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Abstract

We de�ne downward price rigidity as the state in which the speed

at which prices fall is slower than that in which they rise. Based on

this de�nition, we examine the downward price rigidity of each item

that constitutes the core CPI of Japan. That is, according to the

results of fractional integration tests on price changes of individual

items, we estimate probability density functions in the stationary case

and estimate spatial density functions in the nonstationary case. We

also test their skewness. As a result, we found signi�cant downward

price rigidity in some items. Roughly speaking, about 20-30% of the

core CPI weight shows downward price rigidity.

Keywords: CPI, Spatial Density Function, Price rigidity, Fractional

integration

JEL Classi�cation: E31

1 Introduction

Recently; the core CPI of Japan 1 has been falling because of a serious re-
cession. However; the falling speed of the core CPI looks relatively slow.

�Preliminary. Do not quote without permission. I am grateful to Professor Peter C.B.
Phillips for helpful suggestions and comments. The views expressed in this paper are those
of the author and do not neccessarily re
ect those of the Bank of Japan or Research and
Statistics Department.

1The core CPI of Japan is CPI excluding fresh food.
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That is; the speed at which prices change in this de
ationary period looks
slower than that of past non-de
ationary periods. This might be because of
downward price rigidity.

However; we can not tell if this is conclusive because the core CPI itself
is a aggregate index. That is; there are other hypotheses.

(i) Possible price rises in some items could lessen the falling speed of the
core CPI.

(ii) The Japanese economy could not be so weak. This would be consistent
with the slow falling speed of the core CPI.

Given these alternative explanations; it is useful to test whether each
individual item constituting the core CPI has downward price rigidity. If we
�nd downward price rigidity in many items; there would be support for the
downward price rigidity hypothesis. On the other hand; if we do not �nd
it in each item; we should not use the downward price rigidity hypothesis
to explain the relatively slow falling speed of the Japanese CPI. We de�ne
downward price rigidity as the state in which the speed at which prices fall
is slower than that in which they rise. Based on this de�nition; we examine
the downward price rigidity of each item that constitutes the core CPI. That
is; we test or observe the skewness in the distributions of price changes of
each item.

There are several studies related to price rigidity. That is; price rigidity
itself has been used for a number of studies in macroeconomic models. A
typical study of price rigidity assumes that some nominal prices are 
exible
and other prices are rigid. For example; Gordon(1975) assumes that oil
prices are 
exible and other prices are rigid. Phelps(1978); and Dornbusch-
Fischer(1990) assume that nominal wages are rigid and output prices are

exible.

In studies of downward price rigidity; Balvers(1988) solved the �rm's
maximization problem to show that �rms with a high degree of monopoly
power display relative downward price rigidity; while the reverse applies to
�rms with low monopolistic power. Neumark and Sharpe(1992) showed that
downward price rigidity and upward price 
exibility are a consequence of
market concentration by estimating a dynamic pricing function that used
a bank deposit interest rate as a dependent variable and inter-market loan
rates and market characters as independent variables.

Some studies worked with the cross-sectional skewness of price changes.
Ball and Mankiw(1995) and Balke and Wynne(1996a; b) reported the corre-
lation between the mean of price changes and the \cross-sectional" skewness.
They also discussed whether their �nding is related to price rigidity or an-
other hypothesis. However; Bryan and Cecchetti(1995; 1999) criticized the
correlation itself. They showed that the observed correlation between the
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mean and the cross-sectional skewness could be the result of a small-sample
bias.

In analyzing price rigidity; we assume that some nominal prices could
be rigid and others might not be; as in typical studies of price rigidity 2.
We also assume that some have downward price rigidity and others do not;
although we do not specify the theoretical reasons for downward price rigidity.
Our approach is to observe the time-series skewness of the distributions of
individual items 3. Because we are working with time series; we have to
solve the problem of the possibility of nonstationarity. In order to solve this
problem; we test general nonstationarity by fractional integration tests before
estimating probability density functions in the stationary case and spatial
density functions in the nonstationary case. Based on those functions; we
test or check the skewness of each item.

We found signi�cant downward price rigidity at the 5% level in some
stationary items; which amount to about 25% of the total core CPI weight.
Although we do not have any formal testing tools of skewness for the nonsta-
tionary series yet; we casually checked the likelihood of positive skewness by
using a modi�ed distribution with 95% upper band in the left-hand side and
a 95% lower band in the right-hand side. Even under this modi�ed distribu-
tion against the positive skewness hypothesis; some items; which amount to
about 4% of the core CPI weight; show positive skewness.

This paper is organized as follows. We discuss the problems of time se-
ries analysis and test fractional integration in Section 2. According to the
results of those tests; we estimate probability density functions and spatial
density functions suggested by Phillips(1998) and Phillips(1999); and calcu-
late skewness in Section 3. Section 4 concludes the paper and discusses its
implications.

2 Fractional Integrating Tests

In describing the characteristics of an economic time series; a presumption
of stationarity helps us greatly. That is; in the case of stationary data;
we can use time invariant parameters like the mean; the variance; and the
autocorrelogram to build descriptive statistics that can be estimated from the
observed data in terms of the sample analogues of these quantities. These

2This point is di�erent from the work of Ball and Mankiew(1995).
3Our approach is also di�erent from Ball-Mankiw(1995) and Balke-Wynne(1996a; b)

on this point. Our approach does not depend on the correlation hypothesis between the
mean of in
ation and cross-sectional skewness. That is; our approach does not su�er from
the small sample positive bias that Bryan and Cecchetti(1995; 1999) pointed out.
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parameters are useful in summarizing a particular series and in comparing
di�erent series.

Unfortunately; however; we do have trouble working with these descrip-
tive statistics when the presumption of stationarity is removed. This is be-
cause the underlying time invariant quantities no longer exist. Of course;
the sample analogues are computable in the same way. However; their in-
terpretation is not the same and they typically no longer converge without
restandardization as the sample size increases. In many time series that have
random wandering characteristics; these sample analogues end up having
random rather than nonrandom limits.

In a recent work; Phillips(1998) suggested some methods of spatial density
analysis that apply in a fairly natural way to nonstationary data with stochas-
tic trends and are useful as descriptive tools. Even when we do not have a
framework of time invariant characteristics to rely on due to nonstationarity;
we can use his suggestions to �nd convenient quantitative representations of
sample characteristics without being dependent on the use of a speci�c model.
Thus; whereas we do not have �xed population moments or a time invari-
ant probability density to rely upon; we do have a well-de�ned concept of
spatial location that has meaning beyond the immediate sample data. What
changes is not the approach to data analysis; but the interpretation of the
empirical quantities that emerge from a nonparametric analysis. For a non-
stationary series; these quantities simply re
ect variational decompositions
across space rather than probability decompositions. In the nonstationary
case; the density estimate actually estimates the spatial density of the pro-
cess at each point over the sample - so the result is path dependent and the
function being estimated is itself random. In the stationary case; the density
is a constant nonrandom function 4.

As a �rst step; we test nonstationarity by using fractional integration
tests. Although much attention has been focused on comparing unit roots
with stationary alternatives; we test a broad range of alternatives that we
accommodate by allowing for fractional integration and higher order integra-
tion.

(1� L)dyt = ut (1)

where yt is a zero mean stationary process; and d is a long memory parameter.
If d = 1; yt is unit root nonstationary and said to be an I(1). However; d

4If we use the spatial density estimate for nonstationary data in the case of stationary
rather than nonstationary data; we will obtain the kernel density estimate for station-
ary data scaled by

p
n. In that case; we are e�ectively distributing a non-unitary

p
n

probability across spatial points; rather than the
p
n sojourn time. See Phillips(1999).
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does not have to be a positive integer. When �1
2
< d < 1

2
; yt is stationary

but strongly correlated in the sense that its lag-j autocovariance decays at
the rate jjj2d�1; which is slower than that of stationary linear processes like
ut. When 1

2
� d � 1 ; yt is nonstationary; and the value d = 1

2
provides

the nexus between stationary and nonstationary regions. When d � 2; it
is called higher order integration. A process with d � 1

2
has nonstationary

long-memory and a variance that explodes as t!1. Such processes are not
mean reverting.

In order to estimate parameter d; we use the method proposed by Phillips(1998).
That is; we estimate d by maximizing a local Gaussian likelihood in the fre-
quency domain (see Appendix A). The data of our analysis are price changes
of individual items that constitute the consumer price index; monthly from
January 1991 to March 19995. Although the total number of items is 580;
we can use 558 for our analysis due to missing data 6. The result is shown in
table 1. According to the results of our stationarity tests; we classify items by
point estimates of d into two groups: stationary items with �0:5 < d < 0:5;
and nonstationary items with �1 < d � �0:5 or 0:5 � d < 1:0 7 In the
stationary group of 528 items; 457 items are signi�cantly stationary. That
is; 95% lower band of d � �0:5 and 95% upper band of d � 0:5.

3 Density Functions and Skewness

Based on our grouping of the previous section; we estimate density functions
(see Appendix B). As for stationary items; we can estimate time invariant
probability density by the kernel estimate that follows.

^pdfX(s) =
1

n

nX
t=1

Khn(s�Xt) (2)

where hn is the bandwidth parameter
p
n� ; s is the spatial point; K(:); K� =

1
�
K( :

�
) is a symmetric; nonnegative kernel function that integrates to unity.

After estimating the probability density function; we test the positive skew-
ness by using a conventional test for stationary data. That is; skewness Sk
is

Sk =
3rdm

(se)3
; (3)

5The consumption tax was introduced in April 1989 and the tax rate was lifted in April
1997. In order to avoid this e�ect; we started the data in January 1991 and omitted the
consumption tax hike of April 1997.

6By using x12ARIMA; we seasonally adjusted 435 series which require seasonally ad-
justment.

7There is no jdj � 1 although for some estimates of d we cannot reject the possiblity.
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where se is a standard error and 3rdm is the third moment. The test statistic
of the null hypothesis that Sk = 0 is as follows.

N

6
S2
k ! �2 of degree 1 (4)

Table 2 shows the result of skewness tests for the signi�cant stationary
group of 457 items. In this category; items with signi�cant positive skewness
amount to 22% of the core CPI weight. Table 3 shows the result of skewness
tests for the stationary group of 528 items; which have point estimates jdj <
0:5. In this category; items with signi�cant positive skewness amount to 25%
of the core CPI weight.

For a nonstationary series; there is no time invariant probability measure
and it is no longer sensible to think of decomposing probability into densities
of di�erent spatial regions. Instead; we estimate spatial density functions.
Roughly speaking; we can think of spatial density functions as the proportion
of time that the standardized series spends in the vicinity of a spatial point.
That is; in this case; we think sojourn time instead of probability. And
the total amount of sojourn time is set to

p
n(the number of samples). We

estimate spatial density functions by using the kernel that follows.

L̂B (1; s) =
1p
n

nX
t=1

Khn(
p
ns� yt) (5)

The quantity L̂B(r; s) is a kernel estimate of local time in the sense that it
measures sojourn time at the spatial point s. The reason for this restandard-
ization is that; in the nonstationary case; the process wanders away from
the location. To analyze downward price rigidity as skewness statistically;
it is helpful to test the skewness of the density function. But we cannot
use the usual skewness test for nonstationary data because the usual test is
only for a stationary time series. If a process is nonstationary; that is; its
density is random; then one would expect disorder in the density function.
However; there may indeed be evidence of longer tails in one direction than
in another. So there is probably some basis for analyzing skewness although
we do not have the formal testing tools yet. In a nonstationary case; we
examine positive skewness by the \modi�ed" distribution, which consists of
the 95% upper band in the left hand side and the 95% lower band in the right
hand side. This \modi�ed" distribution would be against the hypothesis of
skewness> 0. So if skewness> 0 in the case of this modi�ed distribution; the
true skewness is more likely to be positive; although this procedure is not a
formal test.

Table 4 shows the result of this preliminary examination; in which 4% of
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the total core CPI weight shows positive skewness in spite of the modi�ed
distribution against positive skewness.

Although \signi�cant positive skewness at the 5% level in stationary
data" is statistically di�erent from \positive skewness in the modi�ed distri-
bution by using 95% con�dence intervals in nonstationary data"; it would be
practically useful for us to summarize our result. Table 5 shows the summary
of our analysis; which is just the sum of each cell of Table 3 and Table 4.
According to Table 5; about 29% of the total core CPI weight is more likely
to be positive skewness (downward price rigidity) as a whole. As for cate-
gories of commodities; housing; transportation & communication; education;
and food8 show a relatively higher share of the core CPI weight although we
could not specify reasons for downward price rigidity.

4 Conclusions

We analyzed downward price rigidity of the core CPI components in Japan.
As a result; we found about 20-30 % of the core CPI weight shows downward
price rigidity. That is; according to point estimates of memory parameters
in fractional integration tests; we classi�ed items into two groups: stationary
items; which include signi�cant stationary data; and nonstationary items.
In signi�cant stationary data; about 22 % in terms of the core CPI weight
shows signi�cant positive skewness at the 5% level. In stationary data; which
have stationary memory point estimates jdj < 0:5; about 25% in terms of
the core CPI weight shows signi�cant positive skewness at the 5% level. In
nonstationary data; about 4% in terms of the core CPI weight shows positive
skewness in the modi�ed density distribution against the positive skewness
hypothesis.

These results imply that price rigidity could; partly; explain the relatively
slow falling speed of the core CPI in Japan. It would be more useful to see
an extreme case as an upper band of its e�ect. If every item went into a
falling phase with the same potential falling speed; and 20%-30% of the core
CPI weight hardly fell; price rigidity would slow the falling speed of the core
CPI at a rate of 20% -30%; which means the potential falling speed would
be the actual falling speed times 1

0:8
� 1

0:7
.

8Premium rice; school lunch and so on.
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5 Appendix A: Fractional Integration Tests

The following explanation of fractional integration is from Phillips(1998);
Phillips and Xiao(1999); and Robinson(1995). We now consider a model for
price change process as follows.

(1� L)dyt = ut (6)

where ut is a zero mean stationary process with spectral density fuu and d is
the long memory parameter. By virtue of equation (6); the spectrum of yt
has the following asymptotic form in the vicinity of the origin

fyy(�) � fuu(0)

�2d
; � � 0: (7)

The operator (1� L)d is de�ned by the formal binominal expansion

(1� L)d = 1 +
1X
j=1

(�d)j
j!

Lj; (�a)j = (�a)(�a + 1); :::; (�a+ j � 1) (8)

whose convergence properties depend on the value of d. When d is a positive
integer; the process yt is said to be an I(d) process. With this general model;
there may be one or several unit roots (d integer� 1) or fractional integration
(0 < d < 1).

When 0 � d � 1=2 ; yt is stationary but strongly correlated in the
sense that its lag-j autocovariance 
j decays at rate jjj2d�1 ; which is slower
than that of a stationary linear process like ut. When 1=2 � d � 1 ; yt is
nonstationary; and the value d = 1=2 provides the nexus between stationary
and nonstationary regions. When d is an integer � 2 ; it is called higher
order integration. In this case; yt has two or more real autoregressive unit
roots and is stationary after di�erencing d times. A process with d � 1=2 has
nonstationary long-memory and a variance that explodes as t ! 1. Such
processes are; in fact; not mean reverting; although their impulse responses;
which are obtained from the expansion

(1� L)�d = 1 +
1X
j=1

(d)j
j!

Lj (9)

and have the form

(d)j
j!

=
1

�(d)

�(d+ j)

�(j + 1)
' 1

�(d)

1

j1�d
as j !1; (10)

decay to zero provided d � 1 ; and so shocks in equation (6) are not
persistent in this case.
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Within the family (6); it is possible to test for `unit root' nonstationarity
by estimating d and testing the null hypothesis d = 1 against the alternative
d � 1; or to test for stationarity d � 1=2.

Phillips(1998) proposed to estimate d in (6) by maximizing a local Gaus-
sian likelihood. Following Kunsch(1987); he suggests a Gaussian objective
function; de�ned in terms of the parameter d and G = fuu(0);

Qm(G; d) =
1

m

mX
j=1

 
log(G��2dj ) +

�2d
j

G
Iy(�j)

!
(11)

where Iy(�j) = wy(�j)wy(�j)
� is periodgram; �j = 2�j

n
; j = 0; 1; :::; n � 1

are the harmonic frequencies; and wy(�j) = 1p
2�n

Pn
t=1 yte

i(t�1)�j is discrete
Fourier transform of yt. The integer m is less than n and de�nes the number
of frequencies in the vicinity of the origin that are being used in the estimation
of the parameter d.

The local Gaussian estimates of G and d are obtained by minimizing
Qm(G; d); so that

(Ĝ; d̂) = arg min
0<G<1;d>0

Qm(G; d); (12)

which involves numerical optimization. Concentrating equation(11) with re-
spect to G; we �nd that the estimated d̂ satis�es

d̂ = argmin
d

R(d) (13)

where

R(d) = logĜ(d)� 2d
1

m

mX
j=1

log�j; Ĝ(d) =
1

m

mX
j=1

�2d
j Iy(�j): (14)

Recently; Robinson(1995) analyzed the above estimators in the stationary
case where d 2 (�1

2
; 1
2
). Under rather weak regularity conditions; Robinson

showed that d̂!p d0 and Ĝ(d̂)!p G0 where d0 and G0 are the true values of
the parameters. Under a slight strengthening of these conditions; Robinson
also established that d̂ is asymptotically normally distibuted with the limit
distribution

m
1

2 (d̂� d)
d! N(0;

1

4
): (15)

This limit theory makes possible statistical testing and the construction of
con�dence intervals for d0 in the stationary case.

Phillips(1998) has dealt with the nonstationary case where d 2 (1
2
; 1] and;

under regularity conditions that are broadly similar to those of Robinson(1995);
has established that

d̂
p! d; Ĝ(d̂)

d! G0 + C(d); (16)
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and

m
1

2 (d̂� d0))MN

 
0;
1

4

G2
0

(G0 + C(d0))2

!
; (17)

where C(d) > 0 is a random and depends on the true value of d. Since
the variance in equation (17) is smaller than 1=4; conservative con�dence
intervals can be constructed for d that utilize the limit theory (15) and apply
for both stationary and nonstationary d.

6 Appendix B: Spatial Densities for Nonsta-

tionary Series

The following explanation is from Phillips(1998) and Phillips(1999). We
concentrates on a unit root time series yt =

Pt
1 us; whose increments ut form

a stationary time series with zero mean and �nite absolute moments to order
p > 2; and which satis�es the functional law

Yn(:) =
y[n:]p
n
) B(:) � BM(�2): (18)

LB(r; s) is called the local time of Brownian motion B at a spatial point
s. We de�ne the local time of fractionall Brownian motion

LBd�1
(r; s) = jBd�1� sj� jBd�1(0)� sj�

Z r

0
sgn(Bd�1(t)� s)dBd�1(t): (19)

A natural candidate for estimating the local time of the limit process of
n�

1

2X[nr] at s is the scaled kernel estimate

L̂B

 
r;

sp
n

!
=

1p
n

nX
t=1

Khn(a� yt) (20)

where K(:) is a symmetric; nonnegative kernel function that integrates to
unity; K�(:) =

1
�
K( :

�
); a =

p
ns; hn =

p
n�n; !̂ is a consistent estimate of

!2 = 2�f�x(0).

The de�nition of L̂B

�
r; sp

n

�
involves scaling the conventional kernel esti-

mator given in equation (20) by
q
(n). The reason for this standardization

is that in the nonstationary case the process Xt wanders away from the lo-
cation s at the rate

p
n and; for such departure from s; K(h�1n (s � Xt)) is

negligibly small. In e�ect; the stochastic trend property of Xt reduces the
order of magnitude of the kernel estimate compared with the stationary case.
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Table 1: Fractional Integration Tests
memory parameter d number of items
d � �1 0

�1 < d � �0:5 17
�0:5 < d < 0:5 528
�0:5 < 95% lower band
and 95% upper band < 0:5

457

0:5 � d < 1:0 13
1:0 � d 0
total 558
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Table 2: Skewness Tests of Price Changes: signi�cant Stationary Time Seriesa

commodities
total
number
of items

number of items
with signi�cant
positive skewness
at 5% level

total
weight
of items

total weight
of items
with signi�cant
positive skewness
at 5% level

Food 222 30 2850 329
( 14 %)b ( 12 %)c

Housing 21 4 1981 99
( 19 %) ( 5 %)

Fuel; light and
water charges

6 2 590 119

( 33 %) ( 20 %)
Furniture
and household
utensils

61 7 411 60

( 11 %) ( 15 %)
Clothing
and footwear

82 20 679 122

( 24 %) ( 18 %)
Medical care 26 7 329 183

( 27 %) ( 56 %)
Transportation
and
communication

39 18 1216 454

( 46 %) ( 37 %)
Education 13 11 13 417

( 85 %) ( 92 %)
Reading and
recreation

77 18 1090 254

( 23 %) ( 23 %)
Miscellaneous 33 13 398 142

( 39 %) ( 36 %)
CPI 580 130 10000 2179

( 22 %) ( 22 %)
CPI(excluding
fresh food)

518 124 9504 2135

( 24 %) ( 22 %)
a�0:5 < 95% lower band and 95% upper band < 0:5.
bThe value in parenthesis means the percentage of the number in the total number of commodities.
cThe value in parenthesis means the percentage of the weight in the total weight of commodities.

14



Table 3: Skewness Tests of Price Change: Stationary Time Seriesa

commodities
total
number
of items

number of items
with signi�cant
positive skewness
at 5% level

total
weight
of items

total weight
of items
with signi�cant
positive skewness
at 5% level

Food 222 40 2850 477
( 18 %) b ( 17 %)c

Housing 21 4 1981 99
( 19 %) ( 5 %)

Fuel; light and
water charges

6 3 590 198

( 50 %) ( 34 %)
Furniture
and household utensils

61 8 411 66

( 13 %) ( 16 %)
Clothing and
foot wear

82 21 679 124

( 26 %) ( 18 %)
Medical care 26 9 329 195

( 35 %) ( 59 %)
Transportation
and
communication

39 18 1216 454

( 46 %) ( 37 %)
Education 13 12 13 442

( 92 %) ( 97 %)
Reading and
Recreation

77 20 1090 272

( 26 %) ( 25 %)
Miscellaneous 33 13 398 142

( 39 %) ( 36 %)
CPI 580 148 10000 2469

( 26 %) ( 25 %)
CPI(excluding
fresh food)

518 141 9504 2421

( 27 %) ( 25 %)
a�0:5 < d < 0:5.
bThe value in parenthesis means the percentage of the number in the total number of commodities.
cThe value in parenthesis means the percentage of the weight in the total weight of commodities.

15



Table 4: Skewness Examination by Modi�ed Distributiona: Nonstationary Time Series

commodities
total
number
of items

number of items
with positive
skewness
in the modi�ed
distribution

total
weight
of items

total weight
of items
with positive
skewness
in the modi�ed
distribution

Food 222 0 2850 0
( 0 %)b ( 0 %) c

Housing 21 2 1981 369
( 10 %) ( 19 %)

Fuel; light and
water charges

6 0 590 0

( 0 %) ( 0 %)
Furniture
and household
utensils

61 0 411 0

( 0 %) ( 0 %)
Clothing and
foot wear

82 1 679 6

( 1 %) ( 1 %)
Medical care 26 0 329 0

( 0 %) ( 0 %)
Transportation
and communication

39 0 1216 0

( 0 %) ( 0 %)
Education 13 0 13 0

( 0 %) ( 0 %)
Reading and
recreation

77 0 1090 0

( 0 %) ( 0 %)
Miscellaneous 33 0 398 0

( 0 %) ( 0 %)
CPI 580 3 10000 375

( 1 %) ( 4 %)
CPI(excluding
fresh food)

518 3 9504 375

( 1 %) ( 4 %)
aModi�ed distribution have the 95% upper band in the left hand side and 95 % lower band in the right hand side.
bThe value in parenthesis means the percentage of the number in the total number of commodities.
cThe value in parenthesis means the percentage of the weight in the total weight of commodities.
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Table 5: Roundup Table of Skewness Tests and Examination : Stationary and Nonstationary Cases

commodities
total
number
of items

number of items
with more likely
positive skewnessa

total
weight
of items

number of items
with more likely
positive skewnessb

Food 222 40 2850 477
( 18 %) c ( 17 %)d

Housing 21 6 1981 468
( 29 %) ( 24 %)

Fuel; light
and water charges

6 3 590 198

( 50 %) ( 34 %)
Furniture
and household
utensils

61 8 411 66

( 13 %) ( 16 %)
Clothing and
footwear

82 22 679 130

( 27 %) ( 19 %)
Medical care 26 9 329 195

( 35 %) ( 59 %)
Transportation
and communication

39 18 1216 454

( 46 %) ( 37 %)
Education 13 12 13 442

( 92 %) ( 97 %)
Reading and
recreation

77 20 1090 272

( 26 %) ( 25 %)
Miscellaneous 33 13 398 142

( 39 %) ( 36 %)
CPI 580 151 10000 2844

( 26 %) ( 28 %)
CPI(excluding
fresh food)

518 144 9504 2796

( 28 %) ( 29 %)
aItems with signi�cant positive skewness at 5% level in the stationary case and items with positive skewness in the

modi�ed distribution in the nonstationary case.
bItems with signi�cant positive skewness at 5% level in the stationary case and items with positive skewness in the

modi�ed distribution in the nonstationary case.
cThe value in parenthesis means the percentage of the number in the total number of commodities.
dThe value in parenthesis means the percentage of the weight in the total weight of commodities.
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