lending industry and
also for other financial services.7

Appendix Structural credit risk model based on PO data
Here, we provide details on the credit risk model based on the PO data introduced
in Section 3.

In our model, we obtain the asset value of the borrower firm from PO volume;
then, the default occurs when the asset value falls below the debt value. Because the
structure of default occurrences is explicitly modeled with the level of asset values, our
model is a type of structural credit risk model. In previous works on structural credit
risk models, the stochastic process of asset values is modeled directly (e.g., Merton

6 Introducing financial EDI will be more effective for cost reductions.
7 In addition, rules and regulation on data usage, standardization of data formats and data
sharing schemes among financial institutions are required for widespread use of PO data.
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1974) or obtained by aggregating future earnings (e.g., Goldstein, Ju, and Leland 2001,
Genser 2006). On the other hand, we model PO volume transition first; then, the
earnings and asset value are generated by the PO volume in our modeling framework.
One of the advantages of our model is that we reflect the business conditions of the
borrower firm, such as trends in PO volumes and the credit quality of buyers in the
credit risk assessment.

A. Modeling framework

This section provides a structural framework for credit risk modeling based on PO
information. We provide a simple modeling framework that shows the steps to derive
asset value from PO information. Therefore, our model is simpler than the actual
practical processes of generating firm assets from a PO.

The steps are the following:

1. Introduce a stochastic process for PO volumes
2. Calculate proceeds of sales
3. Calculate ordinary cash flows (excluding sales)
4. Calculate ordinary profits and losses
5. Calculate impairment losses
6. Calculate net earnings
7. Renew asset value
8. Define default

■1. Introduce a stochastic process for PO volumes We model uncertainty in the
economy on a filtered complete probability space (Ω,F , {Ft}t∈T ,P) where{Ft}t∈T
is a complete filtration with discrete time space T = {0, 1, 2, · · · ,∞}, and P is the
physical probability measure. The target firm of credit risk assessment is the seller
side of POs. We denote by I = {1, 2, 3 · · · , I} the set of the corresponding buyer. PO
volumes ordered by buyer i ∈ I are denoted by {Oi

t}t∈T , which is an {Ft}-adopted
stochastic process.

■2. Calculate proceeds of sales Next, we calculate proceeds of sales obtained from
associated PO volumes. We assume that the firm receives proceeds of sales amounting
to PO volumes after some time lags if there are no problems with product delivery and
sales collection. If there are canceled POs or buyer defaults before sales collections,
cash below the PO amount is collected by cancellation charges and recovery given
default. Thus, proceeds of sales at time t are given by

St =
I∑

i=1

(
Oi

t−h1{t<Ti} + (1− LGDi)Oi
t−h1{t≥Ti}

)
, (1)
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where {Ft}-stopping time Ti indicates the default time of buyer i, and constant h ≥ 0
is the time-lag between the arrival of the POs and collection of proceeds of sales.8

Constant LGDi is the rate of loss given default when the POs of buyer i are canceled
or buyer i defaults.

■3. Calculate ordinary cash flows (excluding sales) To obtain ordinary profits and
losses, we introduce ordinary cash flows excluding proceeds of sales. One of the main
components of ordinary cash flows is production costs associated with received POs.
Thus, it is natural to assume that production costs are a function of PO volumes:

Ct = f
(
{Oi

t−g}i∈I
)
. (2)

Here, function f : RI → R is a cost function, and constant g is the time lag between
PO arrival and corresponding cost defrayment.9

■4. Calculate ordinary profits and losses Cumulative ordinary profits and losses at
time t are obtained by the difference in proceeds of sales and ordinary cash flows
excluding proceeds of sales:

Pt =

t∑
s=0

(Ss − Cs) .

■5. Calculate impairment losses In our model, impairment losses are introduced to
recognize losses caused by future decrease in PO volumes. Accumulated impairment
losses are the difference between the present value of operating earnings calculated at
the initial time and time t:

It = min(Ṽt − Ṽ0, 0).

Ṽt is the net present value of operating earnings at time t. Ṽt is obtained as follows:

Ṽt =

∞∑
s=t

EP

[
P̃s

(1 + r)s−t

∣∣∣Ft

]
.

Here, constant r is the firm’s weighted average cost of capital (WACC). EP [·|Ft] is the

Ft-conditional expectation, and P̃t denotes operating earnings. Operating earnings
are given by

P̃t = St − C̃t

where operating costs are

C̃t = f̃
(
{Oi

t−g}i∈I
)

with operating cost function f̃ : Ri → R+.

8 The time lag between the arrival of the PO and the realization of sales is dependent on products
and seasons. However, we set the time lag constant for simplicity.

9 Negative (positive) value implies cash in (out).
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■6. Calculate net earnings Earnings before tax (EBT) are obtained by adding ordi-
nary profits and losses and impairment losses:

EBTt = Pt + It.

Then, the net earnings are obtained by adjusting tax payments to EBT:

Et = EBTt1{EBTt<0} + (1−G)EBTt1{EBTt≥0}. (3)

Here, the constant G denotes the corporate tax rate.

■7. Renew asset value We assume that there are no dividends to the shareholders,
and net earnings are held as internal reserves. Then, the asset value at time t is
obtained by summing initial asset value V0 and cumulative net earnings Et:

Vt = V0 + Et.

■8. Define default The firm defaults when the asset value goes below the debt value.
That is, the net asset value of the firm goes below zero. The net asset value Ht is
obtained by Ht = Vt −Dt, with debt value Dt. Then, the default time is

τ = inf{t ∈ T \{0}|Ht < 0}.

B. Case study settings

Here, we introduce an empirical model for our case study, which is constructed under
the provided framework in Appendix A. In addition, we illustrate the settings of the
case study.

1. The details of the model employed for the case study
Now, we illustrate the formulation of our empirical model.

The buyers of Kojima Industries Corporation, such as Toyota Motor Company,
belong to the automotive sector. As this example, when buyers belong to the same
industrial sector, the PO volumes of each buyer tend to co-move with changes in
business conditions. Thus, we suppose that the model can capture such co-movements
of PO volumes. In addition, there is default correlations among buyers; therefore, we
take into account them in our model.

■Modeling PO volumes We suppose monthly observed PO sample data for our case
study. Then, the unit of time space T is one month. The data of monthly PO
volume often have seasonal effects. To handle seasonal effects, we model the one-year
difference of log-PO volumes Ri

t = log(Oi
t) − log(Oi

t−12). We employ the time-series

model of Ri
t described as follows:

Ri
t = αi + βiR

i
t−1 + σi

(
ρiWt +

√
1− ρ2i ϵi,t

)
. (4)
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Here, Wt ∼ N(0, 1), ϵi,t ∼ N(0, 1)and these random variables are independent of
time, where N(m, v) is normal distribution with mean m and variance v.

This model captures the correlation of PO volumes by common factor Wt, and the
strength of the correlation is specified by the factor loading {ρi}. Idiosyncratic risks
are captured by ϵi,t.

The model estimation procedures we employed are the following. First, we estimate
parameters {αi, βi, σi} by the following AR (Auto-Regressive) model

Ri
t = αi + βiR

i
t−1 + ϵ̄i,t, ϵ̄i,t ∼ N(0, σ2

i )

with the observed one-year difference of log-PO volumes. Then, we estimate ρi with
obtained residuals ϵ̄i,t. Here, we calculate the sample residual correlation matrix
{ρ̂ij} and obtain estimated parameters by minimizing the sum of square difference∑I

i=1

∑i−1
j=1(ρiρj − ρ̂ij)

2 .
We model the POs of the buyers that are ranked in the top nine PO volumes

(i = 1, 2, · · · 9). The sum of the top nine PO volumes is accounting for approximately
96% of all PO volumes.10 In addition, we model the aggregated remainder (i = 10).
Thus, the number of buyers in the case study is I = 10. The default risk of most of
the buyers is relatively low because the range of their credit ratings is AA+ ∼ A−.

The estimated parameters of the PO model are described in Table B-1. Because
most of the estimated values of auto-regressive coefficients {βi} are positive, we rec-
ognize the existence of PO trends in our sample data. The p-values of the Ljung-Box
test show that there is no significant auto-correlation in the residuals, and the model
is not rejected.11

Referring to the estimated values of factor loading ρi in Table B-1, the estimates
of correlation between any two buyers are over 0.4 calculating PO volume correlation
between buyer i and j by ρiρj . This implies that there are pairs of buyers who are
highly correlated on POs in our samples.

PO volumes {Oi
t}t∈T are obtained from {Ri

t} as

Oi
t =

{
Oi

t−12 × exp(Ri
t)
}
1{t≤Ti}.

Here, Ti is the time to break off business connections with buyer i. We assume the
break-off of business connections occurs only when the buyer defaults. Then, Ti is
the same to the default time of buyer i.

Proceeds of sales are calculated with equation (1). We set the value of LGDi

conservatively as LGDi = 1. The time lag between the order and collection of sales
is set to two months (h = 2).

10 This ratio is obtained with the cumulative PO volumes from January 2011 to December 2013.
11 In addition, we execute in-sample and out-of-sample tests for the time-series of the one-year

difference of log-PO volumes. Here, we conduct the Kolmogorov-Smirnov (K-S) test, which
tests goodness of fit of a realized series of residuals and associated distribution N(0, 1). From
the K-S test, we confirm that the amount of PO volumes of the buyer that are not rejected
under a 1% significant level is 100% for in-sample and 83.4% for the out-of-sample tests. The
in-sample span is January 2012 to December 2013. The out-of-sample span is January 2014 to
December 2014.
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Table. B-1 : Estimated parameter values of the model of one-year difference of log-PO

i 1 2 3 4 5
αi −0.039 −0.047 0.006 0.159 −0.013
βi 0.594 0.881 0.006 0.366 0.342
σ2
i 0.005 0.013 0.006 0.018 0.008

ρi 0.970 0.883 0.733 0.349 0.338
p-value 0.694 0.796 0.999 0.732 0.999

i 6 7 8 9 10
αi 0.131 0.041 0.087 −0.116 −0.436
βi 0.257 −0.243 0.756 0.073 0.624
σ2
i 0.013 0.065 0.019 0.011 0.090

ρi 0.677 0.537 0.754 0.260 0.267
p-value 0.793 0.754 0.341 0.961 0.583

Note: p-values are obtained with the Ljung-Box test.

■Default model for buyers Buyer defaults are modeled with a Merton-type one-factor
Gaussian-copula model. The probability of default until time t+1, under the condition
that buyer i survives at least until time t, is obtained as the probability that the credit
quality Xi goes below default barrier Qi. That is, the probability of default of buyer
i is P (Xi < Qi). Credit quality Xi is given by

Xi = ρ̃iW̃ +
√
1− ρ̃2i ϵ̃i, (5)

W̃ ∼ N(0, 1), ϵ̃i ∼ N(0, 1) (6)

and these random variables are independent of time. Then, the probability of default
of buyer i is

P(Xi < Qi) = Φ(Qi) (7)

where Φ(·) is the cumulative normal distribution. The default correlation among

buyers is captured by common factor W̃ , and the strength of default correlation is
specified by ρ̃.

Default barriers Qi are estimated according to eq.(7) with the historical probabil-
ities of defaults of the associated credit rating of buyer i. For no-rated buyers, we
assume the ratings as BBB.

We estimate default correlations among buyers with the stock price data for the
buyers. For non-listed buyers, we employ TOPIX sector indices of the corresponding
sector and consider them the stock data for the buyer. We estimate parameters by
minimizing the sum of the square difference between the historical correlation matrix
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of stock prices and the correlation matrix obtained by factor loadings.12 Estimates
of factor loading are shown in Table B-2.

Table. B-2 : Estimated value of default correlation parameter

i 1 2 3 4 5
ρ̃i 0.849 0.877 0.877 0.825 0.836

i 6 7 8 9 10
ρ̃i 0.711 0.715 0.902 0.827 0.877

■Ordinary cash flow model We simply assume that the function of ordinary cash flow
excluding proceeds of sales is given by the linear function

f
(
{Oi

t−g}i∈I
)
:= a

I∑
i=1

Oi
t−g1{t<Ti} + b.

To estimate the parameters of the above function, we use the historical annual PO
volumes and related items from the firm profit and loss statements (P/L). We calcu-
late realized ordinary cash flow excluding proceeds of sales as the sum of operating
costs and non-operating profits and losses. Then, we execute linear regression of the
realized ordinary cash flow except sales by employing annual sales as explanatory
variables.13 The coefficients obtained by linear regression are annually based values,
and we transform them into the monthly based values. The obtained coefficients of
ordinary cash flow function are a = 0.905 and b = 7.83× 108.14

With the estimated ordinary cash flow function, according to eq.(2), we obtain the
revenues for ordinary cash flow except sales. Here, we tentatively set the time lag
between receiving the POs and ordinary cash flows to one month (g = 1).

■Model of impairment losses The present value of impairment losses is calculated
using the net present value of operating earnings as follows:

It = min(Ṽt − Ṽ0, 0),

Ṽt =
∞∑
s=t

EP[P̃s|Ft]

(1 + r)s−t
.

12 Using asset correlation is desirable, but we employed stock correlation for data restriction.
13 A test for spurious regression is desirable. However, we did not check spurious regression

because of the insufficient sample size.
14 The unit of the estimated parameter value is Yen.
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Here, P̃t is operating earnings. Constant r is the firm’s weighted average cost of
capital (WACC). Operating earnings are given by

P̃t = St − C̃t

where operating costs C̃t = f̃
(
{Oi

t−g}i∈I
)
with the following linear operating cost

function:

f̃
(
{Oi

t−g}i∈I
)
= ã

I∑
i=1

(Oi
t−g1{t<Ti}) + b̃.

The estimation procedures for the operating cost function are similar to the case
of ordinary cash flow functions. To estimate the parameters of the operating costs
function, we use the historical annual PO volumes and operating costs on P/L. We
execute linear regression of realized operating costs by employing annual sales as
explanatory variables. The coefficients obtained by linear regression are annually
based values; then, we transform the monthly based values. The obtained coefficients
of ordinary cash flow function are ã = 0.904 and b̃ = 8.08× 108.

When calculating Ṽt, we set the end of the forecast period of operating earnings
as the M -th time point from an evaluating time point. Then, we obtain net present
value of operating earnings after the end of the forecast period with the terminal
value. Thus, the net present value of operating earnings is the sum of the present
value of operating earnings during the forecast period and the terminal value:

Ṽt =
M−1∑
s=t

EP[P̃s|Ft]

(1 + r)s−t
+

EP[P̃M |Ft]

r(1 + r)M−t−1
.

We calculate the corporate value of profits by setting the end of the forecast period
to five years (M = 60).

Then, the adjusted impairment losses are obtained by

Īt = It ×
V̄0

Ṽ0

where Ṽ0 is the book value of operating profit and losses.
We obtain the WACC for Kojima Industries Corporation using the capital asset

pricing model (CAPM). To obtain the WACC, we calculate the cost of equity by

rs = rf + β(rm − rf )

where rf is the risk-free rate, rm is market return, and β is the levered beta of Kojima
Industries Corporation. To obtain the levered beta, we first obtain the unlevered
beta by calculating the averages of the unlevered beta of listed firms belonging to
the transportation equipment sector. Then, we calculate the levered beta with the
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estimated unlevered beta and capital weights of Kojima Industries Corporation. We
set the risk premium rm − rf to 4%. Then, we obtain the cost of debt rD from
the amount of interest-bearing liabilities and the amount of interest paid. With the
estimated cost of equity and cost of debt, we calculate the WACC as follows:

r =
H

H +D
rs + (1−G)

D

H +D
rD.

Here, variable H is the book value of net assets and D is the book value of liabilities.
The risk-free rate rf is obtained from yields of 10-year government bonds. We execute
these procedures on a daily and average per month basis to obtain monthly WACC.
The range of obtained WACC is 3.52% ∼ 3.84%. We set G = 0.4.

Finally, cumulative EBT is given by EBTt = Pt + Īt.

2. Monte carlo simulation
Using the settings above, we simulate the future PO volumes, calculate corporate
values and obtain the probability of default (PD) of Kojima Industries Corporation.
The simulation is executed under a monthly time-span with 100,000 trials. The
number of default trials in which the net capital becomes negative is counted, and
PDs are obtained by the ratio of the number of default trials to the number of all
trials.
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