

Central Bank Digital Currency Experiments

Results and Findings from “Proof of Concept Phase 2”

Payment and Settlement Systems Department, Bank of Japan

May 2023

Contents

1 Objectives .. 1

2 Scope of experiment ... 2

3 Main results .. 4

3.1 Additional functions .. 4

3.1.1 Economic design/Improving convenience of payments .. 4

3.1.2 Coordination between intermediaries and connection with external systems .. 11

3.1.3 Issues in the possible event of social implementation ... 17

3.2 Potential use of new technologies ... 19

3.2.1 Flexible-value token model ... 19

3.2.2 NoSQL Databases ... 22

4 Conclusion ... 24

Appendix 1: Alternative system architectures .. 25

Appendix 2: Details of the performance evaluation test .. 28

1

1 Objectives

The Payment and Settlement Systems Department of the Bank of Japan (BOJ) conducted its “Proof

of Concept (PoC) Phase 1” from April 2021 to March 2022, building an experimental environment

using several design alternatives for a Central Bank Digital Currency (CBDC) ledger as the foundation

of a CBDC system, to evaluate whether its basic functions could be processed appropriately.1

In PoC Phase 2, conducted from April 2022 to March 2023, the BOJ evaluated additional functions

regarding which it would be desirable to confirm technical issues as early as possible, by adding

them to the basic functions of the CBDC ledger, built in Phase 1. The results were evaluated in terms

of processing performance and technical feasibility. Further, the potential use of new technologies

that were not included in Phase 1 was explored with respect to data models and databases.

Whether to issue a CBDC should be decided by discussions among the Japanese public. With a

view to facilitating such discussions, the BOJ will continue to make such thorough preparations as

conducting technical experiments to respond to changes in circumstances in an appropriate manner.

1 For the results of the PoC Phase 1, see the following reference: Payment and Settlement Systems Department, BOJ, "Central Bank Digital

Currency Experiments Results and Findings from ‘Proof of Concept Phase 1’" (May 2022).

https://www.boj.or.jp/en/paym/digital/rel220526a.pdf
https://www.boj.or.jp/en/paym/digital/rel220526a.pdf

2

NoSQL database

 Use traditional relational databases (RDB) from phase1

 Phase 2 explored the potential for using NoSQL (Not only SQL) databases,

which are becoming increasingly popular as databases are not RDBs

Flexible-value token model

 Phase 1 evaluated the fixed-value token model in which the token’s face value is fixed and

tokens are converted to ones of lower value as needed

 Phase 2 explored the flexible-value token model in which the token’s face value changes as

tokens are merged or split as needed

Economic design

Safeguards ensuring

the stability of the financial

system

Improving convenience of

payments

 Scheduled remittance instructions by users

 Batch remittance and pull payment at user request

Coordination among

intermediaries/

Connection with

external systems

 Limits on holdings

 Limits on amounts and number of transactions

 Swing function (automatic conversion of amount in excess of holding limits into bank deposits, etc.

or automatic conversion of remittance receipt into bank deposits, etc. based on user attributes)

 Application of interest on holdings

 Providing multiple accounts to one user

 Limits per user on holding and transaction amount/number, based on the above assumption

 Methods for connection with external systems

2 Scope of experiment

In Phase 2, additional functions of CBDC were evaluated in three separate blocks. Although the

assumption is not that these functions would be adopted in the possible event of social

implementation, it is desirable to identify technical issues early on so as to contribute to future

decision making (see Figure 1).

Figure 1: Additional functions in Phase 2

Additional functions of the economic design block cover various types of safeguards for

preempting a sudden shift from bank deposits to CBDC. Further, the functions of improving

convenience of payments block cover aspects that could lead to improved user convenience in

payments. Regarding the functions of coordination among intermediaries and connection with

external systems block, the methods necessary for providing multiple accounts to one user and for

connection with existing external systems were evaluated.

Further, the potential use of new technologies that had not been evaluated in Phase 1, such as a

flexible-value token model and NoSQL (Not only SQL) databases, was also evaluated (see Figure 2).

Figure 2: New technologies in Phase 2

Although a token-based data model can be interpreted in various ways depending on the context,

in the PoCs, the model is one in which a unique identifier (ID) is assigned to monetary data with a

face value, and the CBDC holding status can be recognized by linking this ID with a user ID. In Phase

3

1, we evaluated a fixed-value token model in which the face value is fixed like cash and the user to

whom the existing tokens are linked is changed after the tokens are converted to ones of lower

value as necessary at the time of remittance. In Phase 2, we explored a different token-based data

model -- the flexible-value token model -- in which existing tokens are merged or split as necessary

at the time of remittance and users are linked to newly created tokens.2

Additionally, we used a traditional relational database (RDB) as the system database in the

experimental environment from Phase 1 onward. However, because a CBDC system requires

extremely high processing performance, in Phase 2, NoSQL -- databases other than those based on

RDB, some of which are said to have high processing speed and performance scalability -- were

explored for possible use.

The ledgers evaluated in Phase 2 were comprised of the following four designs: (i) (a) centralized

management by the central bank or (b) shared management between the central bank and

intermediaries for the system architecture and (ii) (a) account-based or (b) token-based for the data

model. In Phase 1, Designs 1–3 were evaluated, and in Phase 2, Design 4 was additionally evaluated

(see Figure 3). Regarding Design 3, while the fixed-value token model was evaluated in Phase 1, the

flexible-value token model was evaluated in Phase 2.

Figure 3: Ledger designs in Phase 2

2 For details on the difference between fixed-value and flexible-value approaches in token-based ledger systems, see Appendix 1 of the

“Central Bank Digital Currency Experiments Results and Findings from ‘Proof of Concept Phase 1’.”

Centralized Shared

Account-based Design 1 Design 2

Token-based Design 3 Design 4

＝ Phase 1 scope

＝ Phase 2 scope＋

https://www.boj.or.jp/en/paym/digital/rel220526a.pdf

4

3 Main results

The experiment results of additional functions are described in 3.1 and those of new technologies

are described in 3.2.

3.1 Additional functions

3.1.1 Economic design/Improving convenience of payments

The following functions were evaluated for economic design.

(1) Setting upper limits on holdings (holding limits)

(2) Setting upper limits on amounts and number of transactions for each transaction or for a

specific period of time (transaction amount/number limits)

(3) Automatic conversion of (a) excess holdings into bank deposits and other forms of private

money or (b) remittance receipts into bank deposits and other forms of private money

based on user attributes, for example, corporations and individuals (swing function)

(4) Application of interest on holdings (Interest application)

The following functions were evaluated for improving convenience of payments.

(1) Scheduled remittance

(2) Batch execution of multiple remittances (batch remittance)

(3) Execution of a remittance as a payment request initiated by payee (pull payment) 3

Experimental environment

Experimental work was conducted using Design 1, which has the simplest configuration, to ensure

that the system could be built on the public cloud and evaluated efficiently within the project’s time

constraints. For Design 2, which uses the same account-based data model, architecture evaluation

was conducted using the results of the performance evaluation test from Design 1.4

3 Direct debits are examples of existing pull payments.

4 Designs 3 and 4, in which the data model is a flexible-value token model, need to be evaluated in terms of their basic functions; the results

are described separately in Section 3.2.

5

User Wallet app

Intermediary

Mockup

Ledger System

TX Record Management

System
TX record

Scheduled TX

Management System

Scheduled TX

Orchestration System Account TX status

Note: TX=transaction

Account Balance

Limit

Multiple systems were built and an application programming interface (API) was used to link the

systems. Specifically, in addition to the ledger system built in Phase 1, a transaction record

management system that references the amount/number of transactions when transaction

amount/number limit checking is conducted and a scheduled transaction management system that

automatically activates transaction requests by the user were added to the CBDC system.

Additionally, an orchestration system5 was added as a facade to ensure data consistency between

systems; it functions as a contact point for processing transactions in order, manages the status of

account processing in each system to ensure data consistency between systems, and performs

mutual exclusion control so that no other transactions are processed during the execution of a given

transaction in principle. Through an orchestration system that maintains a database for managing

the upper limits of various restrictions, we also implemented a process of checking whether or not

the upper limits have been violated in the system. The ledger system was not configured6 to have

functions such as transaction record management directly on it because it was deemed that the

system should not perform any processing other than updating balances as much as possible,

considering that it would be subject to a high updating load in the possible event of social

implementation.

 Figure 4: Experimental environment in Design 1

5 In the processing of a certain transaction, the mutual exclusion control is performed so that, in principle, other processing for the same

account is placed on standby; it is executed in the following order: transaction limit checking (amount and number), holding limit checking,

balance update, and transaction record update. However, to improve performance, a mechanism was adopted to allow other processing to

proceed when consistency can be ensured through various limits processing (e.g., when a combination of operations such as payout and

remittance where one increases and the other decreases, processing can proceed without having to wait for both operations to be processed).

6 See Appendix 1 for a discussion of these alternative system architectures.

6

As in Phase 1, the design of the intermediary system and the user’s wallet application was

simplified to only submit transaction instructions, and the performance evaluation focused on the

system’s processing from start to completion after receiving the transaction instructions from the

mockup (see Figure 4 for the architecture and Appendix 2 for details of the performance evaluation

test including the server specifications used).

Implementation method in an experimental environment

Under the above architecture, each additional function was implemented in the experimental

environment as follows.

Various limits

The orchestration system conducts the process while referring to the information in other

systems for limit checking (i.e., the CBDC balance managed by the ledger system and the

transaction record managed by the transaction record management system). After the

checking process, the same remittance processing as the basic function implemented in

Phase 1 is performed on the ledger, and the transaction record is updated after the ledger is

updated.

Swing

After the orchestration system calculates the amount in excess of the holding limits and

identifies user attributes, such as corporate or individual, it sends an automatic acceptance

instruction to convert the subject amount to bank deposits, etc., to the ledger and the

intermediary mockup.

Interest application

Interest receipt and payment are exempted from the transaction amount/number limits.

Therefore, it is set to proceed without checking whether there is a violation of the transaction

amount/number limits and is implemented using the scheduled remittance mechanism

described below.7

Scheduled remittance

The implementation is based on the premise that the remittance instructions to be executed

in the future are registered in advance in the scheduled transaction management system. The

remittance instructions are sent one by one from the scheduled transaction management

7 The implementation is based on the premise that, for each account, the amount of interest applied is calculated based on its CBDC balance

within a certain period of time and on a predetermined interest rate. Further, a CBDC account at the central bank has been established; it is

used to receive and pay CBDC of interest amounts through the user’s account (treated as a transfer between accounts in the system). There

are alternative methods like directly increasing or decreasing the CBDC balance in user accounts (treated in the system as issuing or

redeeming CBDC to each account), without the involvement of the central bank account.

7

system to the orchestration system at a specified time8, after which they are processed in the

same manner as a standard remittance.

Batch remittance

The orchestration system is set up to obtain all upper limits for multiple remittance

instructions at once, then split them one by one, and thereafter process them in the same

manner as a standard remittance.

Pull payment

The implementation is based on the assumption that the payee initiates the remittance

instruction based on the prior consent of the payer. The subsequent processing is the same

as for a standard remittance.

Performance evaluation test

To evaluate the impact of implementing additional functions on system performance, the basic

settings for the test were kept the same as in Phase 1. Specifically, the number of users was set to

100,000, the number of intermediaries was set to 5, and the load for the basic function of transaction

instructions was set to 500 transactions per second for the base scenario and 3,000 transactions per

second for the high-load scenario.

The test results showed that the throughput (number of transactions processed per second)

achieved the same rate of requests submitted per second and that no performance bottlenecks,

including those caused by resources, were encountered. Compared with Phase 1, latency (time to

process one transaction) increased somewhat, with its distribution having larger deviation due to

the increase in the complexity of processing and the number of systems involved. Overall, however,

no significant performance degradation was observed in latency, generally achieving less than 200

milliseconds (msec)/0.2 seconds (sec) or lower, even at high-loads (see Figure 5 for the latency

results and Appendix 2 for details of the test methods and results).

8 In the case of scheduled remittances and batch remittances, where multiple remittances are executed, the batch processing method

involving the processing of multiple remittances at once was not adopted; rather, each remittance was split and processed one at a time so

as to minimize the impact on other transaction processes.

8

Figure 5: Latency results by function9

The latency results in Figure 5 are explained below.

Remittance

The latency is about 60 msec, which is slightly higher than that of the Phase 1 remittance

because of the increased number of systems and processing content due to additional

functions; however, it does not result in significantly lower performance.

Pull payment

Although the origin of the instruction is reversed (from payee), the latency is almost the same

as that of a standard remittance because the transaction processing is the same except for

being kicked by payee.

Batch remittance

To obtain multiple sets of measured values within the test time, we set 600 remittance

instructions as a batch. We then implemented a method in which the upper limits on holdings

and transaction amount/number were obtained for a batch of 600 remittance instructions at

once; next, the remittance instructions were split and processed one by one. The latency per

remittance after the split was lower by several msec than that of a standard remittance

because the upper-limit values were obtained at once.

9 Latency is measured as the time taken from the start to the end of application processing for one transaction request. To visualize the

approximate trend of latency with each function, the vertical axis of the figure shows the frequency of latency, the density estimated by kernel

function (using the bandwidth with reference to Silverman’s test results).

Frequency

Latency (msec)

Base (500/sec)

High-load (3,000/sec)

9

Scheduled remittance

Instructions are sent from the scheduled transaction management system to the

orchestration system one by one at a specified time, after which the same process as for a

standard remittance is executed. The latency is higher by a few msec than for a standard

remittance only for the portion starting from the scheduled transaction management system.

Interest application

Although implemented using the scheduled remittance mechanism, the latency is slightly

higher than that of a scheduled remittance because it is not subject to transaction

amount/number limit.

Swing

The latency is slightly higher than that of a standard remittance because of the additional

converting process to bank deposits and so on.10

Performance prediction of Design 2

Given that the architecture in Design 2 is so designed that user accounts are managed in each

intermediary’s ledger, user limits and transaction record, which are necessary for the various limit

checking processes, could also be managed by the intermediaries (see Figure 6).11 In this case, the

various limit checking processes performed in the central bank system in Design 1 are assumed to

be performed in the system of the respective intermediaries in Design 2.12

10 The latency of swing function according to user attributes was slightly lower than the one of swing function if holding limit is exceeded due

to the absence of a calculation process for the amount exceeding the upper limit.

11 In this case, the central bank’s orchestration system will retain only the point-of-contact function as a facade between the systems. In the

central bank’s ledger system, as in Phase 1, the update process occurs only when the user accounts (the aggregated CBDC balances of users

per intermediary) change mainly because of transactions between users across intermediaries (in the case of remittances within the same

intermediary, the update process does not happen because the user accounts of the intermediary on the ledger does not change).

12 In the case of remittances between different intermediaries, each of the payer's/payee's intermediaries performs its own transaction

amount/number limit check processing, and only the payee's intermediary does the holding limit check processing.

10

Figure 6: Example of a system architecture for Design 2

The latency of Design 2, which relates to transfers between different intermediaries, was calculated

under some assumptions13 based on the system architecture described above using the results of

the performance evaluation test; it was higher by several tens of milliseconds than Design 1, but this

did not represent significantly lower performance. The increase by several tens of milliseconds is

attributable to the following. In the case of Design 1, the ledger update process is completed only

through decreasing and increasing amounts in the central bank ledger, while in Design 2, updates

to the respective ledgers of the payer's and payee's intermediaries are also added.

In the central bank ledger of Design 2, the aggregated CBDC balances of users per intermediary

are recorded in the user accounts. As pointed out in Phase 1, if the load volume of transfers across

intermediaries increases, the update process may be concentrated, resulting in performance

degradation due to the effects of record locks. Such performance degradation could be avoided or

mitigated by splitting the records of the user accounts or by ensuring the update processing of

account transfers on the central bank ledger and that of intermediaries are performed at different

times.14

13 The calculation methodology and assumptions are as follows.

The flow of remittance is broken down into individual processing units, such as checking of the transaction amount/number limit, debiting

CBDC from the payer’s account, and depositing CBDC into the payee’s account, and the probability distribution of processing time for each

individual processing unit is estimated by referring to the probability distribution of processing time for similar processes obtained in the

performance evaluation test of Design 1. Next, the distribution of the sum of several stochastic variables is calculated for the parts in which

each process is performed in sequence, and the distribution of the maximum value of those stochastic variables is calculated for the parts in

which several processes are performed in parallel. Finally, by combining these processing time distributions, the probability distribution of

latency for the entire flow is calculated. For the calculations, assumptions and preconditions were formulated, such as that the processing

times of each individual process are independent of each other and that the intersystem communication time is constant.

14 In performing the above, it is also important to examine ways to maintain the atomicity of transactions, etc., which was achieved by

synchronizing central bank ledgers with the ledgers of intermediary institutions.

Orchestration System

Ledger

System

TX Record Management

System

Orchestration System

Ledger

System

Limit

TX record

Account TX status

Intermediaries Central bank

Scheduled TX

Management

System Scheduled TX

Account balance

(per user)

Account balance

(Aggregated user account balance per intermediary

<user account>)

Note: TX=transaction

11

User ID Balance

A001 XXX

B002 XXX

: :

User ID TX record

A001 XXX

B002 XXX

: :

User ID Upper-

limit

A001 XXX

B002 XXX

: :

Account

ID

Balance

001 XXX

002 XXX

: :

Ledger database

Per-account basis Per-user basis

Upper-limit database

Per-user basis Per-user basis

Account

ID

TX record

001 XXX

002 XXX

: :

Account

ID

Upper-

limit

001 XXX

002 XXX

: :

Account

ID

Balance

001 XXX

002 XXX

: :

Ledger database

Per-account basis

TX record database Upper-limit database

Per-account basis Per-account basis

Central bank system (Single account assumption)

Central bank system (Multiple account assumption)

TX record database

Note: TX=transaction

3.1.2 Coordination between intermediaries and connection with external systems

CBDC accounts provided by multiple intermediaries

In the PoCs, so far, we have proceeded on the assumption that a user has only one CBDC account

with one intermediary (single account), but from the viewpoint of user convenience, a mechanism

that allows a user to have one CBDC account each with multiple intermediaries (multiple accounts)

would also be possible. If we allow the provision of CBDC accounts by multiple intermediaries to a

single user, various limits process such as those discussed in 3.1.1 might need to be implemented on

a per-user basis (based on the aggregation of multiple accounts for a given user). We explored

means of coordination between systems to enable this possibility.

In the case of Design 1, because user account balances and transaction records are managed in

the central bank’s system, it is feasible to implement various limits on a per-user basis by changing

the granularity of information managed from an account-by-account basis to a per-user basis (see

Figure 7). In this case, the processing is essentially the same as when a single account is assumed.15

Figure 7: Change in the information management granularity for Design 1

In Design 2, because the balance and the transaction record of each user’s account are managed

separately in each intermediary’s ledger, if various limits are to be imposed on a per-user basis on

15 As shown in Figure 7, only the ledger database is expected to experience the addition of a very small amount of processing time because

it is necessary to maintain not only the per-user but also the per-account data tables and update both.

12

Intermediary X

TX record

Ledger

(Account

balance)

Intermediary Y

TX record

Ledger

(Account

balance)

Aggregation/Limit

checking
Checking result

Yes/No

• Encryption of account balances, etc., in a form that

allows addition and subtraction (i.e., application of

homomorphic encryption)

• Aggregation and checking if it is below the limits

in a separate system

• Only the checking result is decrypted by another

system and the result returned to the intermediary

Note: TX=transaction

the assumption that a user has multiple accounts, the intermediary that performs the upper-limit

checking process may need to collect information such as the balance information of the relevant

user that is held by other intermediaries.

From a privacy perspective, it might be undesirable for user balance information, etc., held by an

intermediary to be shared with other intermediaries; a coordination method that takes this into

consideration is having a separate system for collecting information necessary for the limit checking

process.16 In this case, for example, homomorphic encryption, which enables data processing in an

encrypted state, could be used to enable information collection and limit check processing in a

separate system while maintaining the confidentiality of the information 17 (see Figure 8). The

simulation results show that if such a system architecture were adopted, the processing time for

encryption and decryption of remittance-related data would be about 50 milliseconds.18

Figure 8: Example of homomorphic encryption use in Design 2

16 Another possible system architecture is having no separate system for information collection but having each intermediary complete the

limit checking process based on the microservices concept. See Appendix 1 for details.

17 Further, if it is required that user data (e.g., user ID, account ID, etc.) other than monetary information such as account balances and

transaction records could be retrieved in encrypted form, searchable symmetric encryption could be used. There is also a possibility of using

information concealing technologies such as multi-party computation (MPC), which divides data and performs computation on multiple

servers, and trusted execution environment (TEE), which performs processing in a segregated hardware area. For more information on each

of these technologies, see the following reference: Payment and Settlement Systems Department, BOJ, “Privacy Enhancing Technologies:

Payments and Financial Services in a Digital Society” (January 2023, Payment and Settlement Systems Report Annex Series).

18 To calculate the processing time when homomorphic encryption is applied, we used the Paillier encryption, which relatively has many

examples of practical use, with several variations in key length. Further, we conducted a simulation in which encryption, addition, subtraction,

and decryption were performed 10,000 times each in a different environment with the same specifications as those of the experimental

environment. The simulation results show that the total time for encryption, addition, subtraction, and decryption was 46 milliseconds even

with a key length of 2,048 bits, which is currently considered highly secure. In addition to the Paillier encryption, there are other homomorphic

encryptions such as ElGamal and RSA encryptions, which offer different computational processing capabilities and speeds. Although Paillier

encryption can perform only addition and subtraction, they are considered to work relatively fast, so there are many examples of social

implementations that use Paillier encryption.

https://www.boj.or.jp/en/research/brp/psr/psrb230120.htm
https://www.boj.or.jp/en/research/brp/psr/psrb230120.htm

13

The above results suggest the possibility of assuming multiple accounts in Design 2 and

implementing various limits on a per-user basis without significantly degrading remittance latency

while still providing a degree of consideration to privacy. However, the increase in processing at the

time of remittance increases the number of possible points of failure and the probability of potential

data inconsistencies. Therefore, as a measure to control the amount of CBDC circulating on a macro

scale, a simpler method instead of the method described above is to set an upper limit on the

number of accounts held by a single user and on the amount held per account and the amount and

number of transactions so that there is no need to aggregate balance information, etc. for each

account.

Connection with external systems

There are a variety of possible external systems that may need to connect with CBDC systems. For

example, if we consider connection with a point of sales (POS) system for in-store payments, we

could use existing connection methods between the store’s payment terminals and the POS system.

Many retailers, such as department stores, supermarkets, and convenience stores, currently have

POS systems that manage data on daily sales and products sold, and each time a payment is made

in cash or with electronic money, the store’s payment terminal processes the received payment and

automatically links the generated sales data (e.g., products, quantity, etc.) to the POS system. Such

automatic connection could be used when CBDC payments are made at retail stores in the future.

For this application, it is assumed that stores’ existing payment terminals will be modified to support

CBDC payments while also ensuring the confidentiality of payment information.

As an example of connection with a POS system, when a user pays with CBDC at a store, the

store’s payment terminal (which supports CBDC) instructs the pull payment by CBDC and links sales

data to the POS system. This case is illustrated in Figure 9.

14

Retailer

POS system

Intermediary

system

Central bank

Orchestration

system

CBDC ledger

system

In-store

payment terminal

Sales data linkage
(Same as existing method)

TX instruction

(Pull payment)

User

Presents the information

necessary for CBDC settlement

Note: TX=transaction

Figure 9: Example of connection with POS system for in-store settlement

The external systems that may connect with CBDC systems could be based on not only existing

technologies but also new ones, such as distributed ledger technology (DLT). Many CBDC

experiments by other central banks have dealt with the connection between CBDC systems and DLT

platforms with an eye toward “asset tokenization,” in which assets are tokenized and distributed via

a DLT-based platform.19 Therefore, this PoC explored the exchange of CBDC and assets on DLT

platforms. Referring to existing examples of delivery versus payment (DvP; simultaneous settlement

of securities and funds) and payment versus payment (PvP; simultaneous multicurrency payment)

settlements, we assumed a linkage processing in which the assets to be exchanged are reserved

once in each system and the final exchange is performed after they are successfully reserved in both

systems, thereby providing escrow (Figure 10).

19 For examples of foreign central banks' CBDC experiments that use DLT, see the following reference: Jiro Sugie and Junichiro Hatogai,

"Efforts to Improve Settlement Using Distributed Ledger Technology - Focusing on Wholesale CBDC Experiments in Different Countries"

(November 2022, Bank of Japan Review Series, 2022-J-16, available in Japanese).

https://www.boj.or.jp/research/wps_rev/rev_2022/rev22j16.htm

15

CBDC System

Other Asset System (DLT Platform)

User A

account

User B

account

User A

account

User B

account

Reserve

account

Reserve

account

(1) Reserve

(2) Transfer

(2) Release

(1) Reserve

(2) Release

(2) Transfer

 Assume that users A and B hold CBDC accounts and

other asset accounts; A transfers CBDC to B, and B

transfers other asset to A.

 To prevent a situation where only one transfer succeeds

and the other fails, the following is implemented:

(1) Only the amount of A’s CBDC and B’s other asset to be

transferred should be set aside to avoid transfer failures

due to insufficient balances, etc.

(2)

・ Transfer the reserved portion only if the process in (1) is

successful for both CBDC and the other asset.

・ If either CBDC or the other asset fails to process in (1), return

to the original state (release reserved amount).

Figure 10: Example of a linkage processing

A possible method for implementing a linkage processing is for the system that manages the

assets to be exchanged to have an application that issues asset transfer instructions and to connect

them indirectly via a connection system that is independent of both systems (the connection system

would have an application that triggers transfer instructions at the appropriate time; see Figure 11).

Regarding the application of the respective systems that perform the connection function (the

transfer instruction function and the connection function portion in Figure 11), the system performing

the connection function can also perform the transfer instruction function; further, other connection

methods are conceivable because the architecture and characteristics of the DLT platform vary.

Figure 11: Example of a system architecture

Regarding such interoperability with external systems, one option would be to make effective use

of existing system infrastructure and technological connection methods. The external system could

be assumed to belong to either the competitive or non-competitive area, depending on their

function. Therefore, it is also important to explore this from a variety of perspectives, including those

on institutional arrangement.

CBDC System

Other Asset System (DLT Platform)

CBDC ledger Transfer instruction function

Other asset ledger Transfer instruction function

Connection function

16

BOX: Points to consider in offline payments

In the PoCs, so far, we have assumed a situation in which wallet applications, intermediary and central bank

systems, etc., are connected online via networks at all times. As a future use case of CBDC, it is possible to

envisage a settlement in which CBDC is transferred between user terminals (P2P connection) in an offline

environment, even temporarily, without the need for authentication or connection to a ledger server, etc. For

such offline payments, it is important to have a “fraud/inconsistency detection” function. On considering the

following three possible cases of fraud/inconsistency, we see that each one has its own set of issues that

require further examination (the data model for offline CBDC is assumed to be either a fixed-value or a flexible-

value token in this study).

1. Cases in which offline CBDC is generated fraudulently

When an offline CBDC is generated by a stakeholder who does not have the authority to generate it

 One solution is to add a digital signature from the central bank to the offline CBDC stored on the

terminal and verify the signature at the receiving user’s terminal at the time of settlement.

 In this regard, especially in the case of flexible-value token, where the tokens are merged or split as

needed for each transaction, it is necessary to consider separately how to check the legitimacy of the

tokens generated on the user’s terminal, etc.

2. Cases in which offline CBDC is replicated across different terminals

When a legitimate offline CBDC on one user terminal is replicated on another terminal

 It is necessary to explore designs that could be considered to detect when a transfer is instructed for

a replicated CBDC.

3. Cases in which used offline CBDC remains in the terminal and is used twice

When a legitimate offline CBDC on one user terminal remains stored on the same terminal in an unused

state after an offline remittance and is used again during another offline remittance

 In the case of no connection to the ledger server or other online environments, it is technically difficult

to detect double use on each offline payment at the receiving user’s terminal. The same issue has

been noted in experiments conducted in other countries.

 There is scope to explore an other method in this respect, for example, by connecting each terminal

to an online environment on a regular basis to collect and collate the necessary information and

check after the fact whether there has been any double use.

It is necessary to eliminate user fraud, etc., by ensuring that terminals and applications on terminals are

robustly constructed so that the kind of fraud/inconsistency described here can be avoided. However, even

assuming that terminals and other devices are robustly constructed, the possibility of their having latent

defects or unknown vulnerabilities cannot be completely eliminated. Therefore, even if fraud/inconsistency

does occur, it is necessary to explore mechanisms to detect when it is about to be used for offline payment.

It is important to consolidate assumed situations and assumptions and continue technical evaluation for

offline payments. It is necessary to focus on not only the technical evaluation process but also the privacy

perspective when proceeding with further consideration of potential measures.

17

App Logic

 Flow control

 Limit checking

, etc.

Routing function
Load balancing

function

Cloning of AP servers

(instance cloning)

[Clone 1]

App Logic

 Flow control

 Limit checking

, etc.

[Clone 2]

[Shard 2]

Data

 Account limit

 Account transaction status

, etc.

[Shard 1]

[Shard 3]

Sharding of DB server

Data

 Account limit

 Account transaction status

, etc.

Data

 Account limit

 Account transaction status

, etc.

3.1.3 Issues in the possible event of social implementation

Scalability

In the possible event of social implementation, as envisioned in Phase 1, the additional functions

must be scalable to handle large-scale, high-frequency processing of tens of thousands to hundreds

of thousands of transactions per second and enable the management of vast amounts of account

information.

For performance enhancement of the experimental environment, cloning (instance replication) is

a possible method for load balancing and parallel processing by deploying multiple identical servers

for the application (AP) server, which executes the processing of transaction instructions. As for the

database (DB) server, which records and holds the results of the processed instructions, the first step

required is to scale it up; however, because scaling up is limited by the hardware specifications of

servers, horizontal partitioning (sharding)20 is the other way to reduce the load (Figure 12). In other

words, AP servers, which implement application logic for the execution of processing, can be

configured to process instructions independently for each server, so a certain level of performance

enhancement can be achieved by simply increasing the number of servers. A DB server, managing

a huge number of records, can be horizontally partitioned to control the amount of data and access

for each shard, thereby ensuring sufficient processing performance. In addition to the need to

achieve consistent processing among multiple servers when performing horizontal partitioning,

there are system operation issues such as the need for periodic tuning to ensure that the amount

of data and accesses held within the server are consistent.

Figure 12: Performance enhancement approaches (example of an orchestration system)

20 A method in which one set of table data stored on a single DB server is distributed and maintained on multiple servers on a per-record

basis.

18

Regarding maintainability when additional functions are added or modified, it is important to

explore modularization (componentization of processes that lead to improved development and

modification efficiency) of processing in relevant areas because the impact of the modification will

be concentrated on the orchestration system in this particular configuration.

Reliability

To achieve high availability, it is important to create redundant systems and prepare disaster

recovery (DR) sites for disaster countermeasures to increase fault tolerance. In Design 2, even if the

central bank system were to fail, the impact on processing that is completed only by the intermediary

institution system would be limited, although the number of points of failure could be large. Further,

if the provision of accounts by multiple intermediaries and various limits per user are assumed, any

failure in a system that centrally aggregates balance information, etc., could affect not only the

payer's and payee’s intermediaries but also other intermediaries holding accounts for the user.

Therefore, there is considerable potential for exploring ways to address this issue, including an

institutional arrangement that would eliminate the need for aggregation of balance information, etc.

by setting an upper limit on the number of accounts and imposing various limits on each account,

as described above.

The security measures in the possible event of social implementation are the same as those in

Phase 1. In other words, measures need to be taken for each component of the CBDC system, such

as individual servers and inter-system networks. It is important to consider finding an appropriate

security balance, keeping in mind the following trade-off relationship: the higher the required level

of security, the greater the cost of implementing and operating the measures and the lower the

processing performance.

19

Token ID Amount Holder ID

T001 50 A

T002 50 A

T006 500 B

: : :

Token ID Amount Holder ID

T001 50 A

T002 50 A

T006 500 B

T008 60 B

T009 40 A

: : :

Example of a remittance using flexible-value tokens:

A sends JPY60 to B using tokens worth JPY100

＝Remittance

＝Self-directed

payment

＝Spent

i

j

k

TX

a

c

UTXOs spent as input UTXOs created as output

c=i+j+k-a

Example of a remittance transaction using UTXOs:

＝Remittance

＝Self-directed

payment

Merged/

Spent Split/

Created

Note: TX=transaction

3.2 Potential use of new technologies

3.2.1 Flexible-value token model

Although a token-based data model can be interpreted in various ways depending on the context,

in the PoCs, the model is one in which a unique identifier (ID) is assigned to monetary data with a

face value, and the CBDC holding status can be recognized by linking this ID with a user ID.

As indicated in Figure 3, for the ledger design alternatives to be evaluated, the fixed-value token

was considered for Phase 1, in which the face value is fixed like cash, and the user to whom the

existing tokens are linked is changed after they are converted to ones with lower value as necessary

at the time of remittance. In Phase 2, a flexible-value token model was considered, in which existing

tokens are merged or split as necessary at the time of remittance, thereby inducing a change in their

face value and linking the user to the newly created tokens. In the flexible-value token model,

existing tokens are merged and spent as inputs and two separate output tokens are newly created

for remittance and change (self-directed payment); the new token for change (self-directed

payment) are used as inputs for the next remittance. When considering how the tokens are spent

during remittance, the flexible-value token model is a data model similar to the unspent transaction

output (UTXO) model21 (Figure 13).

Figure 13: Example of remittances using flexible-value tokens and UTXOs22

Regarding the method of implementation of a flexible-value token model, first, consider the case

of Design 3, in which the central bank alone manages the ledger. The payer's intermediary could

select the tokens to be spent for the transfer, calculate the change, generate new tokens, and

execute a transfer request to the central bank, which would then update the ledger (Figure 14).

21 In the UTXO model, information on past output is often recorded in a form that links spending to input, but in this flexible-value token

model, only information on unspent output tokens is recorded.

22 The illustration of the UTXO remittance transaction was prepared with reference to ECB “Documents for the Digital Euro Prototyping

Exercise” (December 2022), Annex 1.

https://www.ecb.europa.eu/paym/intro/news/html/ecb.mipnews221207.en.html
https://www.ecb.europa.eu/paym/intro/news/html/ecb.mipnews221207.en.html

20

Token ID Amount
Intermediary

ID
User ID

X001 50 X A

X002 50 X A

X003 40 X A

Y002 500 Y B

Y004 60 Y B

: : : :

Central bank

Intermediary X Intermediary Y

A B

Example: A sends JPY60 to B using tokens worth JPY100

• The payer’s intermediary, X, does the following:

 Select tokens to be used for remittance (X001, X002)

 Calculate self-directed payment (40)

 Create new tokens (X003,Y004)

This information is sent to the central bank.

• The central bank updates the ledger.

Intermediary X Intermediary Y
Token ID Amount User ID

X001 50 A

X002 50 A

X003 40 A

: : :

Token ID Amount User ID

Y002 500 B

Y004 60 B

: : :

Intermediary ID
Aggregated amount of

individual tokens

X XXX

Y XXX

: :

Central bank

A B

Example: A sends JPY60 to B using tokens worth JPY100

• The payer’s intermediary, X, does the following:

 Select tokens to be used for remittance (X001, X002)

 Calculate self-directed payment (40)

 Create new tokens (X003,Y004)

The above information is shared with the payee’s

intermediary via the central bank.

• The payer’s and payee’s intermediaries update individual

token ledger information.

• The central bank updates only the aggregated amount of

individual tokens by intermediary.

Figure 14: Example of Design 3 (centralized management by the central bank)

In the case of Design 4, in which the central bank and the intermediaries share the management

of the ledger, it is assumed that the individual token information held by the user is managed by

each intermediary. In this case, tokens transferred across intermediaries are assumed to be

numbered and created by the payer's intermediary, and the payee's intermediary takes over the

management of the tokens after the remittance (tokens remaining with the payer's intermediary will

continue to be managed by the payer's intermediary).

Under the assumption about intermediaries described above, the central bank could have a role

of managing the aggregate token amount on a per-intermediary basis as shown in Figure 15.

Although the updating process would be concentrated in the central bank ledger, the performance

advantages of the token-based data model, capable of processing multiple requests in parallel,

could be maintained in the ledgers of the intermediaries if the same solutions as in Design 2 are

applied, for example, the split records in the central bank ledger, as described in 3.1.1.

Figure 15: Example of Design 4 (shared management between central bank and intermediaries) ①

21

Intermediary X Intermediary Y
Token ID Amount User ID

X001 50 A

X002 50 A

X003 40 A

: : :

Token ID Amount User ID

Y002 500 B

Y004 60 B

: : :

A B
Example: A sends JPY60 to B using tokens worth JPY100

• The payer’s intermediary, X, does the following:

 Select tokens to be used for remittance (X001, X002)

 Calculate self-directed payment (40)

 Create new tokens (X003,Y004)

The above information is transmitted to the other system.

• The other system checks for inconsistencies in the amount

information, calculates the hash value, and send it to the

central bank, after which the token information is deleted.

• The central bank conducts inconsistency check using hash

values and updates the ledger.

• After the inconsistency check, the remittance token

information (Y004) is sent from the other system to the

payee’s intermediary, and each intermediary ledger is

updated.

Hash

159d..

4567..

852b..

5678..

:

Token ID Amount
Interm

ediary
User

X001 50 X A

X002 50 X A

X003 40 X A

Y004 60 Y B

: : : :

Central bank

Hash

159d..

4567..

852b..

5678..

:

Another possible architecture is the central bank partially fulfilling the role of maintaining the

consistency of the tokens circulated among intermediaries as a whole but not holding details of

individual token information. One such example is an architecture in which the token amount

information transmitted from the payer's intermediary is checked for inconsistencies in a separate

system, a hash value is calculated (after calculation, the token information is deleted), and only the

hash value23 is transmitted to the central bank, which then detects double spent of tokens (Figure

16).

Figure 16: Example of Design 4 (shared management between the central bank and intermediaries) ②

In both Designs 3 and 4, there are multiple possible approaches, but in either case, the number

of tokens to be updated at the time of remittance under a flexible-value token model will be

correspondingly smaller because the exchange process required in the fixed-value token model is

no longer necessary. Therefore, the flexible-value token model is likely to take advantage of the

performance feature of being able to process multiple requests in parallel. However, the degree of

performance may vary depending on the merging and splitting algorithms and the resources

required may increase compared to the account-based data model; further, the difficulty of

implementing additional functions such as holding limits while maintaining performance may also

increase.

23 A hash value is calculated as the output of a function (cryptographic hash function) that obtains a fixed-length value from arbitrary input

values with no regularity. The hash value has several advantages; for example, it can detect falsification of lots of different input information

collectively (the output hash value changes if the information used in the input differs even slightly); it is not necessary to hold the user’s

token information directly (only the hash value of the irreversibly converted input information needs to be managed).

22

3.2.2 NoSQL Databases

We used a traditional RDB as the system database in the experimental environment from Phase 1

onward. However, because a CBDC system requires extremely high processing performance, in

Phase 2, NoSQL -- databases other than those based on RDB, some of which are said to have high

processing speed and performance scalability -- were explored for possible use.

In the experimental work, performance evaluation tests were conducted using a key-value24 type

NoSQL database as an experimental setting for an account-based ledger system built in the public

cloud. For the purposes of performance evaluation, implementation was designed to ensure the

necessary consistency, 25 including the use of transaction functions considered necessary for

settlement operations (in this case, a function that simultaneously commits two records in a single

transaction: one for a decrease in the payer’s account and one for an increase in the payee’s account).

High-load scenarios were used for two environments with different degrees of processing

concentration: Environment 1, in which updates occur almost randomly to 100,000 user accounts as

in the central bank ledger of Design 1, and Environment 2, in which updates are concentrated in the

aggregated user accounts held by five intermediaries as in the central bank ledger of Design 2. The

test results showed that all NoSQL databases maintained the necessary consistency even with the

concentration of updating process and that in-memory databases26 in NoSQL databases could

improve processing speed (Figure 17).

24 There are various types of NoSQL databases and data models that are used within them. The performance evaluation tests were conducted

in the experimental environment of an account-based ledger system; a NoSQL database of the key-value type, which is a data model of a

simple combination of a unique key that can identify data and a value, specifically designed for processing rows of data, was selected for the

test.

25 In addition to the transaction function, we implemented a function in the application that allows retry processing when, for example,

multiple data update processes conflict with one another, resulting in an error. In other words, the NoSQL database used in the experimental

work did not utilize the record lock function that is common in RDBs, but controlled consistency by monitoring the data update status; the

default specification is that when data update processes conflict, the subsequent process returns with an error and is not re-executed.

Therefore, we implemented a mechanism in the application in which subsequent processes are re-executed as retries when data update

processes conflict.

26 A database that manages data in random access memory (main system memory). It enables faster data reading/writing than conventional

databases that manage data on disks.

23

Environment 1: Central Bank ledger in Design 1

(Without concentration of updating process)

Environment 2: Central Bank ledger in Design 2

(With concentration of updating process)

Note: All figures are at high load (3,000 transaction requests/second).

・ Throughput reduction rate is expressed as the rate of

decline in the number of transaction requests processed

relative to the number of transaction requests injected over

a second.

・ Latency is AP processing time + DB processing time.

・ All values are averages for the evaluated period.

0

5

10

15

20

Environment 1 Environment 2

Throughput reduction rate

RDB Example NoSQL DB

（%）

Higher performance

1

10

100

1,000

Environment 1 Environment 2

Latency

RDB Example NoSQL DB

（milliseconds, log scale）

Figure 17: Test results

The architecture evaluation based on the test results suggests the possibility that some databases

could maintain high-performance scalability even under the load expected in the possible event of

social implementation, implying that they could be used in ledger systems.27 The use of transaction

functions may hinder performance scalability through restrictions on sharding, and some databases

may require further refinement for use in ledgers. However, the evaluation also suggest that even

such databases have the potential for use as databases for CBDC systems that handle data where

transaction functions are not required (e.g., account transaction status management for the

implementation of additional functions, replica databases for balance inquiries).

There are many other types of NoSQL databases in addition to those evaluated in this PoC, and

even RDBs are now beginning to emerge as high-performance databases. Depending on the

expected volume of transactions, there may be more advantages to build a stable system using

traditional databases. The possibility of using new databases needs to be explored from perspectives

other than performance (e.g., ensuring data integrity in case of failure in an in-memory database28).

Going forward, the ever-evolving database technologies should be explored from a broad

perspective continuously, considering the requirements of anticipated transactions and other factors.

27 The experimental work was conducted on an account-based ledger system. It may be more difficult to accurately estimate the total number

of database records required for social implementation of a token-based ledger system than an account-based system, because of the

exchange, merging, and splitting processes involved. From this perspective, the ease with which the performance of NoSQL databases is

enhanced suggests that a token-based type model may be more advantageous than an account-based type.

28 A common approach to enhancing data integrity is to record data in some form of data storage. Some measures come with potential

performance tradeoffs including additional processing time.

24

4 Conclusion

In PoC Phase 2, we evaluated the processing performance and technical feasibility of additional

functions for which it would be desirable to confirm technical issues as early as possible in the

possible event of social implementation. Further, the possibility of utilizing new technologies that

had not been examined in Phase 1, such as data models and databases, were also evaluated.

In evaluating additional functions, we examined these in terms of (1) preempting a sudden shift

from bank deposits to CBDC as safeguard, (2) improving user convenience such as scheduled and

batch remittance and pull payments, and (3) enabling coordination among intermediaries and

connection with external systems. The evaluation results suggest that none of these additional

functions would cause significantly lower performance and could ensure the scalability and reliability

required for social implementation; they also indicate the need for further considerations and

solutions to achieve the implementation.

In the evaluation of new technologies, we found that the performance advantage of token-based

data model for ledgers in terms of their ability to be processed in parallel might be more easily

utilized in the flexible-value approach than the fixed-value approach for the system architectures

considered in this PoC; however, the resource requirements and difficulty of implementing

additional functions might increase compared with the account-based data model. While NoSQL

databases have potential for use as databases for ledgers and non-ledger CBDC systems from the

perspective of performance improvement, it was confirmed that there were differences in the degree

of potential use depending on the assumed operational and other requirements and that this topic

needed to be explored from perspectives other than performance.

The PoCs, through which the BOJ has confirmed the technical feasibility of the basic functions of

a CBDC, were completed in FY2022, as initially scheduled, with the achievement of its desired

objectives. We have launched in April 2023 and are proceeding with the pilot program. In the pilot

program, the end-to-end process flow will be tested, the measures and potential challenges for

connection with external systems will be explored, and considerations and solutions indicated as

necessary in the PoCs will also be explored. Further, a CBDC Forum will be established with a view

to proceeding with institutional arrangements for CBDC in an appropriate manner, and ideas and

insights set out by private businesses related to retail payments will be drawn upon to deepen the

study.

25

Ledger

System

Mutual Exclusion by Orchestration System Mutual Exclusion by Ledger System

Account balance
TX record

Limit

TX Record

Management System

Scheduled TX

Management System

Ledger

System

Orchestration System

LimitAccount TX status

Scheduled TX

Management System

Orchestration System

TX record Scheduled TX Scheduled TX

Note: TX=transaction

Account balance

Appendix 1: Alternative system architectures

In implementing the additional functions, several systems were added to the CBDC ledger in the

experimental environment; one of these -- the orchestration system -- was used to ensure data

consistency among the systems. The orchestration system has a DB that records and manages the

status of whether or not the processing of each account is being updated; if it is, in principle, the

processing of other operations is put on standby,29 thus allowing the application to control the order

of processing.

A possible system architecture that differs from the system used in the experimental environment

is having the record and other information on the ledger system and consolidating the

implementation of additional functions. In this case, the mutual exclusion by the ledger DB alone

(the so-called record lock function30) can be used to ensure consistency in processing. Specifically,

the ledger system performs upper-limit checking processes by directly placing information that is

highly relevant to the various limits checking processes, such as transaction record and upper-limit

values, in a separate table in the ledger DB; the consistency of processing is ensured by the DB’s

mutual exclusion (see Appendix Figure 1.1).

Appendix Figure 1.1: Mutually exclusive control method (example of Design 1)

If this method were used in the experimental environment, the account transaction status

management within the orchestration system and transaction record management systems would

become unnecessary, so that the communication time across systems would be reduced, and the

processing time could be shortened by several tens of milliseconds. Additionally, the simpler system

29 Some combinations of operations that do not interfere with the limit-check processing are processed in parallel; see footnote 5 for details.

30 For details on the function of DB record locks, see Appendix 3 of the “Central Bank Digital Currency Experiments Results and Findings from

‘Proof of Concept Phase 1’.”

https://www.boj.or.jp/en/paym/digital/rel220526a.pdf
https://www.boj.or.jp/en/paym/digital/rel220526a.pdf

26

Ledger

System

TX Record

Management

System

Any Operation:

Try/Confirm/Cancel

Orchestrator
OK/Cancel

in Reply

CBDC

ledger

Holding

limit

Transaction

amount and

number

limit

TX record

Balance

increase

schedule

Balance

decrease

schedule

Remittance

schedule

Receipt

schedule

Note: TX=transaction

configuration may facilitate easier recovery in the event of a failure. However, because the ledger

system handles data such as transaction records and upper limits, the load on the ledger system

may increase depending on the expected volume of such data and the corresponding load of

transaction instructions.

Other possible alternative system architectures include a design based on the idea of

microservices, in which the system is divided into units of closely related operations. Specifically, the

CBDC ledger system could be configured to perform operations related to balances (updating

balances and checking holding limits), and the transaction record management system could be

configured to perform operations related to transaction record (updating transaction record and

checking transaction amount/number limits).

A specific architecture could be as follows. The orchestrator controls the processing between

systems, instructs each system reserve (Try) the balance increase/decrease and remittance/receipt

schedule, and determines whether the update is possible. Each system performs a reservation and

returns an OK to the orchestrator if it is able to update the schedule and returns a Cancel error

message if it is unable to update the schedule. If all systems are OK, the orchestrator instructs each

system to confirm the contents of the reservation, and if any of the systems are not OK, the

orchestrator instructs each system to cancel the contents of the reservation. Such a processing

method (Try/Confirm/Cancel or “TCC” model) could potentially be adopted (see Appendix Figure

1.2).

Appendix Figure 1.2: TCC model

In the case of Design 2, where multiple accounts are assumed and various limits are imposed on

a per-user basis, this method may eliminate the need for a separate system for information

aggregation. For example, by assigning a limit to each intermediary’s account in advance, a system

in which instructions that do not exceed the limit can be executed as is, while instructions that do

exceed the limit can be handled by another intermediary that manages the same user’s account

with a margin limit31 (see Appendix Figure 1.3). By adopting such a mechanism to flexibly apply upper

31 More precisely, each intermediary has a table that manages the schedule for increasing/decreasing upper limits so that the upper limits

can be flexibly adjusted. For example, the upper limit increase schedule for the account at Intermediary X is updated and the lower limit

schedule for the account at Intermediary Y is also updated by the same amount. If both tries are successful, even if the maximum limit of the

account at Intermediary X is exceeded, the transfer will be executed by obtaining funds from the maximum allowance at Intermediary Y.

27

Orchestration System Ledger System

CBDC ledger

Orchestration

Try

Confirm

Cancel

Holding limit check

Insufficient balance check

Balance decrease

schedule

Balance increase

schedule

Holding limit

Schedule erasure

& ledger updates

Schedule erasure

TX Record Management System

Try

Confirm

Cancel

In
te

rm
e
d

ia
ry

 X

Upper limit scheduled

to increase

Upper limit scheduled

to decrease

(Omitted)

：

Orchestration System Ledger System

Orchestration

Try

Confirm

Cancel

TX Record Management System

In
te

rm
e
d

ia
ry

 Y

(Omitted)
Upper limit scheduled

to decrease

：

：

Each Intermediary may still execute

requests that do not exceed the

maximum holding limit allocated on a

per-account basis.

If there are requests that exceed the

holding limit assigned on a per-

account basis, a quota is transferred

from the limit of the same user’s other

accounts managed by other

Intermediary. In the figure on the left,

the “Upper limit scheduled

to increase” of the account at

Intermediary X is updated, and the

“Upper limit scheduled

to decrease” of the account at

Intermediary Y is updated by the same

amount.

(Omitted)

Note: TX=transaction

limits, it is possible to decentralize processing equivalent to the limit-check process on a per-user

basis as a result, without having to consolidate user balance information, etc., in a separate system.

However, there is a possibility that other intermediaries may find out that the user has exceeded the

upper limit in one of the other accounts when making the margin allowance available to the user.

Appendix Figure 1.3: Example of TCC model in Design 2

In the case of the above configuration, compared with a case in which account transaction status

management is performed within the orchestration system, in terms of performance, the processing

load may be reduced because the upper-limit determination process can be closed to each system,

while the processing load may increase because more data is newly updated, such as balance

increase schedules and upper-limit flexibility processing. However, it is unclear which factor will have

a stronger effect on performance. In terms of maintenance and operation, the same system covers

related tasks; this may facilitate easier modification of the applications that complete each task.

The system architectures discussed here have extra functions in the ledger system. This is a

different concept from the idea (3.1.1) that it is appropriate to have the ledger system perform as

little processing as possible other than updating balances, given the possibility of a high update

load required for social implementation.

28

Basic functions
Swing function

based on user

attributes

Pull

payment

Batch

remittance

Scheduled

remittance

Interest

applicationNo exceeding of

various limits

Swing function when

holding limit is

exceeded

S1

S2

S3

Base: 500/sec total; High-load: 3,000/sec total

Base: 40/sec each; High-load: 240/sec each

Appendix 2: Details of the performance evaluation test

The experimental environment, consisted of a ledger system and other systems, has an AP server

for processing transaction requests, and a DB server (RDB) for recording and maintaining the

results.32 The performance evaluation test was conducted using multiple load scenarios without

changing the basic setting from Phase 133 to focus on the performance changes when additional

functions were added.

Three test scenarios were used with some variation for the additional load associated with

additional functions, as shown in Appendix Figure 2.1. In Scenario 1 (S1), only the limit checking

process for various limits directly associated with transactions of basic functions (assuming that

various limits are not exceeded) was added. In Scenario 2 (S2), in addition to the load volume from

S1, additional functions other than interest application were added that could vary in frequency and

transaction volume depending on user conditions and attributes. In Scenario 3 (S3), only the interest

application, covering all users and with high transaction volume, was added to the load volume from

S1; it would be expected to be processed during times when the load for the ledger is not heavy,

such as at night.

Appendix Figure 2.1: Test scenarios

32 The AP and DB servers deployed in each system have 8-core vCPUs (16 cores only for the DB server of the orchestration system and

transaction record management system), 64GB memory (128GB for the same systems), and SSD storage. 3 AP servers are deployed for the

ledger system under the base scenario and 10 under the high-load scenario. Orchestration system: 3 units under the base scenario, 18 units

under the high-load scenario; transaction record management system: 2 units under the base scenario, 10 units under the high-load scenario;

scheduled transaction management system: 1 unit under the base scenario, 3 units under the high-load scenario. One DB server is deployed

for all systems, regardless of the scenarios.

33 As in Phase 1, the number of users was set at 100,000 and the number of intermediaries was set at 5, with a base scenario of 500 transaction

requests per second and a high-load scenario of 3,000 transaction requests per second for the basic functions. The breakdown of transaction

requests related basic functions by type is 90% for remittances (30% for ones within the same intermediary and 60% between different

intermediaries); 5% each for payouts and acceptances; and 0.08% each for issuance, redemption, and balance inquiries (one transaction per

minute per intermediary). The test period was also defined as the evaluation period between 5 and 10 minutes after the start of the test, when

transaction instructions were continuously input for 15 minutes and stable measurements could be obtained.

29

The main results of the performance evaluation are described in the main text, but considering

latency by system, for all function types, the level is relatively high and the shape of the distribution

is flatter for orchestration systems (Appendix Figure 2.2). The latency of the orchestration system is

thought to be affected by the fact that its operations include various limits checking processes, as

well as inter-system communications, etc., which are comparatively prone to volatility.

Appendix Figure 2.2: Latency distribution by system and function

 Frequency Base (500/sec)

High-load (3,000/sec)

Latency (msec)

Note: Labels on the Y-axis show “System name_Function name.” TX=transaction

