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1 Introduction

Since Taylor’s (1993) pioneering work, simple policy rules have received much attention in

monetary policy analyses.1 An important aspect of this recent research is to examine whether

a proposed policy rule generates a (locally) determinate (i.e. unique non-explosive) equilibrium

in a variety of rational expectations (RE) models. This line of research also discusses the

relationship between determinacy of RE equilibria (REE) and the Taylor principle, which

suggests that the nominal interest rate should be raised more than the increase in inflation.

Many recent analyses assume implicitly that if a policy rule generates a determinate REE,

all agents can coordinate on that REE. In the face of this widespread belief, Bullard and Mitra

(2002) address the questions of how and whether such coordination would arise by investigating

expectational (or E-)stability of fundamental REE,2 a concept emphasized recently by Evans

and Honkapohja (1999, 2001). Roughly speaking, E-stability asks whether, for sufficiently

small expectation errors of agents, a policy rule can lead temporary equilibria under such non-

rational expectations to adjust over time toward the associated REE.3 Thus, E-stability as well

as determinacy of REE is a requirement policy rules must meet, as Bullard and Mitra (2002)

stress. These authors use a sticky price model without money, which is prominent in recent

monetary policy analyses,4 and conclude that the Taylor rule in which the nominal interest rate

responds to the current inflation rate and output gap possesses desirable properties in terms

of generating both determinacy of REE and E-stability of fundamental REE.5

This paper examines whether the Taylor rule retains these properties within a discrete-time

money-in-utility-function (MIUF) model with sticky prices. As McCallum and Nelson (1999)

and Carlstrom and Fuerst (2001) indicate, the existing literature with discrete-time MIUF

models contains three timings of money balances of the utility function: end-of-period (EOP)
1See Rotemberg and Woodford (1999), Benhabib, Schmitt-Grohé, and Uribe (2001), Carlstrom and Fuerst

(2001, 2004), Bullard and Mitra (2002, 2003), Woodford (2003), among others.
2To distinguish two definitions of the minimal-state-variable (MSV) solution to linear RE models in the

existing literature, which are given by McCallum (1983) and Evans and Honkapohja (1999, 2001), this paper
refers to Evans and Honkapohja’s MSV solutions as “fundamental”.

3As Evans and Honkapohja (2001, Ch. 10) show for a broad class of linear stochastic models, if a fundamental
REE is E-stable and non-explosive, it is least-squares learnable, i.e. stable under least-squares learning.

4See e.g. Rotemberg and Woodford (1999) and Woodford (2003, Ch. 4, Sec. 1).
5As McCallum (1999) argues, current values of inflation and the output gap are not available to actual central

banks. Taking this into account, Bullard and Mitra suggest that rather than the one responding directly to them,
the Taylor rule responding to current expectations about them is more practical, since these Taylor rules have
the same properties in terms of generating both determinacy and E-stability.
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timing and two types of cash-in-advance (CIA) timing.6 Traditional literature starting from

Brock (1974) has used EOP timing, which leads to the discrete-time analog to continuous-time

MIUF models, while previous studies incorporating Clower’s (1967) idea into MIUF models

employ CIA timing, in which money balances held before consumption trading enter the utility

function. With respect to timing of financial asset trading, CIA timing contains two approaches.

One approach, whose idea is inspired by Lucas (1982) and Lucas and Stokey (1987), assumes

financial asset trading in advance of consumption trading, so not only money balances held at

the beginning of each period but also net gains from asset trading enter the utility function. A

couple of papers by Carlstrom and Fuerst (2001, 2004) adopt this “Lucas-style” CIA timing.

Another approach, which is based on Svensson’s (1985) modification of Lucas’ (1982) CIA

constraint, assumes that financial asset trading follows consumption trading, which suggests

that only beginning-of-period money balances enter the utility function. McCallum (1990),

Woodford (1990), and McCallum and Nelson (1999), for instance, use this “Svensson-style” CIA

timing.7 The model with EOP or Svensson-style CIA timing can be considered a generalization

of the model-without-money used in Bullard and Mitra (2002), because the former model takes

the same form as the latter if the utility function is separable between consumption and real

balances. In contrast, the model with Lucas-style CIA timing always differs from the model

without money, as Carlstrom and Fuerst (2001) show. Thus, the goal of this paper is twofold.

One goal is to examine implications of differences among these three timings for determinacy

of REE and E-stability of fundamental REE. Another is to examine implications for them of

non-separability of the utility function. For the case in which the Taylor rule responds only

to inflation in continuous-time MIUF models, Benhabib, Schmitt-Grohé, and Uribe (2001)

obtain the result that this non-separability has no implication for determinacy in the setting

considered here (i.e. sticky prices, Ricardian fiscal policy, and production functions without

money). As shown below, however, if the Taylor rule responds not only to inflation but also to

output or the output gap, this non-separability has serious implications for both determinacy

and E-stability.

In each case of timing this paper derives conditions under which the Taylor rule ensures
6As McCallum and Nelson indicate, this paper suggests that none of these three timings are fully “accurate”

and each of them is actually just an approximation or a metaphor designed for transaction-facilitating services
of the medium of exchange.

7Without financial asset trading, there is no difference between these two types of CIA timing. This happens
in Lucas (2000).
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determinacy of REE and E-stability of fundamental REE and illustrates them with reasonably

calibrated parameter values. In the case of EOP timing, the condition for determinacy is

consistent with that for E-stability. This condition can be interpreted as the long-run version

of the Taylor principle: in the long run the nominal interest rate should be raised more than

the increase in inflation, which is also indicated by Woodford (2003, Ch. 4, Sec. 2) and Bullard

and Mitra (2002). Its implications here, however, differ notably from those in these studies

with the model without money if the Taylor rule responds not only to inflation but also to

output or the output gap.8 In the model without money, the Taylor principle implies its long-

run version (i.e. if the Taylor rule has an inflation coefficient greater than one, it generates

both determinacy and E-stability) and hence the Taylor principle is a sufficient condition for

both determinacy and E-stability. In the model here, once the extent of non-separability of the

utility function exceeds a certain small threshold, the Taylor principle never implies its long-run

version and it becomes a necessary condition, so corresponding to the output or output-gap

coefficient, a larger inflation coefficient than the Taylor principle suggests is required for both

determinacy and E-stability. In the case of Lucas-style CIA timing, the long-run version of

the Taylor principle is the condition for E-stability, while another condition is also required for

determinacy. Hence, the conditions for both determinacy and E-stability are more severe than

those in the case of EOP timing. In the case of Svensson-style CIA timing, there are two sets

of conditions for determinacy. Then, the long-run version of the Taylor principle is required

for one set but not for another set, and the former set ensures E-stability while the latter set

does not necessarily.9

In contract to the results of recent studies, this paper shows: (i) even a small degree

of non-separability of the utility function between consumption and real balances causes the

Taylor rule to be much more likely to induce indeterminacy or E-instability of REE if this rule

responds not only to inflation but also to output or the output gap; (ii) the differences among
8If the Taylor rule responds only to inflation, the long-run version reduces to the usual Taylor principle.
9In this timing case, the model contains a lagged endogenous variable and thus we can consider two learning

environments, both of which are studied by Evans and Honkapohja (2001, Sec. 10.3, 10.5). One environment
allows agents to use current endogenous variables in expectation formation, while another does not. As Evans
and Honkapohja indicate, the former environment induces a problem with simultaneous determination of current
endogenous variables and expectations, which is critical to equilibria under non-rational expectations. Then,
both the two sets of conditions for determinacy ensure E-stability in the former learning environment. In the
latter environment, however, at least with the calibrated parameter values, one set that requires the long-run
version of the Taylor principle ensures E-stability, while another set induces E-instability.
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the three timings strongly alter the conditions for the Taylor rule to ensure both determinacy

and E-stability.

The remainder of this paper is organized as follows. Section 2 presents a discrete-time sticky-

price MIUF model with the Taylor rule in each case of timing. Section 3 derives conditions

for this policy rule to ensure determinacy of REE and E-stability of fundamental REE and

illustrates them with reasonably calibrated parameter values. Finally, Section 4 provides some

concluding remarks.

2 Sticky price model with money

This section presents private agents’ behavior, which can be derived from a discrete-time MIUF

model with Calvo (1983) style staggered pricing of monopolistically competitive firms, and a

monetary policy rule suggested by Taylor (1993). The existing literature with discrete-time

MIUF models contains three timings of money balances of the utility function: EOP timing

and two types of CIA timing.

2.1 End-of-period timing

Since Brock (1974), traditional literature with discrete-time MIUF models has employed EOP

timing, which leads to the discrete-time analog to continuous-time MIUF models. This timing

assumes that money balances held at the end of each period enter the utility function. For

this timing case, Woodford (2003, Ch. 4, Sec. 3) derives optimal money-holding, spending and

pricing behavior of private agents, represented by the following LM, IS and AS equations:

mt = ηyYt − ηi it + vt, (1)

Yt = ÊtYt+1 − σ{it − Êtπt+1 + χ(Êtmt+1 − mt)} + gt − Êtgt+1, (2)

πt = βÊtπt+1 + κ̃(ω + σ−1)Yt − κ̃χmt − κ̃(ωqt + σ−1gt), (3)

where Yt, πt, it are output, the inflation rate and the nominal interest rate in period t, and

mt is the real monetary base at the end of period t. Note that these variables denote log-

deviations from steady state values and that Êt denotes a possibly non-rational expectations

operator conditional on information available in period t. The exogenous disturbances, vt, gt,

qt, represent shocks relevant to money demand, consumption and production, respectively. In

LM equation (1), ηy, ηi > 0 measure the output elasticity and interest rate semielasticity of
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money demand. In IS equation (2), σ > 0 measures the intertemporal elasticity of substitution

in consumption and χ represents the degree of non-separability of the utility function between

consumption and real balances. In AS equation (3), β ∈ (0, 1) is the discount factor, κ̃ > 0

represents the frequency of price adjustment,10 and ω > 0 measures the output elasticity

of real marginal cost. Note that χ takes the same sign as the cross partial derivative of

the utility function between consumption and real balances and that if the utility function is

separable between these two arguments (i.e. χ = 0), (2) and (3) take the same forms as IS

and AS equations in the model without money, which is prominent in recent monetary policy

analyses such as Rotemberg and Woodford (1999), Bullard and Mitra (2002), and Woodford

(2003, Ch. 4, Sec. 1).

Monetary policy is assumed to be represented as an interest rate rule of Taylor’s (1993)

form

it = φππt + φy (Yt − γY n
t ) , φπ, φy ≥ 0, γ = 0, 1, (4)

where Y n
t denotes the natural rate of output, which would prevail in equilibrium under flexible

prices, so Yt − Y n
t represents the output gap. The Taylor rule (4) responds to output if γ = 0

and to the output gap if γ = 1. As in Woodford (2003, Ch. 4, Sec. 3), the natural rate of output

here takes the form

Y n
t = (ω + σ−1 − ηyχ)−1(ωqt + σ−1gt + χvt). (5)

For simplicity, all the exogenous disturbances are assumed to follow univariate stationary

first-order autoregressive processes

qt = ρqqt−1 + εq,t, gt = ρggt−1 + εg,t, vt = ρvvt−1 + εv,t, (6)

where ρj ∈ [0, 1), j = q, g, v, are autoregression parameters and εj,t, j = q, g, v, are white noises

and may be correlated with each other.11

2.2 Lucas-style cash-in-advance timing

In contrast to the traditional literature, previous studies incorporating Clower’s (1967) idea into

MIUF models employ CIA timing, in which money balances held before consumption trading
10To be precise, κ̃ is a function of the frequency of price adjustment. See Footnote 15.
11In each case of timing, even if we alternatively assume that | ρj | < 1, j = q, g, v, conditions for determinacy

are the same as those obtained below.
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enter the utility function. With respect to timing of financial asset trading, CIA timing contains

two approaches. One approach is based on the CIA constraint in Lucas (1982) and Lucas and

Stokey (1987). These authors assume financial asset trading in advance of consumption trading.

This suggests that not only money balances held at the beginning of each period but also net

gains from financial asset trading enter the utility function, as Carlstrom and Fuerst (2001)

illustrate in detail. Let at denote aggregate of such real balances that households hold before

consumption trading in period t. Then, keeping the other basic structure of the model the

same as in the case of EOP timing, we have LM, IS and AS equations of the forms12

at = ηyYt − ηiβ
−1it + vt, (7)

Yt = ÊtYt+1 − σ{Êtit+1 − Êtπt+1 + χ(Êtat+1 − at)} + gt − Êtgt+1, (8)

πt = βÊtπt+1 + κ̃(ω + σ−1)Yt − κ̃χat − κ̃(ωqt + σ−1gt). (9)

The natural rate of output here is of the form (5). Note that the model here takes a very

similar form to that with EOP timing, except that the nominal interest rate in IS equation

(8) is scrolled forward one period from that in (2), as Carlstrom and Fuerst (2001) point out.

Hence, when χ = 0, AS equation (9) takes the same form as its counterpart in the model

without money, while (8) does not.

2.3 Svensson-style cash-in-advance timing

Another approach to CIA timing is based on the CIA constraint of Svensson (1985), which is

a modification of Lucas (1982). Svensson assumes consumption trading in advance of financial

asset trading. This suggests that only beginning-of-period money balances, which equal money

balances held at the end of the previous period, enter the utility function. This in turn leads

to the next LM, IS and AS equations and natural rate of output:13

mt = Êtπt+1 + ηyÊtYt+1 − ηiβ
−1it + Êtvt+1, (10)

Yt = ÊtYt+1 − σ[it − Êtπt+1 + χ{(mt − Êtπt+1) − (mt−1 − πt)}] + gt − Êtgt+1, (11)

πt = βÊtπt+1 + κ̃(ω + σ−1)Yt − κ̃χ(mt−1 − πt) − κ̃(ωqt + σ−1gt), (12)

Y n
t = (ω + σ−1 − ηyχ)−1(ωqt + σ−1gt + χÊt−1vt). (13)

12See Carlstrom and Fuerst (2001) and Kurozumi (2004) for the derivation of these.
13See Kurozumi (2004) for the derivation of these.
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Note that the lagged real monetary base mt−1 appears here. This is the key difference between

Svensson-style CIA timing and the other two, because this monetary base is predetermined,

which in turn affects conditions for determinacy of REE greatly as shown later. Note also

that when χ = 0, (11) and (12) take the same forms as the IS and AS equations in the model

without money.

2.4 Main assumption and calibrated parameter values

To avoid complicated conditions for the Taylor rule (4) to ensure determinacy and E-stability

for any value of χ, the ensuing analysis impose the following fairly reasonable assumption on χ.

Assumption 1 0 ≤ χ < (ηyσ)−1

Woodford (2003, Ch. 4, Sec. 3) considers that the range 0 ≤ χ < η−1
y (ω +σ−1) is of greatest

empirical relevance, because this range ensures that in the reduced AS equation with EOP

timing that can be obtained by substituting (1) into (3) to eliminate the monetary base, the

output elasticity of inflation is positive, i.e. κ = κ̃(ω + σ−1 − ηyχ) > 0 and the interest

rate semielasticity of inflation is non-negative, i.e. κi = κ̃ηiχ ≥ 0. These also hold under

Assumption 1, because ω > 0 implies that the range of χ given by Assumption 1 is somewhat

narrower than Woodford’s.

The ensuing analysis also employs reasonably calibrated cases to illustrate conditions for

determinacy and E-stability. The model contains nine parameters, β, κ̃, ω, σ, ηy , ηi, χ, φπ, φy,

for which values must be specified.14 Parameter values in the baseline calibration are shown in

Table 1. The first seven parameter values are chosen to be consistent with parameter values in

Table 6.1 of Woodford (2003).15 The coefficients φj , j = π, y, in the Taylor rule (4) are restricted

within the range 0 ≤ φj ≤ 3, because with the other parameter values in Table 1, this range is

wide enough to characterize whether the Taylor rule with non-negative coefficients guarantees

determinacy and E-stability. To assess the robustness of the baseline calibration results with

respect to the extent of non-separability of the utility function, χ, which takes a value of 0.02
14Basically, any specified parameter values for the exogenous disturbance processes (6) are not needed in the

ensuing analysis.
15In Woodford the parameter κ̃ is given by κ̃ = (1−α)(1−αβ){α(1+ωθ)}−1 , where α and θ are the probability

of not changing prices and the price elasticity of demand faced by individual firms.
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in the baseline calibration, this paper chooses alternative values of χ = 0, 0.01,0.03.16 Note

that all the calibrated cases satisfy Assumption 1.

3 Determinacy and expectational stability of equilibrium

This section examines conditions under which the Taylor rule (4) ensures determinacy of REE

and E-stability of fundamental REE in each case of timing.

3.1 End-of-period timing17

In the case of EOP timing, the economy’s law of motion is given by (1)−(6). Under Assump-

tion 1, using (1) and (4) to eliminate the monetary base and interest rate from (2) and (3)

leads to a system of the form18

Êtzt+1 = Azt + But, zt = [πt Yt]′, ut = [qt gt vt]′, (14)

A ≡ [Aij ] =

[
β−1(1 − κiφπ) −β−1(κ + κiφy)

φπ(1+ηiχ)−A11(1+ηiχφπ)
σ−1−ηyχ+ηiχφy

1 + φy−A12(1+ηiχφπ)
σ−1−ηyχ+ηiχφy

]
.

Recall that κ = κ̃(ω + σ−1 − ηyχ) > 0 and κi = κ̃ηiχ ≥ 0. From (6), we have ut = Reut−1 + εt,

where Re = diag(ρq, ρg, ρv) and εt = [εq,t εg,t εv,t]′.

A REE with EOP timing is defined as a quartet of stochastic processes of inflation, output,

the monetary base, and the interest rate such that a pair of the first two is a RE solution

to system (14) and that the last two then follow from (1) and (4). Thus, such REE are

determinate if and only if (14) has a determinate RE solution. Because inflation and output

are non-predetermined, Proposition 1 of Blanchard and Kahn (1980) implies that (14) admits

a determinate RE solution if and only if both eigenvalues of the matrix A are outside the unit

circle.19 Then, by Proposition C.1 of Woodford (2003), we have the next result.

16The choice of σ = 6.4 seems large in that it implies a risk aversion coefficient of 1/6.4 = 0.16. To assess
the robustness of the baseline calibration results, an alternative choice of σ = 1 is examined. The qualitative
properties of the results survive with this choice, but of course, the quantitative ones differ. This claim also
applies to the other parameter values.

17In the model with EOP timing, discretionary policy takes the same Taylor form as (4), so the analysis in
this subsection can be also applied to this policy. See Kurozumi (2005) for details.

18The form of the matrix B is omitted since it is not needed in what follows.
19To be precise, this condition is sufficient for determinacy but only generically necessary. Throughout this

paper, consideration of non-generic boundary cases is omitted.
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Proposition 1 Under Assumption 1, the Taylor rule (4) generates a determinate REE with

EOP timing if and only if the following condition holds.

φπ +
1 − β − κi

κ
φy > 1 (15)

Proof. See Appendix A.

Condition (15) can be considered a generalization of (2.7) in Woodford (2003, Ch. 4, Sec. 2)

or (20) in Bullard and Mitra (2002), each of which ensures determinacy of REE in the model

without money, since (15) is consistent with each of them in the case of χ = 0. As in these

studies, (15) can be given the following economic interpretation. By (1)−(3) and (5), each

percentage point of permanently higher inflation implies permanently higher output or output

gap of (1 − β − κi)/κ percentage points. The left-hand side of condition (15) thus shows the

long-run raise in the nominal interest rate by the Taylor rule (4) for each unit permanent

increase in the inflation rate. Therefore, (15) can be interpreted as the long-run version of

the Taylor principle: in the long run the nominal interest rate should be raised more than the

increase in inflation, which is also pointed out by Woodford (2003, Ch. 4, Sec. 2) and Bullard

and Mitra (2002). Its implications here, however, differ notably from those in these studies

with the model without money, as discussed later. Note that when the Taylor rule (4) responds

only to inflation, i.e. φy = 0, the long-run version (15) reduces to the usual Taylor principle,

i.e. φπ > 1, regardless of non-separability of the utility function between real balances and

consumption, and thus the non-separability has no implication for determinacy of the REE

with EOP timing. This is consistent with Proposition 6 of Benhabib et al. (2001), which shows

with continuous-time MIUF models that the Taylor principle (i.e. ρ′(π∗) > 1 in their terms)

guarantees determinacy of equilibria under sticky prices, regardless of the non-separability,

when fiscal policy is Ricardian and money balances never enter production functions, which is

the setting considered here. One point of this paper is, however, that if the Taylor rule (4)

responds not only to inflation but also to output or the output gap, even a small degree of

the non-separability leads this policy rule to be much more likely to induce indeterminacy and

E-instability of REE, as shown later.

We next consider E-stability of fundamental REE with EOP timing, following Evans and
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Honkapohja (2001, Sec. 10.3). The fundamental RE solution to (14) is then given by

zt = k̄e + Γ̄eut, k̄e = 0, vec(Γ̄e) = {(Re ⊗ I) − (I ⊗ A)}−1vec(B), (16)

where I denotes a conformable identity matrix throughout the paper. For the study of

learning, all agents are assumed to be endowed with a perceived law of motion (PLM) of

zt, zt = ke + Γeut, which corresponds to the fundamental RE solution (16).20 Because

Êtzt+1 = ke +ΓeReut, substituting this into (14) leads to an actual law of motion (ALM) of zt,

zt = A−1ke + A−1(ΓeRe −B)ut, where the matrix A is invertible under Assumption 1. We can

then define a mapping T from the PLM to the ALM as T (ke,Γe) = [A−1ke, A
−1(ΓeRe − B)].

For the fundamental RE solution (k̄e, Γ̄e) in (16) to be E-stable, the matrix differential equation
d
dτ (ke,Γe) = T (ke,Γe) − (ke,Γe) must have local asymptotic stability at the solution. This is

the case if and only if all eigenvalues of the matrix (A−1 − I) have negative real parts, because

DTk(k̄e) = A−1, DTΓ(k̄e, Γ̄e) = Re ⊗A−1, and Re = diag(ρq, ρg, ρv) with ρj ∈ [0, 1), j = q, g, v.

Then, by the Routh-Hurwitz theorem,21 we have the next result.

Proposition 2 Under Assumption 1, the necessary and sufficient condition for the Taylor rule

(4) to guarantee E-stability of the fundamental REE (16) is the same as (15).

Proof. See Appendix B.

Condition (15) can be also considered a generalization of (24) in Bullard and Mitra (2002),

which ensures E-stability of fundamental REE in the model without money. Proposition 1 and

2 in conjunction show the following result.

Corollary 1 Under Assumption 1, the next three are equivalent: (i) The Taylor rule (4) gen-

erates a determinate REE with EOP timing, (ii) (4) ensures E-stability of the fundamental

REE (16), and (iii) (4) satisfies the long-run version of the Taylor principle (15).

We now use the calibrated cases to illustrate condition (15) for determinacy and E-stability

of the REE with EOP timing. Figure 1 shows regions of coefficients on the Taylor rule (4)

ensuring determinacy and E-stability for each value of χ. From (15), we have the next boundary
20Throughout the paper, constant terms are included in the PLM. This is because the model is a log-linear

approximation around a steady state, so all agents may misunderstand the steady state.
21See e.g. Samuelson (1947).
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between the region generating a determinate E-stable REE and that inducing indeterminacy

and E-instability.

b1(φπ, φy) ≡ φπ +
1 − β − κi

κ
φy − 1 = 0 (17)

Note that (17) always has an intercept of one in the axis of the inflation coefficient φπ. In the

case of χ = 0, where the model here takes the same form as the model without money, (17)

has not only the φπ-intercept of one but also a positive intercept of κ/(1 − β) in the axis of

the output or output-gap coefficient φy, as can be seen in Figure 1(i).22 Thus, as Bullard and

Mitra (2002) and Woodford (2003, Ch. 4, Sec. 2) point out, the Taylor principle (i.e. φπ > 1)

implies its long-run version (15) and hence is a sufficient condition for both determinacy and

E-stability. However, once χ exceeds χ∗ ≡ (1−β)(κ̃ηi)−1 = 0.0095, which yields 1−β−κi < 0,

(17) can no longer have a positive φy-intercept, as can be seen in Figure 1(ii)-(iv). This in

turn suggests that if the Taylor rule (4) responds not only to inflation but also to output or

the output gap, the Taylor principle never implies its long-run version (15) and it becomes

a necessary condition for both determinacy and E-stability. This is in stark contrast to the

implications of the long-run version of the Taylor principle in previous studies with the model

without money.

3.2 Lucas-style cash-in-advance timing

In the case of Lucas-style CIA timing, if σ−1 − ηyχ− (1− ηiχβ−1)φy �= 0, then combining (4),

(5) and (7)−(9) yields a system of the form23

Êtzt+1 = Czt + Dut, zt = [πt Yt]′, ut = [qt gt vt]′, (18)

C ≡ [Cij] =

[
β−1(1 − κiφπβ−1) −β−1(κ + κiφyβ

−1)
ηiχφπβ−1−C11{1−φπ(1−ηiχβ−1)}

σ−1−ηyχ−(1−ηiχβ−1)φy
1 + φy−C12{1−φπ(1−ηiχβ−1)}

σ−1−ηyχ−(1−ηiχβ−1)φy

]
.

From (6), we have ut = R�ut−1 + εt, where R� = diag(ρq, ρg, ρv) and εt = [εq,t εg,t εv,t]′.

By an argument similar to that in the case of EOP timing, the REE with Lucas-style CIA

timing are determinate if and only if system (18) has a determinate RE solution, that is, both

eigenvalues of the matrix C are outside the unit circle. The next result thus follows.
22This figure is the same as Figure 1 in Bullard and Mitra (2002), since the same parameter values are used.
23The form of the matrix D is omitted, since it is not needed in what follows.
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Proposition 3 Under Assumption 1 and σ−1 − ηyχ− (1− ηiχβ−1)φy �= 0, the Taylor rule (4)

leads to a determinate REE with Lucas-style CIA timing if and only if the next two conditions

hold.24

φπ +
1 − β − κiβ

−1

κ
φy > 1 (19)

κ − 2κiωβ−1

κ + 2(1 + β)(σ−1 − ηyχ)
φπ +

(1 + β)(1 − 2ηiχβ−1) − κiβ
−1

κ + 2(1 + β)(σ−1 − ηyχ)
φy < 1 (20)

Proof. See Appendix C.

From an argument similar to that in the case of EOP timing, (19) can be also interpreted

as the long-run version of the Taylor principle. For determinacy of the REE here, another

condition (20) is required as well as the long-run version of the Taylor principle (19). Hence

the Taylor rule (4) is more likely to induce indeterminacy of the REE here than in the case of

EOP timing.25

We next investigate E-stability of fundamental REE with Lucas-style CIA timing. The

fundamental RE solution to (18) is given by

zt = k̄� + Γ̄�ut, k̄� = 0, vec(Γ̄�) = {(R� ⊗ I) − (I ⊗ C)}−1vec(D). (21)

By an argument analogous to that in the case of EOP timing, this fundamental RE solution is

E-stable if and only if all eigenvalues of the matrix (C−1 − I) have negative real parts, where

the matrix C is invertible under Assumption 1. The next results thus follow.

Proposition 4 Under Assumption 1 and σ−1 − ηyχ − (1 − ηiχβ−1)φy �= 0, the necessary and

sufficient condition for the Taylor rule (4) to guarantee E-stability of the fundamental REE

(21) is the same as (19).26

Proof. See Appendix D.

24If χ = 0, the difference between the model here and the model without money is that in the former model
the expected interest rate appears in the IS equation while in the latter the current one does, as Carlstrom and
Fuerst (2001) indicate. Hence, in this case (19) and (20) are consistent with (40) and (41) in Bullard and Mitra
(2002), which examines under what condition a Taylor rule responding to the expected inflation rate and output
gap leads to determinacy of REE in the model without money. Note that (39) in Bullard and Mitra is redundant
because it is implied by (40) and (41). When χ > 0, however, there is no such a relationship.

25The long-run version of the Taylor principle here, (19), differs slightly from the one (15) in the case of EOP
timing, and (19) has a somewhat more severe policy implication than (15) because β < 1.

26If χ = 0, the same reason as that mentioned in Footnote 24 ensures that (19) is consistent with (42) in
Bullard and Mitra (2002) under which the Taylor rule responding to the expected inflation rate and output gap
ensures E-stability of fundamental REE in the model without money.
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Corollary 2 If the Taylor rule (4) brings about a determinate REE with Lucas-style CIA

timing, this REE is E-stable.

With the calibrated cases we now illustrate the conditions obtained above. Figure 2 shows

regions of coefficients on the Taylor rule (4) ensuring determinacy of REE and E-stability of

the fundamental REE (21) for each value of χ. Note first that (20) holds for any value of

χ ≥ χ∗∗∗ ≡ (ω + σ−1)(ηy + 2ωηiβ
−1)−1 = 0.023 with the other calibrated parameter values,

because the coefficients on φπ, φy ≥ 0 in (20) are non-positive.27 This suggests that in the case

of χ ≥ χ∗∗∗, the only relevant condition for both determinacy and E-stability is the long-run

version of the Taylor principle (19), which has the same serious implications as the one (15)

in the case of EOP timing. In the cases of χ = 0, 0.01, (19) and (20) yield the following two

boundaries.

b2(φπ, φy) ≡ φπ +
1 − β − κiβ

−1

κ
φy − 1 = 0 (22)

b3(φπ, φy) ≡ κ − 2κiωβ−1

κ + 2(1 + β)(σ−1 − ηyχ)
φπ +

(1 + β)(1 − 2ηiχβ−1) − κiβ
−1

κ + 2(1 + β)(σ−1 − ηyχ)
φy − 1 = 0 (23)

If b2(φπ, φy) > 0 and b3(φπ, φy) < 0, which corresponds to the range that is the right-hand

side of (22) and below (23) in Figure 2(i)-(ii), the pair (φπ, φy) of coefficients on (4) satisfies

(19) and (20) and hence ensures both determinacy and E-stability.28 Otherwise, the Taylor

rule (4) induces indeterminacy of the REE here. These features remain as long as 0 ≤ χ ≤
χ∗∗ ≡ β(1 + β)[ηi{κ̃ + 2(1 + β)}]−1 = 0.018, which yields (1 + β)(1 − 2ηiχβ−1) − κiβ

−1 ≥ 0,

although (22) turns right around the φπ-intercept of one and (23) goes up. Once χ > χ∗∗, the

range ensuring both determinacy and E-stability changes drastically, since (23) has a negative

φy-intercept, which implies that the range given by b2(φπ, φy) > 0 and b3(φπ, φy) < 0 becomes

the right-hand side of (22) and above (23). In the case of χ = 0.02, (23) has the φπ-intercept

of 48, so if the pair (φπ, φy) satisfies the long-run version of the Taylor principle (19) and the

inflation coefficient φπ is less than 48, it generates a determinate E-stable REE. In the case of

χ = 0.03, because χ ≥ χ∗∗∗ = 0.023, (23) disappears from the range of non-negative coefficients

on (4), and hence (19) completely features the region yielding both determinacy and E-stability.
27Note that χ ≥ χ∗∗∗ ≡ (ω + σ−1)(ηy + 2ωηiβ

−1)−1 ⇔ κ − 2κiωβ−1 ≤ 0 and that κ − 2κiωβ−1 ≤ 0 implies
(1 + β)(1 − 2ηiχβ−1) − κiβ

−1 < 0.
28For the same reasons as mentioned in Footnote 22 and 24, Figure 2(i) is the same as Figure 3 in Bullard

and Mitra (2002).
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3.3 Svensson-style cash-in-advance timing

In the case of Svensson-style CIA timing, combining (4), (6) and (10)−(13) yields, under

Assumption 1, a system of the form29

Êtzt+1 = Fzt + Gut, zt = [πt Yt mt−1]′, ut = [qt gt vt εv,t]′, (24)

F ≡ [Fij ] =

⎡
⎢⎣

β−1(1 − κ̃χ) −κ̃β−1(ω + σ−1) κ̃χβ−1

χ+φπ(1−ηiχβ−1)−F11

σ−1−ηyχ
σ−1+φy(1−ηiχβ−1)−F12

σ−1−ηyχ
− χ+F13

σ−1−ηyχ

F11 + ηyF21 − ηiφπβ−1 F12 + ηyF22 − ηiφyβ
−1 F13 + ηyF23

⎤
⎥⎦ .

From (6), we have ut = Rsut−1 + εt, where Rs = diag(ρq, ρg, ρv, 0) and εt = [εq,t εg,t εv,t εv,t]′.

A REE with Svensson-style CIA timing is defined as a quartet of stochastic processes of

inflation, output, the monetary base, and the interest rate such that a triplet of the first three

is a RE solution to system (24) and that the last one then follows from (4). Thus, such REE

are determinate if and only if (24) has a determinate RE solution. By Blanchard and Kahn’s

(1980) Proposition 1, this is the case if and only if exactly one eigenvalue of the matrix F is

inside the unit circle and the other two are outside the unit circle, since the lagged monetary

base is predetermined but inflation and output are not. Then, by Proposition C.2 of Woodford

(2003), we have the next result.

Proposition 5 Under Assumption 1, the Taylor rule (4) generates a determinate REE with

Svensson-style CIA timing if and only if either (Case I) (19) and the next condition hold

κ − 2κiωβ−1

κ + 2(1 + β)(σ−1 − ηyχ)
φπ +

(1 + β)(1 − 2ηiχβ−1) − κiβ
−1

κ + 2(1 + β)(σ−1 − ηyχ)
φy > −1; (25)

or (Case II) the two strict inequalities opposite to (19) and (25) hold.

Proof. See Appendix E.

As noted above, (19) can be considered a generalization of (2.7) in Woodford (2003, Ch. 4,

Sec. 2) or (20) in Bullard and Mitra (2002) and can be also interpreted as the long-run version

of the Taylor principle.30 One point of Proposition 5 is that the long-run version of the Taylor

principle is not always required for determinacy of the REE here. As discussed later, even if

its coefficients do not satisfy (19), the Taylor rule (4) may generate a determinate REE. This

is in stark contrast to the results in the other two timing cases.
29The form of the matrix G is omitted, since it is not needed in what follows.
30If χ = 0, (25) holds and hence the only relevant condition is (19).
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We next examine E-stability of fundamental REE with Svensson-style CIA timing. Because

system (24) contains a lagged endogenous variable, which is the lagged monetary base, we can

consider two learning environments, both of which are studied by Evans and Honkapohja

(2001, Sec. 10.3, 10.5). One environment allows agents to use current endogenous variables

in expectation formation, while another does not. As Evans and Honkapohja indicate, the

former environment induces a problem with simultaneous determination of current endogenous

variables and expectations, which is critical to equilibria under non-rational expectations.

We begin with the learning environment in which current endogenous variables are avail-

able in expectation formation. Partitioning system (24) conformably with current and lagged

endogenous variables leads to31

Êtz̃t+1 = Fzz z̃t + Fzmmt−1 + Gzut, (26)

mt = Fmz z̃t + Fmmmt−1 + Gmut, (27)

z̃t =
[

πt

Yt

]
, Fzz =

[
F11 F12

F21 F22

]
, Fzm =

[
F13

F23

]
, Fmz = [F31 F32], Fmm = F33.

Then, fundamental RE solutions to (24) or to (26)−(27) are given by

z̃t = k̄z + Φ̄zmt−1 + Γ̄zut, (28)

mt = k̄m + Φ̄mmt−1 + Γ̄mut, (29)

k̄z = 02×1, k̄m = 0, Φ̄z(FmzΦ̄z + Fmm) = FzzΦ̄z + Fzm, Φ̄m = FmzΦ̄z + Fmm,

vec(Γ̄z) = [{I ⊗ (Fzz − Φ̄zFmz)} − (Rs ⊗ I)]−1vec(Φ̄zGm − Gz), Γ̄m = FmzΓ̄z + Gm.

Note that Φ̄m, Γ̄z, and Γ̄m are uniquely determined given a Φ̄z but that Φ̄z is not uniquely

determined. Corresponding to (28), all agents are assumed to have a PLM of z̃t,

z̃t = kz + Φzmt−1 + Γzut. (30)

Under the learning environment considered here, from (27) and (30) we have

Êtz̃t+1 = kz + ΦzFmz z̃t + ΦzFmmmt−1 + (ΦzGm + ΓzRs)ut.

Substituting this into (26) leads to an ALM of zt,

z̃t = Ψ(Φz){kz + (ΦzFmm − Fzm)mt−1 + (ΦzGm + ΓzRs − Gz)ut} (31)

31The forms of the matrices Gz and Gm are omitted, since they are not needed in what follows.
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provided the matrix Ψ(Φz) ≡ (Fzz −ΦzFmz)−1 exists.32 We can then define a mapping T from

the PLM (30) to the ALM (31) as

T (kz,Φz,Γz) = [Ψ(Φz)kz,Ψ(Φz)(ΦzFmm − Fzm),Ψ(Φz)(ΦzGm + ΓzRs − Gz)].

For the fundamental RE solutions (28)−(29) to be E-stable, the matrix differential equation
d
dτ (kz ,Φz,Γz) = T (kz,Φz,Γz)−(kz,Φz,Γz) must have local asymptotic stability at (k̄z , Φ̄z, Γ̄z).

This is the case if and only if all eigenvalues of three matrices, {Ψ(Φ̄z) − I}, {(FmzΦ̄z +

Fmm)Ψ(Φ̄z)−I}, and [{Rs⊗Ψ(Φ̄z)}−I], have negative real parts. Because Φ̄m = FmzΦ̄z+Fmm

and Rs = diag(ρq, ρg, ρv , 0) with ρj ∈ [0, 1), j = q, g, v, we have the next result.

Lemma 1 Suppose that current endogenous variables are available in expectation formation.

Then, the Taylor rule (4) guarantees E-stability of the fundamental REE (28)−(29) if and only

if real parts of all eigenvalues of two matrices, Ψ(Φ̄z) and Φ̄mΨ(Φ̄z), are less than one provided

that Ψ(Φ̄z) ≡ (Fzz − Φ̄zFmz)−1 exists.

Lemma 1 provides no explicit condition for E-stability, so it might seem impossible to find

relationships between determinacy and E-stability like those obtained in the other two timing

cases. Following McCallum (2004), however, we can obtain the next result.33

Proposition 6 Suppose that all agents can use current endogenous variables in expectation

formation. Then, if the Taylor rule (4) generates a determinate REE with Svensson-style CIA

timing, this REE is E-stable.

Proof. See Appendix F.

We turn next to another learning environment in which current endogenous variables are

not available in expectation formation. Then, the PLM (30), together with (27), yields

Êtz̃t+1 = (I + ΦzFmz)kz + Φz(FmzΦz + Fmm)mt−1 + {Φz(FmzΓz + Gm) + ΓzRs}ut.

32This matrix exists at least when the REE here are determinate.
33For a broad class of linear stochastic models of the form given by Evans and Honkapohja (2001, Sec. 10.3),

McCallum (2004) adopts the undetermined coefficient method to show E-stability of the determinate REE under
learning with current endogenous variables. See also Kurozumi and McCallum (2005), which employs Klein’s
(2000) method to demonstrate the same result as in McCallum (2004) for a general class of linear stochastic
models of the form given by McCallum (1998).
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Substituting this into (26) leads to an ALM of zt,

z̃t = F−1
zz (I + ΦzFmz)kz + F−1

zz {Φz(FmzΦz + Fmm) − Fmm}mt−1

+ F−1
zz [{Φz(FmzΓz + Gm) + ΓzRs} − Gz]ut (32)

provided the matrix Fzz is invertible. Then, a mapping T from the PLM (30) to the ALM (32)

can be defined as

T

⎛
⎝ kz

Φz

Γz

⎞
⎠
′

=

⎛
⎝ F−1

zz (I + ΦzFmz)kz

F−1
zz {Φz(FmzΦz + Fmm) − Fzm}

F−1
zz [{Φz(FmzΓz + Gm) + ΓzRs} − Gz]

⎞
⎠
′

.

For the fundamental RE solutions (28)−(29) to be E-stable, real parts of all eigenvalues of three

matrices, {F−1
zz (I + Φ̄zFmz) − I}, [F−1

zz {(FmzΦ̄z + Fmm)I + Φ̄zFmz} − I], and [(Rs ⊗ F−1
zz ) +

{I ⊗ (F−1
zz Φ̄zFmz)} − I], are negative. Because Φ̄m = FmzΦ̄z + Fmm, we have the next result.

Lemma 2 Suppose that Fzz is invertible and that all agents cannot use current endogenous

variables in expectation formation. Then the Taylor rule (4) guarantees E-stability of the

fundamental REE (28)−(29) if and only if real parts of all eigenvalues of three matrices,

F−1
zz (I + Φ̄zFmz), F−1

zz (Φ̄mI + Φ̄zFmz), and [(Rs ⊗ F−1
zz ) + {I ⊗ (F−1

zz Φ̄zFmz)}], are less than

one.

In the learning environment considered here, there seems no clear relationship between

determinacy and E-stability.

We now use the calibrated cases to illustrate the conditions obtained above. For each value

of χ, Figure 3 shows regions of coefficients on the Taylor rule (4) ensuring determinacy of REE

and E-stability of the fundamental REE (28)−(29) in the two learning environments.34 Note

that (25) holds for any value of 0 ≤ χ ≤ χ∗∗ = 0.018 with the other calibrated parameter values,

since the coefficients on φπ, φy ≥ 0 in (25) are non-negative. This implies that in the cases of

χ = 0, 0.01, the only relevant condition for determinacy is the long-run version of the Taylor

principle (19), which leads to the boundary (22) in Figure 3A(i) and 3B(i). In the case of χ = 0,

where the model here takes the same form as the model without money, the region yielding

E-stability is consistent with that yielding determinacy, as claimed by Corollary 1 in the case
34As in Lemma 2, E-stability under learning without current endogenous variables requires values of the matrix

Rs = diag(ρq, ρg, ρv, 0). With the other calibrated parameter values, any values of ρj ∈ [0, 1), j = q, g, v, provide
the same results shown in Figure 3.
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of EOP timing. When χ = 0.01, the coefficient region ensuring determinacy still guarantees

E-stability in both the two learning environments, but the region of indeterminacy induces two

non-explosive fundamental REE. Then, these two fundamental REE are E-unstable if agents

are learning without current endogenous variables (See Figure 3B(i)); but if agents are learning

with these variables (See Figure 3A(i)), the fundamental REE associated with eigenvalues of

the matrix F in (24) in order of decreasing modulus is E-unstable while another fundamental

REE is E-stable. Following McCallum (2004), this paper refers to the former fundamental REE

as “MOD”. In the cases of χ = 0.02,0.03, from (25) there emerges another boundary between

the region generating determinacy and that inducing indeterminacy

b4(φπ, φy) ≡ κ − 2κiωβ−1

κ + 2(1 + β)(σ−1 − ηyχ)
φπ +

(1 + β)(1 − 2ηiχβ−1) − κiβ
−1

κ + 2(1 + β)(σ−1 − ηyχ)
φy + 1 = 0. (33)

Proposition 5 then leads to two regions of coefficients on (4) ensuring determinacy. One re-

gion is given by b2(φπ, φy) > 0 and b4(φπ, φy) > 0, which corresponds to the range below (33)

within the right-hand side of (22) in Figure 3A(ii)-(iii) and 3B(ii)-(iii). This region satisfies

the long-run version of the Taylor principle (19). Another is given by b2(φπ, φy) < 0 and

b4(φπ, φy) < 0, which corresponds to the range above (33) within the left-hand side of (22).

This region never satisfies such Taylor principle (19). Then, if agents are learning with current

endogenous variables (See Figure 3A(ii)-(iii)), the region of determinacy guarantees E-stability

as Proposition 6 claims, and the region of indeterminacy contains two non-explosive funda-

mental REE and consists of two sub-regions: in one region labeled as “Indeterminate A”, only

the MOD fundamental REE is E-stable; while in another region labeled as “Indeterminate B”,

only the non-MOD fundamental REE is E-stable. In contrast, if agents are learning without

current endogenous variables (See Figure 3B(ii)-(iii)), one of two regions ensuring determinacy

that never meets the long-run version of the Taylor principle (19) induces a determinate, but E-

unstable, REE; and another region ensures both determinacy and E-stability but shrinks within

the range of non-negative coefficients on (4) as χ increases.35 In the region of indeterminacy

there are two non-explosive fundamental REE both of which are E-unstable.
35This region disappears from the range of non-negative coefficients on (4) if χ > 0.12.

19



4 Concluding remarks

In this paper we have examined determinacy and E-stability of REE in the discrete-time sticky-

price MIUF model with the Taylor rule, employing three timing of money balances of the utility

function that the existing literature contains. In contrast to the results of recent studies, this

paper has shown that even a small degree of non-separability of the utility function between

consumption and real balances causes the Taylor rule to be much more likely to induce indeter-

minacy or E-instability of REE if this rule responds not only to inflation but also to output or

the output gap. Such a problem might be mitigated by endowing the Taylor rule with interest

rate smoothing, as Bullard and Mitra (2003) suggest for backward-looking and forward-looking

Taylor rules in the model without money. This paper has also demonstrated that the differences

among the three timings of money balances strongly alter the conditions for the Taylor rule to

ensure both determinacy and E-stability. A companion paper by Kurozumi (2004) investigates

implications of these differences for optimal policy and shows that such differences have notable

effects on optimal policy under discretion. Many recent studies of monetary policy have used

the model without money. In the face of this widespread use of it, this paper suggests that we

employ the associated model with money to assess the robustness of results obtained with the

model without money.
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Appendix

A Proof of Proposition 1

Proposition C.1 of Woodford (2003) implies that the necessary and sufficient condition for both

eigenvalues of the matrix A to be outside the unit circle is either

(i) detA > 1, det A − trA > −1, detA + trA > −1; or

(ii) detA − trA < −1, det A + trA < −1,

where

det A − 1 =
(κ + κiω)φπ + φy

σ−1 − ηyχ + ηiχφy
+ 1 − β,

detA − trA + 1 =
κφπ + (1 − β − κi)φy − κ

σ−1 − ηyχ + ηiχφy
,

detA + trA + 1 =
(κ + 2κiω)φπ + (1 + β + κi)φy + κ

σ−1 − ηyχ + ηiχφy
+ 2(1 + β).

Under Assumption 1 we have that detA − 1 > 0 and det A + trA + 1 > 0. This implies that

only (i) is relevant and the necessary and sufficient condition for the Taylor rule (4) to generate

a determinate REE with EOP timing is det A − trA > −1, which can be reduced to (15).

B Proof of Proposition 2

The characteristic equation of the matrix (A−1 − I) can be written as

λ2 + aλ + b = 0,

where

a =
(2κ + κiω)φπ + {2 − β − κi + ηiχ(1 − β)}φy + (1 − β)(σ−1 − ηyχ) − κ

(κ + κiω)φπ + (1 + ηiχ)φy + σ−1 − ηyχ
,

b =
κφπ + (1 − β − κi)φy − κ

(κ + κiω)φπ + (1 + ηiχ)φy + σ−1 − ηyχ
.

Note that (κ+κiω)φπ +(1+ηiχ)φy +σ−1 −ηyχ > 0 under Assumption 1. The Routh-Hurwitz

theorem implies that the necessary and sufficient condition for all eigenvalues of the matrix

(A−1 − I) to have negative real parts is that a > 0 and b > 0. Then we have

a = b +
(κ + κiω)φπ + {1 + ηiχ(1 − β)}φy + (1 − β)(σ−1 − ηyχ)

(κ + κiω)φπ + (1 + ηiχ)φy + σ−1 − ηyχ
.
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Thus, under Assumption 1, b > 0 implies a > 0 and hence the necessary and sufficient condition

for the Taylor rule (4) to guarantee E-stability of the fundamental REE (16) is b > 0, which

can be reduced to (15).

C Proof of Proposition 3

Suppose that σ−1 − ηyχ − (1 − ηiχβ−1)φy �= 0. Proposition C.1 of Woodford (2003) implies

that the necessary and sufficient condition for both eigenvalues of the matrix C to be outside

the unit circle is either

(i) det C > 1, detC − trC > −1, det C + trC > −1; or

(ii) det C − trC < −1, detC + trC < −1,

where

detC − 1 =
κiωβ−1φπ + φy

σ−1 − ηyχ − (1 − ηiχβ−1)φy
+ 1 − β,

det C − trC + 1 =
κφπ + (1 − β − κiβ

−1)φy − κ

σ−1 − ηyχ − (1 − ηiχβ−1)φy
,

det C + trC + 1 =
(2κiωβ−1 − κ)φπ + (1 + β + κiβ

−1)φy + κ

σ−1 − ηyχ − (1 − ηiχβ−1)φy
+ 2(1 + β).

First consider the case in which σ−1 − ηyχ − (1 − ηiχβ−1)φy < 0. Under Assumption 1 we

have

det C − 1 =
κiωβ−1φπ + {β + ηiχβ−1(1 − β)}φy + (1 − β)(σ−1 − ηyχ)

σ−1 − ηyχ − (1 − ηiχβ−1)φy
< 0.

Hence only (ii) is relevant and the necessary and sufficient condition for the Taylor rule (4)

to generate a determinate REE with Lucas-style CIA timing is that detC − trC + 1 < 0 and

detC + trC + 1 < 0, which can be reduced to (19) and (20), respectively.

Next consider the case in which σ−1 − ηyχ − (1 − ηiχβ−1)φy > 0. Suppose that (ii) holds,

i.e., detC − trC + 1 < 0, det C + trC + 1 < 0. Then detC + trC + 1 < 0 implies

(2κiωβ−1 − κ)φπ + (1 + β + κiβ
−1)φy + κ + 2(1 + β){σ−1 − ηyχ − (1 − ηiχβ−1)φy} < 0,

so we have

(2κiωβ−1 − κ)φπ + (1 + β + κiβ
−1)φy + κ < 0.
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From detC − trC + 1 < 0 we have

κφπ + (1 − β − κiβ
−1)φy − κ < 0

and hence

(2κiωβ−1 − κ)φπ + (1 + β + κiβ
−1)φy + κ

= 2(κiωβ−1φπ + φy) − {κφπ + (1 − β − κiβ
−1)φy − κ}

> 0,

which is a contradiction. Thus, only (i) is relevant. Because det C − 1 > 0, the necessary and

sufficient condition for the Taylor rule (4) to generate a determinate REE with Lucas-style CIA

timing is that detC − tr C + 1 > 0 and det C + trC + 1 > 0, which can be reduced to (19) and

(20), respectively.

D Proof of Proposition 4

The characteristic equation of the matrix (C−1 − I) can be written as

λ2 + cλ + d = 0,

where

c =
(κ + κiωβ−1)φπ + {1 − κiβ

−1 + ηiχ(β−1 − 1)}φy + (1 − β)(σ−1 − ηyχ) − κ

κiωβ−1φπ + ηiχβ−1φy + σ−1 − ηyχ
,

d =
κφπ + (1 − β − κiβ

−1)φy − κ

κiωβ−1φπ + ηiχβ−1φy + σ−1 − ηyχ
.

Note that κiωβ−1φπ + ηiχβ−1φy + σ−1 − ηyχ > 0 under Assumption 1. The Routh-Hurwitz

theorem implies that the necessary and sufficient condition for all eigenvalues of the matrix

(C−1 − I) to have negative real parts is that c > 0 and d > 0. Then we have

c = d +
κiωβ−1φπ + {β + ηiχ(β−1 − 1)}φy + (1 − β)(σ−1 − ηyχ)

κiωβ−1φπ + ηiχβ−1φy + σ−1 − ηyχ
.

Thus, under Assumption 1, d > 0 implies c > 0 and hence the necessary and sufficient condition

for the Taylor rule (4) to guarantee E-stability of the fundamental REE (21) is d > 0, which

can be reduced to (19).
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E Proof of Proposition 5

The characteristic equation of the matrix F can be written as

λ3 + e2λ
2 + e1λ + e0 = 0,

where

e2 = −β−1 − 1 − κβ−1 + (1 − ηiχβ−1)φy

σ−1 − ηyχ
,

e1 = β−1 + β−1 (κ − κiωβ−1)φπ + {1 − κiβ
−1 − ηiχ(1 + β−1)}φy

σ−1 − ηyχ
,

e0 = β−2 κiωφπ + ηiχφy

σ−1 − ηyχ
.

Proposition C.2 of Woodford (2003) implies that exactly one eigenvalue of the matrix F

is inside the unit circle and the other two are outside the unit circle if and only if one of the

following three is satisfied.

(i) 1 + e2 + e1 + e0 < 0, −1 + e2 − e1 + e0 > 0;

(ii) 1 + e2 + e1 + e0 > 0, −1 + e2 − e1 + e0 < 0, e2
0 − e0e2 + e1 − 1 > 0;

(iii) 1 + e2 + e1 + e0 > 0, −1 + e2 − e1 + e0 < 0, e2
0 − e0e2 + e1 − 1 < 0, |e2| > 3.

Under Assumption 1 we have

e2
0 − e0e2 + e1 − 1 =

β−2(κiωφπ + ηiχφy)[κiωβ−2φπ + {1 + ηiχβ−2(1 − β)}φy ]
(σ−1 − ηyχ)2

+
β−1{κκiωβ−2 + (κ + κiωβ−2)(σ−1 − ηyχ)}φπ

(σ−1 − ηyχ)2

+
β−1[κiωβ−2 + {1 + κiβ

−2(1 − β) + ηiχ(β−2 − 1)}(σ−1 − ηyχ)]φy

(σ−1 − ηyχ)2

> 0.

Hence (iii) is not the case and the necessary and sufficient condition for the Taylor rule (4) to

generate a determinate REE with Svensson-style CIA timing is either (Case I)

1 + e2 + e1 + e0 > 0, −1 + e2 − e1 + e0 < 0,

which can be reduced to (19) and (25); or (Case II)

1 + e2 + e1 + e0 < 0, −1 + e2 − e1 + e0 > 0.
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F Proof of Proposition 6

For the matrix F in (24), the Schur decomposition theorem36 ensures the existence of a unitary

matrix Z and a lower triangular matrix T such that

ZHFZ = T, (34)

where ZH denotes the Hermitian transpose of Z. Note that the diagonal elements {tii} of

the triangular matrix T are eigenvalues of the matrix F . Without contradicting the foregoing

theorem, these eigenvalues tii (and associated columns of Z) can be arranged in order of

decreasing modulus, so unstable eigenvalues (i.e. eigenvalues with moduli greater than one37)

come first in T . Because system (24) has a determinate RE solution, it follows by Theorem 4.1

of Klein (2000) that Zmm �= 0, Tzz is invertible and the evolution of z̃′t and mt is given by

z̃t = Φ̃zmt−1 + Γ̃zut, Φ̃z = ZzmZ−1
mm, (35)

mt = Φ̃mmt−1 + Γ̃mut, Φ̃m = Tmm, (36)

where the matrices Zij and Tij are obtained by partitioning Z and T conformably with z̃′t and

mt such that

Z =
[

Zzz Zzm

Zmz Zmm

]
, T =

[
Tzz 02×1

Tmz Tmm

]
.

Because Z−1 = ZH and Zmm �= 0, we have that ZH
zz is invertible and ZzmZ−1

mm = −(ZH
zz)−1ZH

zm,

where each ZH
ij is constructed in the same way as Zij . Then, from (35) we have

Φ̃z = −(ZH
zz)

−1ZH
zm. (37)

From the upper left block in (34), we have ZH
zzFzz + ZH

zmFmz = TzzZ
H
zz and hence

Fzz + (ZH
zz)

−1ZH
zmFmz = (ZH

zz)
−1TzzZ

H
zz, (38)

since ZH
zz is invertible. From (37) and (38) we have

Fzz − Φ̃zFmz = (ZH
zz)

−1TzzZ
H
zz. (39)

Note that Ψ(Φ̃z) = (Fzz − Φ̃zFmz)−1 exists, since Tzz and ZH
zz are invertible. Then, (39) implies

that Ψ(Φ̃z) has the same eigenvalues as T−1
zz . By determinacy of RE solutions to (24), these

36See e.g. Golub and Van Loan (1996).
37Recall that consideration of non-generic boundary cases is omitted throughout this paper.
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eigenvalues are the inverses of unstable eigenvalues of the matrix F , so all eigenvalues of Ψ(Φ̃z)

are inside the unit circle. Also, the determinacy implies that Tmm is the stable eigenvalue of

the matrix F and hence from (36) we have | Φ̃m | = |Tmm | < 1. Therefore, all eigenvalues of

Ψ(Φ̃z) and Φ̃mΨ(Φ̃z) have real parts less than one and thus E-stability of the determinate REE

follows from Lemma 1.
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Table 1:
Baseline calibration, quarterly

β discount factor 0.99
κ̃ frequency of price adjustment 0.038
ω output elasticity of real marginal cost 0.47
σ intertemporal elasticity of substitution in consumption 6.4
ηy output elasticity of money demand 1
ηi interest rate semielasticity of money demand 28
χ degree of non-separability of utility function between 0.02

consumption and real balances
φπ inflation coefficient in Taylor rule (4) 0 ≤ φπ ≤ 3
φπ output or output-gap coefficient in Taylor rule (4) 0 ≤ φπ ≤ 3
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Figure 1. Regions of coefficients on Taylor rule ensuring determinacy and E-stability of REE with 
EOP timing. 
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Figure 2. Regions of coefficients on Taylor rule ensuring determinacy of REE and E-stability of 
fundamental REE with Lucas-style CIA timing. 
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Figure 3. Regions of coefficients on Taylor rule ensuring determinacy of REE and E-stability of 
fundamental REE with Svensson-style CIA timing. 
Note: In the region labeled as “Indeterminate A”, only the MOD fundamental REE is E-stable; while in 

the region labeled as “Indeterminate B”, only the non-MOD fundamental REE is E-stable. 
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