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Abstract

The mechanism of financial transactions provided to society today cannot be
determined by a single financial institution, but is determined through a complex
structure of mutual cooperation, or a “network”, between several financial institutions.
Quantitative analysis of such a “network” structure had not been explored until
recently, mainly due to limitations in the data available. This paper analyzes the
“network” structure of financial transactions, using the logged data of financial
transactions through the BOJ-Net (Current Account of the Bank of Japan), which
became obtainable after the introduction of RTGS (Real Time Gross Settlement) in 2001.

This study uses recently developed methods of statistical physics. This field of study
provides an analytical framework that treats the complex structure of financial
institutions as a structure of elements, or “nodes,” that are connected to one another,
through “links.” 
 Our study shows that the “network” of financial transactions between financial

institutions possess fractal structure, similar to that observed in network structures in
the natural world (such as river basins) or the structure of the Internet. We also find
that financial institutions situated in the middle of the network structure hold more
links than those institutions on the periphery of the network, implying that the formed
structure is a result of the pursuance of “efficiency” rather than “stability.” 
We should pay enough attention to the dynamic nature of the network structure in

order to evaluate its stability, since the network structure of financial transactions is
not static in nature(the network is not based upon hardware like cables, as in the case
of the Internet). Thus, there is a need to confirm the stability of the network structure
over time. In this respect, further analysis of “dynamic networks” is worth a try, based
on the evidence shown in this paper which confirms a certain degree of robustness
within the network. 
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1.  Introduction

Financial institutions, such as banks, play an important role in our society. For example,
financial institutions collect funds from various organizations and individuals with
excess money, and lend them to organizations and individuals in need of money.
Financial institutions also give means of monetary transactions to society through the
transfer of funds between agents. We will call the system related to monetary
transactions collectively as a “banking system.” It goes without saying that it is
impossible to form a “banking system” only by a single financial institution. The
“banking system” is organized only when several financial institutions cooperate with
each other through monetary transactions. Furthermore, the “banking system” must be
based upon a stable network of transactions, in order to fulfill its role.

For a better understanding of the factors that affect the stability of the banking system,
it is imperative to understand the structure and the mechanism of the system. This
study focuses on the element of “cooperation” between financial institutions,
concentrating on the relationship of financial institutions through the transfer of funds.
In the case of a cash transfer, the relationship can be explained as a delivery (or supply)
of funds by one institution, in order to meet the demand of funds of another institution.
This demand and supply of funds composes the structure of “cooperation” between
financial institutions. A visual image of a complex structure of cash transfers between
several financial institutions would look like a giant web. It was our belief that the
analysis of this structure would lead to a better understanding of the banking system.
Unfortunately, there have been few quantitative observations of fund transfers between
financial institutions.  One of the reasons is that there has been no means to record
every single transaction between financial institutions. In this study, we analyzed the
records of fund transfers between financial institutions executed through the BOJ-NET
by means of statistical physics. This was possible, due to the introduction of the Real
Time Gross Settlement System to the BOJ-NET, where every single transaction has
been kept on record. 

One of the major aims of statistical physics is an understanding of phenomena in which
fluctuations play an important role. Though economic phenomena are such examples,
they have not been studied in view of statistical physics until recently. For example, the
demand and supply curve, which is a basic concept of economics, expresses the sum of
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individual demand for goods in society, as a function of price. However, such a scheme
takes into account only an average or a sum of a given quantity overlooks stochastic
fluctuations of the quantity.

There are important examples of physical phenomena that involve fluctuations. Among
such phenomena, Brownian motion is well known in the field of the finance. Though
Brownian motion is a phenomenon with a fluctuation, it is considered to be one of the
simplest phenomena in the field of statistical physics, because it is explained by a sum
of effects of independent events. On the other hand, there are more complex phenomena
that involve intricate interaction between elements in a system. One of the examples is
“critical phenomena”. The critical phenomena have been studied for about half a
century. Through these studies, methods to treat fluctuations such as mean-field
approximation and a theory of renormalization group have been developed. These
methods are applied to various phenomena in the field of the statistical physics today.

In recent years, there has been many studies concerning network structures in the field
of statistical physics. A “Network” is a structure composed of nodes connected by links.
It has been found that many of the network structures formed in the natural world are
“fractal.” Fractal is a concept deeply related to the critical phenomena. The structure of
the Internet, and the structure of human relations such as co-starring of actors are
found to have a fractal nature, and they are called “scale-free networks.”

The structure formed by financial institutions is interpreted as a network structure by
regarding the financial institutions as nodes and the connection defined by transactions
between them as links. We call the network by this definition a “banking network.” By
means of the methods developed in the studies of network structures in the field of the
statistical physics, we may be able to gain knowledge of the structure of the “banking
network.”

In this study, we analyze the records of the funds transfer between the current accounts
at the Bank of Japan. We will present the methods to define the banking network and
discuss its structure. We introduce several basic concepts of statistical physics before
presenting our work, because these concepts may be unfamiliar to those involved in the
field of the economics. We also show various statistics of monetary transactions in
appendices because there are few studies examining such statistics.
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2. Fractality of network structures

In recent years, the study of “Network structures” has seen significant growth in the
field of statistical physics One of the earliest work of this area was done by Barabási et
al. They presented that many network structures observed in the natural world show a
common feature. The feature is that the number of links connected to a single node
follows a power-law distribution. Now it is evident that power-law distributions are
observed in the structure of the Internet and in human relations. The network
structures of this type have been studied extensively since the discovery of the power-
law distributions, and its properties such as the “stability” of the network have already
been proven.
The power-law distribution implies the fractality of the network structure. We introduce
several basic concepts briefly in this section, because we think that the relation between
fractals and power-law distributions may be unfamiliar. 

2.1 Fractals and power-law distributions

It is known that there is a close relationship between fractals and power-law
distributions. We will explain this through an example of the structure of a river
network.

River networks often have a branch-like structure as presented in Fig.1. On a branch-
like network, the structure of the main stream and that of the tributaries have similar
shapes. When a structure is comprised by sub-structures with the shape similar to that
of the whole structure, the geometrical nature is called “self-similarity,” and a structure
with self-similarity is called a “fractal'.”

It is known that the drainage basin area of a river network follows a power law. When
an arbitrary point on the river branch is chosen, the drainage basin area for this point is
defined by the total area upstream from this point. The power-law distribution )(xP  is

described by
��

� xxP )(         (1)
where )(xP is the probability density function of a stochastic variable x  . The power

law of the drainage basin area distribution is interpreted geometrically as follows. The
distribution of Eq.(1) follows

)()( axPaxP �
� (2)
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where a  is a positive parameter. When the stochastic variable x  is the drainage basin
area, this relation means that the occurrence probability of a tributary with area x  is

as �a  times big as that of a tributary with area ax . In other words, there are �a
tributaries with area x on average in a tributary with area ax . Eq.(2) expresses the
self-similarity of the river network mathematically.

This example does not assure all power-law distributions have geometrical
interpretation. However, when a power-law distribution is observed along with a
geometrical structure, it may be interpreted as self-similarity.

In the field of statistical physics, a fluctuation of a physical quantity is often observed by
means of a probability distribution. The field of finance has also developed methods to
treat fluctuations of economic phenomena. For example, there is a method to determine
the proper portfolio of stocks by analyzing standard deviations of stock prices. The
standard deviation of a physical quantity, however, only describes the magnitude of the
fluctuation, which is comparable to the width of the probability density function, and
cannot describe the whole form of the probability density function. Statistical physics
aims to understand the physical process that forms the fluctuation by observing the
function form of the probability density function.

2.2 Cumulative distributions

In this section, we explain cumulative distributions because, in the following sections,
statistics of various quantities are presented by cumulative distributions. As in the case
of this study, when we have to observe a distribution of a physical quantity, it is easier to
observe the cumulative distribution rather than to observe the density distribution,
because the graph of the cumulative distribution is usually smoother than that of the
probability density distribution. The cumulative distribution )( xP �  of a stochastic
variable x  is defined by

�
�

����
x

xdxPxP )()( (3)

where )'(xP is the probability density function of 'x . Since the cumulative distribution

)( xP � is an integral of the probability density from x  to infinity, )( aP �  is the
probability that variable x  takes a value larger or equal toa . ax �
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As we have indicated so far, the distribution of the variable x  is usually presented by a
probability distribution. In this paper, however, statistics of a quantity is presented by a
distribution of number of cases )(xN . The cumulative distribution of this case is defined

by

�
�

����
x

xdxNxN )()(      (4)

)( aN � is the number of cases in which variable x  takes a value larger or equal to a .
When variable x takes only a positive value,

)0(
)()(

�

�
��

N
xNxP      (5)

holds. The distribution )( aN � presents the real observational number, while the

probability distribution shows the ratio of the number.

Because a cumulative distribution is an integral of a density distribution, in a case of a
power-law distribution, the exponent of the cumulative distribution differs by 1 to the
exponent of the density distribution.

2.3 Models of network formation

Before the study by Barabási et al., it was believed that the model by Erdös et al could
explain the formation of a network structure. The model is based on an idea that a
network is formed by a random connection of nodes.

Erdös model forms a network by connecting an arbitrary chosen pair of nodes by a link

with probability p . When the number of nodes in a system is 0N , a node in the system

forms pairs with other 10 �N  nodes. The probability that k  pairs within 10 �N  pairs

are connected by links and others are not connected is kNk pp ��

�

10)1( . By taking into
account the number of combination to choose k  pairs out of 10 �N  pairs, the
distribution of the number of links connected to a single node )(kP  is calculated as

kNk pp
k

N
kP ��

���
�

�
��
�

� �
�

10 0)1(
1

)(     (6)

When 0N  is large, this distribution is well approximated by a normal distribution with
average pN )1( 0 � . The distribution of number of links connected to a single node is

called a “degree distribution.”
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The results of the Erdös model was not tested until recently. Barabási checked their
results by observing various network structures formed in the natural world, and found
that degree distributions do not follow Eq.(6) but follow

��
� kkP )(             (7)

in many cases. As we mentioned above, a power-law distribution is often related to a
fractal structure.
The distribution Eq.(7) implies that the network structures are of fractal nature.

Barabási et al. proposed a model of network formation to explain the fractality of the
networks. The model is based on an idea of random growth of a network. The model
develops a large network by adding nodes one by one to an initially small network with

0m nodes. The new node added to the growing network is connected to m  links, and the
other end of these m links is connected to the growing network. The other m  ends are
connected to the i th node with probability

�
�

j j

i

k
kp            (8)

where ik  is the number of links connected to the i  th node of the growing network. This

means that a node with a large number of links attracts more links. A process in which
a large element grows larger is often observed in formation of fractal structures. A
network formed by this model presents a power-law degree distribution Eq.(7) and the
exponent of the distribution is calculated as� =2.

In this way, Barabási et al. proved that a model with a growth process of a network
could explain the formation of fractal networks.
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3. The banking network

We reviewed studies of network structures in the field of statistical physics, and
introduced several concepts related to them. As we mentioned in the section above, it
has been recognized that there are many fractal networks in the natural world, and our
interest brings us back to the possibility of the banking network possessing a fractal
nature.
The study of the structure of the banking network provides useful insight from a
practical viewpoint. For example, if a financial institution ceases to transfer funds,
financial institutions expecting to receive the funds from the troubled one may face
difficulty to maintain their function. In a worse case scenario, the malfunction of one
financial institution could provoke the malfunction of several financial institutions,
creating considerable damage to the entire banking system. In such a situation, if we
have an idea of the relationship or network structure of financial institutions in terms
of monetary transactions, we may be able to take necessary action in order to prevent
systemic contagion.
For this reason, if the structure of the banking network is found to possess fractal
properties, we can apply the existing results of recent studies of fractal networks to the
banking network.

3.1 Data for analysis

One major method of transaction is the fund transfers of financial institution through
the current accounts held at the Bank of Japan. Each major financial institution has a
current account with the Bank of Japan and transfers funds between these accounts in
order to settle payments. The Bank of Japan maintains an on-line system called the
BOJ-NET for funds and Japanese Government Securities (JGSs) settlements between
financial institutions. Terminals of the BOJ-NET are installed at financial institutions
and the Bank of Japan, including its branch offices. There are a few financial
institutions that do not use the BOJ-NET directly. In those cases, however, the
transactions are applied to the Bank of Japan by application forms, and in the end, they
are executed on the BOJ-NET. Therefore, all the transactions through current accounts
at the Bank of Japan are executed on the BOJ-NET and they are electronically recorded
on the computer of the online system.

We analyzed the records of transactions executed through the BOJ-NET between June
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2001 and December 2002. Especially, we used the records of June 2001 for the analysis
of the structure of the banking network and for the statistics presented in the appendix.
The other records are used to confirm that the stability of the fractal nature over time.

The main aim of this study is to analyze the structure of the banking network. However,
it is needless to say that we cannot completely grasp monetary transactions between
financial institutions only through the record of fund transfers through the BOJ-NET.

First, there are means for monetary transactions between financial institutions other
than the funds transfers through the BOJ-NET. Second, a part of funds transfers
executed to pay for JGSs or corporate bonds are not included in the data set for this
analysis. In addition, there are many cases of offsetting transactions. In the cases of
offsetting, there may be no record of the transaction or a record with only the net
amount.

It is preferable that these limitations be minimized because they may skew the
statistics of monetary transactions. However, the records of the transactions through
the current accounts are the best possible data we possess at present. Thus, we have
assumed that the records well describe the tendency of monetary transactions.

There are several kinds of financial institutions that transfer funds through the current
accounts at the Bank of Japan. They include security firms, credit unions, and so on.
Hereafter, however, these financial institutions will collectively be called “banks” for
simplicity.

A record of a transaction includes the bank codes and the branch codes of the source and
the destination of the transaction, the execution time of the transaction, the amount of
the funds transferred, and so on. Because we are mainly interested in the network
structure of banks in this study, we neglect branches of banks. That is, when branch
a of bank A  sends money to branchb  of bank B , we treat them simply as a transaction
from bank A  to bank B . There are records of transactions between branches of a same
bank in the analyzed data, but these transactions are also neglected.

Including transactions between branches of same banks, there are 546 banks that
executed one or more transactions within the period of June 2001. The total number of
transactions was about 150 thousand, and the total amount of the money transacted
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was about 733 trillion yen. When the transactions within the same banks were
eliminated, the total number of the transactions amounted about 140 thousand, and the
total amount of money transacted was about 710 trillion yen. The maximum amount of
one transaction was about 762 billion yen, and the minimum amount was 1 yen.

3.2 Definition of the banking network

Compared to the case of the Internet, it is not obvious how the banking network should
be defined from the records of transactions. The Internet is a network composed of
hardware such as cables, while the banking network of fund transfers is not composed
of any hardware.

We may come up with several ways to define the banking network from the records of
the transactions.

The simplest way would be to connect a pair of banks by a link when one or more
transactions are executed between the pair during the observation period. However,
there is a probability that an unconnected pair may execute a transaction, and if we
observe the pair in a longer period, there may be a transaction between the unconnected
pair. This indicates that the network structure would depend on the observation period,
and the connection itself is not definite.

The next simplest idea may be to connect a pair with a link when the amount of the
transferred funds between the pair exceeds a threshold. This may in fact be the most
natural idea when we observe a network of monetary transactions. We analyze the total
amount of transferred funds between the pairs. The number of banks that executed one
or more transactions in the period of June 2001 is, as we mentioned before, 546.
Therefore, the number of pairs theoretically formed by 546 banks is 148,785. However,
the number of pairs in which one or more transactions are observed in the period is only
7,351. Figure 2 shows the cumulative distribution of the total amount of the funds
transferred between those 7,351 pairs. The graph shows a smooth curves in a log-log
scale, which means the distribution decays faster than any power law. The graph does
not show any characteristic amount of funds suitable for a threshold for the definition of
links. Though we can set a threshold at the average of the amount, its physical
implication rests unclear.
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In this study, we adopt the definition of the banking network as follows. Figure 3 shows
the cumulative distribution of the number n  of the transactions between the 7,351 pairs.
As in the figure, the graph of the distribution in a log-log scale is fit well by a straight
line above the kink at about 20�n . This shows that the cumulative distribution

)( nN �  follows a power law 
3.1)( �	
 nnN             (9)

in the range of 20�n . Because the number of business days in the period of June 2001
is 21, the position of the kink 20�n  has a clear meaning of one transaction a day.
Thus, we define the banking network by connecting a pair of banks when the number of
the transactions between the pair is larger or equal to 21.

3.3 Statistics of the banking network

Though there are 546 banks that executed transactions in the observation period, some
of the banks were not considered in our analysis, because pairs with less than 21
transactions were not connected by links. As a result, the banking network is composed
of 354 banks. The network structure is presented in Fig.4. A bank with more
transactions is placed closer to the center with a few exceptions in the figure. There is a
tendency that the banks placed near the circumference have a few links connected to
the banks placed close to the center. The number of the pairs connected by links in the
figure is 1,727. This is less than 3% of the theoretical number of pairs 62,481. The
banking network is, for the most part, composed of unconnected pairs.

Figure 5 shows the cumulative degree distribution of the banking network. The graph
follows a power law with an exponent 1.1)( �	
 nnN  above the kink at n=5. By this
graph, it is confirmed that the banking network also has a fractality described by Eq.(7).

The banking network (Fig.4) and the degree distribution (Fig.5) are from the records of
the transactions during the period of June 2001. The power law of the degree
distribution is always observed in other observation periods. Figure 6 shows the
cumulative degree distributions observed in one-month periods from June 2001 to
December 2002 with a regular interval of 3 months. Though there is a tendency that the
link numbers slightly decrease during the observation period, the degree distributions
always follow a power law with a constant exponent. The function forms of the
distributions of the number and the total amount of the transactions are also unaffected
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by the observation period.
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4. Nature of scale-free networks

We presented that the banking network has a fractal structure similar to that of the
Internet. In the field of the statistical physics, the nature of the scale-free network has
already been studied. In this section, we discuss the stability of a scale-free network by
introducing the results of such studies, as stability is the most important aspect in an
economic perspective.

4.1 Stability of network structures

Barabási et al. discussed the stability of the two types of network structures we
introduced in Section 2.3. The stability of a network structure is estimated by the effect
caused by the removal of a node from the network structure. The effect is measured by
the radius of the network. The radius of a network is defined by the average distance
between two nodes arbitrarily chosen of the network. The distance between the two
nodes is measured by the number of links traced to reach one node from the other. When
there are more than one path, the shortest one is adopted. Barabási et al. measured the
radius of a network beforehand, and compared it with the radius of the network after
removing a node from the network. When a node is removed from a network, the radius
of the network increases in general, because the removal destroys the paths between
nodes. By observing the increase of the radius, the effect of the removal of a node to the
network is estimated.

Barabási et al. investigated the effect of the removal of nodes for the networks formed
by the Erdös model and the Barabási model. They also came up with two methods of
removal of nodes. One is to remove a node at random from the network, and the other is
to remove the node with the largest number of links. The former is called a “failure” and
the latter is called an “attack”.

The results are presented in Fig.7. In the case of the Erdös network, the effects of a
failure and an attack are nearly identical. This is because the degree distribution of the
network is close to a normal distribution and the fluctuation of the link number is small.
On the other hand, in the case of the Barabási network, though the effect of a failure is
smaller than that of the Erdös network, the effect of an attack is significant. This is
because the degree distribution of the Barabási network follows a power law.
The function form of a power-law distribution is asymmetric compared to that of a
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normal distribution. This means that large part of links is concentrated to small
number of nodes, and there are hub-like nodes in the network. The attack to the hub-
like nodes has a significant effect on the network. Thus, the scale-free network is
endurable to a “failure" but vulnerable to an “attack”.

4.2 Stability and economy of networks

We discuss further the results in the previous sub-section by considering simplified
network structures. The Erdös model forms a network by randomly connecting pairs of
nodes.

When the probability of the connection is 1, we get a network structure described in
Fig.8(a). We call a network of this type a decentralized network. This network is
affected little by the removal of a node because all the nodes in the network are
connected directly to the others through links. In this sense, this network is stable. On
the other hand, as in the case of the Internet, when the network is composed of
hardware, the establishment and maintenance of the links are costly. This type of
network proves to be costly, because links that are seldom used must be maintained.
Thus, this network is uneconomical.

In the case of the Barabási network, the hub-like nodes in a network form a high
concentration of links. By simplifying the network, we imagine a network described in
Fig.8(b). We call this a centralized network. There is one hub node in the network and
all the other nodes are connected only to the hub node. When one of the peripheral
nodes is removed, the effect to the network is negligible.
However, when the hub node is removed, the network completely ceases to function.
In this sense, this network is unstable. On the other hand, since it only has to maintain
a small number of links, thus making this network economical, compared to a
decentralized network where it is costly to maintain links.

4.3 Comparison of network structures

We now discuss the structure of the banking network comparing it with the network
structures discussed above.

We collectively show the exponents of the power-law, degree distributions of various
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scale-free networks in Table 1.
All the exponents follow a cumulative distribution

��

�� kkN )(        (10)

As we introduced in Section 2.2, there is a difference of 1 between �  and the exponent
�  in Eq.(7) and a relation 1�� ��  holds. We notice that most of the exponents � of

the degree distributions in the table, including that of the banking network, take values
close to 1. The value 1��  is considerably smaller than that, predicted by the Barabási
model 2�� .

We discuss the meaning of smaller value of the exponent �  by the graphs in Figure 9.
In the figure, the degree distributions of the banking network, the network by the
Barabási model, and the two network structures discussed in the previous section are
schematically presented.

First, we focus on the degree distributions of the simplified networks we discussed in
the previous section. The graph of the decentralized network has a vertical slope at the
right and a flat part at the left. This is because all the nodes have a considerable
number of links. On the other hand, in the case of the centralized network, the graph
has a flat part at the right and a vertical slope at the left. This is because the network
has only one hub node with a large number of links, and other nodes have one link each.
Though it is meaningless to evaluate the exponents of the power laws of the
distributions in these cases, it may be interpreted that the power exponent of the former
case is infinity and that of the latter case is zero. That is, a decentralized network,
which is a result of the maximized stability, tends to have an exponent of infinity, and a
centralized network, which shows maximized economy, tends to have an exponent of
zero.

The banking network has a smaller value of the exponent �  than that of the network
by the Barabási model. This means that the banking network is more “economic” and
less “stable” than the network by the Barabási model.
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5. Discussion

We analyzed the structure of the banking network formed by monetary transactions
between financial institutions. We found that the banking network shows a power-law,
degree distribution, which is also observed in the structure of other networks formed in
the natural world. The study of scale-free networks may make it possible to develop a
method to maintain the stability of the banking network in the future.

We also present various statistics of monetary transactions between financial
institutions in Appendix A. Although this is not the central point of this paper, we
consider the statistics to be significant, because the statistics based on the observation
of real monetary transactions have not been presented so far.

There are several directions to proceed from this study.

First of all, we analyzed the records of the monetary transactions through the current
accounts at the Bank of Japan, because it is the best records that are obtainable at
present. However, as we explained in detail in Section 3.1, the records do not cover the
whole range of monetary transactions between financial institutions. It is important to
widen the coverage of the data.

The “link” of the banking network was defined by the number of transactions between
pairs of banks, and the effect of the amount of the transaction were neglected. This
meant that a transaction of 1 yen has the same effect of that of a transaction of 100
billion yen. This is intuitively unnatural. There may be a more natural definition of
links that takes into account the effect of the amount of transactions.

The dynamics of the banking network is also an important issue.

In this study, we implicitly assume that the network structure defined by the monetary
transactions between financial institutions is static and does not change in time. The
discussion of the stability of network structures in Section 4 is based on this assumption.
It is reasonable to see a network composed of hardware, such as the Internet, as a static
network, because, once cables are connected, they are rarely reconfigured. In the case of
the banking network, however, when a hub-like bank ceases to function, another bank
may play the role of the hub. This means that the network is dynamic.
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To check the dynamic aspect of the banking network, we classified financial institutions
into groups by a rule in Appendix B, and observed the changes in the classification
when a hub bank in a group merged. We found a case where the links of the subsidiary
banks to the hub were reconnected to a hub bank of another group. This fact implies
that the banking network dynamically ensures its stability through the reconfiguration
of links, although the static structure of the network seems unstable. 

The study of the dynamic stability of the banking network may lead to the discussion on
effective policy to ensure the network stability from an entirely original viewpoint. For
example, when a hub bank is at a verge of collapse, we may take a policy to bail it out.
Or we may take another policy to support the surrounding banks to reconstruct a
relationship with another hub bank smoothly and leave the troubled bank to market
forces. The study of dynamic stability in the banking network may enable us to compare
the effects of these policies. Other related issues, such as the effect of a network
management system on its economy and stability might be also worth exploring.

It is also important to study the timing of settlement. Financial institutions, often in its
nature, transact money larger than their own capital. As a result, a bank rarely
executes settlement paying large amounts of money successively. Payments of large
amounts are made after receiving enough money to execute the settlements. In this way,
the timing of funds transfer by a bank is often determined by the timing of receipts from
other banks. In fact, the amount of funds transferred is observed to be dependent on
times during a day, as in Appendix A. A network structure with time correlation of this
kind is new, even to the field of the statistical physics.

The banking network is an intriguing subject to provide new challenges to the field of
statistical physics.
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Appendix

A. Statistics of funds transfer

Though the aim of this study is the analysis of the banking network, the study yielded
various statistics of the monetary transactions between financial institutions as by-
products. We wish to present these statistics as an appendix.

The statistics is based on records of fund transfers between the current accounts at the
Bank of Japan, during the period of June 2001. The limitations of the records are
explained in detail in sec 3.1.

A.1 Temporal distributions

We observe the temporal change in the behavior of financial institutions in terms of
fund transfers.

Figure 10 and Figure 11 show the number and total amount of transactions in each day,
respectively. In both of these figures, there are two-day gaps in each of the 7 days. These
are Saturdays and Sundays, on which financial institutions are closed. The number of
business days in the period of June 2001 is 21. The average number of transactions per
business day is 6,782, and the average amount of transferred funds per business day is
about 33.8 trillion yen. The order of days by the number of the transactions goes 20th,
25th, 29th, and so on, but by amount, the order is 29th, 25th, and 20th. 

Figure 12 and 13 show the number and total amount of transactions in each hour,
respectively. The number and total amount between, for example, 9 o'clock and 10
o'clock are calculated by summing up the number and the total amount of the
transactions between 9 o'clock and 10 o'clock in each business day for the 21 business
days. As seen in the figures, both the number and the amount of the transactions
concentrate on the hour between 9 o'clock and 10 o'clock.  54% of the transactions are
executed and 47% of the total amount are transacted in this hour. There is also a low
peak at the hour between 13 o'clock and 14 o'clock.
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A.2 Amount of fund transfers of individual banks

We observed the distributions related to the transactions executed by individual
financial institutions. For each bank, (a) the total amount of the funds transfer, (b) the
total amount of the payment to other banks, and (c) the total amount of the receipt from
other banks were calculated, respectively. The distributions are presented in Fig.14.
In distribution (a), we see that the total amount of transactions distributes widely
between 100 million yen and 100 trillion yen. The distribution (a) has a characteristic

form with the distinctive kink at little short of 1410 yen and the vague kinks at 1210 and
910 yen. The distributions (b) and (c) have a nearly identical function form with the

same characteristics of distribution (a). This does not mean, however, the balance of
each financial institution is zero.

We present the distribution of balances in Fig.15. The financial institutions are
classified into two groups of positive and negative balances, and the cumulative
distributions of the balances for both groups are presented in the figure. The balances
distribute between 100 million yen and 10 trillion yen for both the groups.
The maximum value 10 trillion yen is smaller in one order of decade than the maximum
value of the total amount of the transactions 100 trillion yen. 
A.3 Number of transactions of individual banks

Figure 16 is the cumulative distributions of the number of transactions executed by
individual banks. The graph (a) is the distribution of the total number of transactions
regardless of the payment or the receipt. The distribution (b) is the distribution of the
number of payment, and (c) is that of receipt. In graph (a), the number of transactions
ranges from one to a little over 10,000.
Like in the case of the distributions of the amount of transactions, the forms of the
distributions (b) and (c) are similar to that of the distribution (a).

B. Classification of banks into groups

We consider a system composed of N  banks and classify the banks into groups.

First, we define a distance between two banks. We assume that the number of the

transactions between the i  th bank and the j th bank ijn is theoretically determined by
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the total numbers of the transactions of the two banks im and jm . One of the simplest

definitions of ijn is

 jiij mmn �

As in this case, when the interaction between two elements is determined by the
product of the magnitude of the elements, it is called a mean-field interaction. A
generalization of Eq.(11)

 ��

jiij mmn �

where  � is a positive constant, is also a mean-field interaction. By considering the
case when there are only two banks in the system, the constant  � should be 1/2

because ijnmm �� 21 .

On the banking network, the actual number of the transactions ijn  may not necessarily

be proportional to ijn . We define the distance between the i th bank and the j th bank

by

  ijijij nnl /�

The reciprocal of ijl  is the actual number of the transactions normalized by the

theoretical number. It is interpreted as the intimacy between the two banks.

Distance between two banks without direct transactions is defined as follows. Though
the two banks are not connected by a link, the two belong to the banking network. By
tracing the links from one bank to the other, the distance between them is defined by
the sum of the length of the links along the path. When there are more than one path
between the two banks, the total length of the shortest one defines the distance between
the banks.

The banks are sorted by the order of the number of links. And the top CN   banks are
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chosen to be the cores of the groups.
We calculate

 �
�

�

CN

i
aG dnN

1

)(

where )(dna  is the number of the banks within a radius d  from a core a . We define
the radius of groups Gr  by the distance d  that fulfills NNG 2� . The banks are
classified into groups so that a bank belongs to the group a  when the distance of the
bank from the core a  is less or equal to Gr .

In the above process there are cases where the bank is placed within Gr  from both a
core a $a$ and a core $b$. In other words, the process allows overlaps of groups. The
overlaps describe the relation among groups.

The overlap of groups a  and b  is described by

 �
� �

�

�

�

�
�

�

�

��
�

	



�

� 
��

N

i G

biai
ab N

ddS
1

2

exp

abS  is large when a large number of banks belong to both the groups a  and b
simultaneously. Especially, aaS  represents the size of the group a  because it depends

only on the number of the banks in the group. The independence of a group is related to
the size of the group and the overlap with the other groups. We introduce a measure of
independence by

�
�

��

ab
abaaa SSM

This is the effect of the group a  itself subtracted by the effects of the overlaps.
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Figure 1. River networks 
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Figure 2. Cumulative distribution of the total amount of funds transferred between 
7,351 pairs of financial institutions. X-axis shows the amount of funds. Y-axis shows 
the cumulative number of pairs. 
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Figure 3. Cumulative distribution of the number of transactions between 7,351 pairs of 
financial institutions. X-axis shows the number of transactions. Y-axis shows the 
cumulative number of pairs. The red line is 3.1)( −∝≥ nnN . 
 

 

Figure 4. Banking network The bold lines(concentrated in the middle) illustrate the  
frequency of transactions between pairs.The colored dots represent the following 
financial institutions. Red: City banks, Pink: Local banks, Yellow: Trust banks, Lime: 
Shinkin banks, Aqua: Tanshi, Security finance companies, Purple: Foreign banks, Blue: 
Security firms, White: Others 
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Figure 5. Cumulative distribution of the number of the financial institutions. X-axis 
shows number of links of financial institutions. Y-axis shows the cumulative number of 
financial institutions. The red line is . 1.1)( −∝≥ nnN
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Figure 6. Cumulative distribution of the number of the financial institutions observed 
in a one-month period. X-axis shows the number of links of financial institutions. Y-axis 
shows the cumulative number of financial institutions. 



 
 
Figure 7. Effect of the removal of nodes for the two types of network.  X-axis shows the 
share of nodes destroyed. Y-axis shows the radius of the network. E: Erdös’s network, 
SF: Barabási’s network. Source: reference No.8. 
 
 
 
 
 
 
 
 
 
            (a)                                (b) 
 
Figure 8. Simplified pattern of network structure  (a) Decentralized network. (b) 
Centralized network. 
 
 
 
 



Banking network               τ =1.1  (Estimation based on this analysis) 
    Co-acting relationship network    =1.3 
    Web-site network                 =1.1 
    Internet network                 =1.5 
    Barabási network                =2.0 
 
Table 1. Degree distributions τ  of various scale-free networks  
Source: Reference No. 4,5,6 
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Figure 9. Degree distributions τ  of the simplified networks 
 
 
 
 
 
 



Appendix A 
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Figure 10. Number of daily transactions 
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Figure 11. Amount of daily transactions 
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Figure 12. Number of transactions in each hour  
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Figure 13. Amount of transactions in each hour  
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Figure 14.  Distribution of amount of funds transfer by individual banks.  X-axis is 
the amount of funds. Y-axis is the cumulative number of banks.  (a) Total amount, (b) 
Payment amount, (c) Receipt amount . 
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Figure 15.  Distribution of balances of individual banks.  X-axis is the amount of 
funds. Y-axis is the cumulative number of banks.  (d) Net payment amount, (e) Net 
receipt amount . 
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Figure 16.  Distribution of number of transactions executed by individual banks.  
X-axis is the number of transactions. Y-axis is the cumulative number of banks.  (a) 
Total number,  (b) Payment transaction, (c) Receipt transaction. 
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