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Abstract
A common problem in credit risk management is the estimation of probabilities of rare

default events in high investment grades, when su¢ cient default data are not available.
In addressing this issue, increasing attention has been paid to the use of continuous time
Markov chains for modeling transition matrices. This approach incorporates the possibility
of successive downgrades leading to defaulting in such a way that a very slight probability
of default can be captured. In banking applications, however, the approach faces a prob-
lem with data limitations, since it requires continuously observed rating data to estimate
intensities for transition matrices. In reality, the data frequency of internal rating systems
for individual banks is either annual or bi-annual. To make the approach more applicable,
the estimation methodology based on discretely observed rating data needs to be examined
from a practical perspective. Against this background, the paper discusses and compares
the small sample performances of the �ve estimation methods designed for discrete time
observations �diagonal adjustment, weighted adjustment, quasi-optimization approach, ex-
pectation maximization algorithm and Markov chain Monte Carlo (MCMC) estimation �
by measuring di¤erences in default probabilities of investment grades and several matrix
norms. Monte Carlo experiments reveal that the MCMC gives the most accurate �nite-
sample performance, both in terms of the estimated default probabilities and the matrix
norms. Moreover, a case study to examine the impact on the loss distribution of a hypo-
thetical investment grade portfolio shows that di¤erences in these estimation methods have
the potential to yield signi�cantly di¤erent estimates of economic capital.

keywords: Default probability, LDPs, Markov chains, In�nitesimal generator matrix
JEL-codes: C13, G21

1. INTRODUCTION

Default probability is a long-established subject for theoretical and empirical
studies in credit risk modeling. Numerous methods have been developed in the last

1Any views expressed represent those of the author only and not necessarily those of the Bank
of Japan. I would like to thank Mogens Bladt, Til Schuermann and Toshiaki Watanabe for their
helpful comments and advice. I am also grateful for comments received from sta¤ members of the
Institute for Monetary and Economic Studies, and the Financial Systems and Bank Examination
Department at the Bank of Japan. Any remaining errors are solely upon the author.
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decade to extract a default probability from historical observations. Most of the past
studies, however, focus on corporate debts in low rating grades, where a minimal
amount of the required historical observations is available for statistical inferences.
The estimation of default probabilities for the higher rating grades, such as large
corporations with a rating of Aaa or Aa, is much less explored because their default
data are very scarce over short periods. The issue of data limitation becomes more
acute for exposure types, such as specialized lending or sovereign debts, where very
few defaults have been observed over time. The problem is even more apparent when
individual banks attempt to utilize their own internal rating data. In these cases, a
straightforward estimation based on the simple average often results in deriving zero
default probabilities.
The Financial Sector has started to show serious concern regarding a similar data

problem, the so-called issue of Low Default Portfolios (LDPs), because balance sheets
of many �nancial institutions contain a signi�cant proportion of sub-portfolios with
few default records. The British Bankers�Association et al. (2005) delineate the issue
of LDPs by identifying business types and circumstances where data limitations arise.
They also provide a conceptual framework for the assessment of models that cover
the LDPs. In response to this industry concern, the Basel Committee on Banking
Supervision (2005) present the views of its sub-working group regarding the issue
of LDPs in the internal ratings-based (IRB) approaches and provide some general
suggestions for the treatment and data-enhancement of LDPs.
Recent studies on the modeling of continuous time rating transition matrices seem

to provide a potential solution to these problems. The key idea here is to capture the
possibility of successive downgrades of an obligor in the higher rating grades toward
the lower rating grades where defaults occur more frequently. For example, if transi-
tions from Aaa to A and transitions from A to default are observed within a period,
then one can consider the possibility that an obligor with Aaa might default after
successive downgrades, even without observing direct transitions from Aaa to default.
In a discrete time context, �nancial practitioners know that the possibility of these
successive defaults can be captured by multiplying transition matrices and picking
out relevant elements in the cumulative transition probability matrix. Intuitively
speaking, a similar thing happens in the continuous time approach. The approach
incorporates the possibility of successive downgrades leading to defaulting in such a
way that a very slight probability of defaults can be captured. Lando and Skødeberg
(2002) provide two continuous time estimators for credit rating matrices, which di¤er
in terms of their assumption regarding transition intensities. Speci�cally, one esti-
mator, called the Aalen-Johansen estimator, allows transition intensities to be time
inhomogeneous (i.e. time-varying) due to business cycles, while the other estimator
assumes that transition intensities are time homogeneous (i.e. time-invariant) and
thus estimates a so-called in�nitesimal generator matrix in continuous time Markov
chains. Their empirical studies show that both of the estimators generate non-zero
values for default and migrating probabilities, which ordinary multinomial methods
do not capture. Later, Christensen, Hansen and Lando (2004) propose a parametric
bootstrapping-based method to derive con�dence intervals for default probabilities
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under the framework of the continuous time approach. Their results demonstrate
that the con�dence intervals for default probabilities in investment grades are much
tighter than multinomial-based con�dence sets. Recently, Hansen and Schuermann
(2005) propose a non-parametric bootstrap to relax the assumption of time homo-
geneity. Developing a new distance metric for transition matrices, Jafry and Schuer-
mann (2004) �nd that the distance of transition matrices between the continuous
time approach and the multinomial approach is signi�cantly large. As for the studies
explicitly relating to the issue of LDPs, Fuertes and Kalotychou (2005) present em-
pirical studies on the small sample properties of sovereign credit migration data by
applying the continuous time estimators and simulated con�dence intervals. Their
empirical results indicate non-zero default probabilities and reasonably narrow con-
�dence intervals for sovereign credits.
One concern with the continuous time approach is that most of the previous

literature is based on continuously observed transition data from rating agencies.
Both the intra-year transition records and the length of time that obligors spend in
the rating grades are required to apply the methods. In real applications, however,
such a high-frequency database is still costly at the individual bank level. The data
frequency of internal default data for individual banks is either annual or bi-annual
in many cases. In order to make the continuous time approach more applicable in
banking practice, �nancial practitioners will need an estimation methodology based
on discretely observed rating data.
Several important works have emerged in recent years. Israel et al. (2001) pro-

pose the logarithmic expansion of an empirical transition probability matrix and the
post-adjustment of its elements to obtain a valid generator matrix. The authors also
provide some conditions to indicate whether the given transition data will allow the
existence and uniqueness of a valid generator matrix from the logarithm of an empir-
ical transition probability matrix. Following the post-adjustment approach, Kreinin
and Sidelnikova (2001) propose a quasi-optimization methodology to adjust the ma-
trix logarithm into a valid generator matrix, together with a fast computational
algorithm to achieve it. The authors also present empirical studies comparing the
�tting performance of several post-adjustment methods, in the context of calculating
the root of the transition matrices. Recently, Bladt and Sørensen (2005) present
the use of the (penalized) expectation-maximization algorithm (EM algorithm) or
the Markov chain Monte Carlo (MCMC) estimation method to obtain a maximum
likelihood estimator of an empirical generator matrix from discretely sampled data.
The authors also present theoretical evidence for the existence and uniqueness of the
maximum likelihood estimator for given empirical transition data.
Based on these recent advances, this paper discusses and compares the small

sample performances of the �ve competing estimation methods: diagonal adjustment,
weighted adjustment, quasi-optimization approach, EM algorithm and MCMC, by
measuring di¤erences in the estimates of default probabilities and several matrix
norms. The results of Monte Carlo experiments show that the diagonal and weighted
adjustment methods may generate a substantial deviation in both the estimated
default probabilities and the mobility of a transition probability matrix. In contrast,
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the MCMC method gives the most accurate �nite-sample performance. To illustrate
the practical relevance of the Monte Carlo experiments, a case study examining the
impact on the loss distribution of a hypothetical investment grade portfolio shows
that di¤erences in these estimation methods have the potential to yield signi�cantly
di¤erent estimates of economic capital. Finally, an empirical generator matrix based
on the annual transition data of Japanese corporations is provided to show that the
method examined in this paper gives reasonable non-zero estimates for investment
grade default probabilities, which ordinary multinomial approaches do not provide.
The paper is organized as follows. Section 2 provides some preliminaries regarding

Markov chains, relevant to the arguments in later sections. Section 3 discusses the
�ve estimation methods designed to obtain an empirical generator matrix from credit
rating data. Section 4 deals with the Monte Carlo experiments designed to compare
the small sample performances of these estimation methods. The section also explores
their impact on the economic capital of a hypothetical investment grade portfolio.
An empirical study regarding a generator matrix for Japanese corporations during
the 1990s is also provided. Section 5 concludes.

2. PRELIMINARIES

There is much extant literature and many texts on Markov chains and related is-
sues mentioned in this section. The preparatory discussion here is brief and intuitive,
so for further details on Markov chains, see Norris (1998).

2.1. Discrete Time Markov Chains

Let us start with a discrete time Markov chain (DTMC) in the context of credit
risk modeling. In rating-based credit risk models, an individual transition between
credit rating grades is modeled as a random process, characterized by a �nite state
space and transition probabilities. More formally:

� A set ofK credit rating grades is denoted by a �nite state space S = fs1; :::; sKg,
which is usually indexed with integers in the order of credit quality such as
f1; :::;Kg : Normally, the last state K corresponds to �Default�.

� Rating grade for an obligor at an arbitrary time tn; n = 1; : : : ; T is denoted by
X(tn), which has a countable number of possible values de�ned by S:

The time series behavior of X = fX(tn)jn = 1; : : : ; Tg is governed by its condi-
tional probability distribution, which is a function of the past rating history. The
Markov property is an assumption on the conditional probability distribution that
allows the future rating to be independent of the past rating history. A �nite state
stochastic process with this property is called a Markov chain. In a discrete time
setting, the Markov property is
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P(X(tn+1) = jjX(t0) = i0; X(t1) = i1; : : : ; X(tn) = i)
= P(X(tn+1) = jjX(tn) = i) = pij(tn; tn+1):

Transition probabilities are normally assembled into the matrix form called a
�transition probability matrix�. Since the elements in each row are the mass of mutu-
ally exclusive conditional probabilities, each row of the transition probability matrix
must add up to 1 for the conservation of probability. The transition probability ma-
trix is convenient for describing the behavior of a Markov chain because multi-step
transition probabilities are easily obtained. Consider the following matrix multipli-
cation over m-periods

P(tn; tn+m) = P(tn; tn+1)�P(tn+1; tn+2) � � � �P(tn+m�1; tn+m) (2.1)

where them-step transition probability from i to j is the ij th element of P(tn; tn+m).
Note that the m-step transition probability incorporates more than one path of the
rating process with successive migrations, in addition to the direct transition from
state i to state j. This is very suggestive when it comes to considering default
probabilities. In the real world, when investing in highly-rated assets, the risk of
direct defaults is slight. Rather, the major risk lies in the possibility of downgrading
with a subsequent increase in the likelihood of defaulting.
For tractability, industry standards often make the assumption on transition prob-

abilities that one-step transition probabilities remain constant over time. If the
assumption holds, a Markov chain is said to be time homogeneous. An important
consequence of the time-homogeneous assumption is that the m-step transition prob-
ability matrix is a function of the time distance m between the observations, not the
calender time. For example, the m-step transition matrix given in (2.1) is calculated
just by raising the one-period transition matrix to the power m as

P(tn; tn+m) = �Pm

where each element of �P is a constant value pij .
A common practice in credit risk modeling is to ignore the possibility that an

obligor recovers from the default state even if it is an unrealistic assumption. There-
fore, once an obligor reaches the default state K, it is assumed to remain there for
ever. The state K is said to be an absorbing state and the following speci�cation
ensures this assumption

pKK = 1 and pKj = 0; 8 j 2 S nfKg:

With an absorbing default state, ordinary credit rating transition matrices satisfy
the following,

lim
m!1

�Pm ! D
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where D =

26664
0 0 � � � 1
0 0 � � � 1
...
...

. . .
...

0 0 � � � 1

37775 : (2.2)

Thus, the default state is assumed to occur in the long run, regardless of the
initial rating grades, and as such is accessible from every rating grades.

2.2. Continuous Time Markov Chains

As with the discrete time setting, the time series behavior in a continuous time
Markov chain (CTMC) is de�ned by a stochastic process X = fX(t)j0 � tg, which
satis�es the following for all t � 0, s � 0, and i; j 2 S:

P(X(s+ t) = jjX(s) = i; fX(u) : 0 � u < sg)
= P(X(s+ t) = jjX(s) = i):

The assumption of time homogeneity can be understood with an analogy to a
DTMC. If a transition probability satis�es the following

P(X(s+ t) = jjX(s) = i) = P(X(t) = jjX(0) = i)

then, a CTMC is said to be time homogeneous.
Arguments in line with discrete time analogues face the problem of the �time

step�in continuous time. In discrete time, the time interval between the transitions
is basically a unit, regardless of the frequency of data. In continuous time, however,
there is no notion of �time step�since the time index parameter t is continuous. In
other words, one needs to consider the distribution of the holding time Si, which is
in our context the time that an obligor spends in rating grade i before migrating
from it. In this regard, it is well known that the holding time follows an exponential
distribution because of the Markov assumption (See, Norris (1998)). This means
that for each rating grade i, there exists a positive constant rate qi such that an
obligor, when entering rating grade i, remains there for an amount of time which is
a random draw Si � exp(�qit), independent of its past rating history.
Since the holding time is exponentially distributed (which means that the number

of jump events follows a Poisson distribution), the probability that one transition
occurs during a short interval is given by

P(X(t) 6= ijX(t��t) = i) = qi�t+ o(�t): (2.3)

On the other hand, the probability of a transition from i to j for (t � �t; t] is
P(X(t) = jjX(t��t) = i). From the Markov property, we have

P(X(t) = jjX(t��t) = i) = P(X(�t) = jjX(0) = i):
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Now, let us introduce qij de�ned by

qij = lim
�t!0

P(X(�t) = jjX(0) = i)
�t

(2.4)

assuming that the limit on the right-hand side exists in [0;1). By de�nition, qij
must be non-negative. To build a trajectory for the rating process of an obligor in a
time-homogeneous CTMC, consider the conditional probability of migrating from i
to j, given a jump from rating grade i, de�ned by

P(X(t) = jjX(t��t) = i;X(t) 6= i) = P(X(t) = jjX(t��t) = i)
P(X(t) 6= ijX(t��t) = i) :

Using (2.3) and (2.4), we have

P(X(t) = jjX(t��t) = i;X(t) 6= i) = qij�t+ o(�t)

qi�t+ o(�t)
:

Taking the limit �t! 0, we have

P(X(t) = jjX(t�) = i;X(t) 6= i) = qij
qi

which is the conditional probability that an obligor enters a new rating grade j, given
a jump from i.
Because there areK�1 possible grades for the next rating grade, the conservation

of probability requires

qi =
PK

j=1;j 6=i qij :

Hence, all we need to construct sample paths of the rating process is the parame-
ters qij . We can summarize the rating process of an obligor in a time-homogeneous
CTMC as follows:

� The holding time of an obligor in rating grade i is exponentially distributed with
a parameter qi.

� Given a transition in rating grade i, the conditional probability of an obligor
migrating to a new rating grade j is multinomially distributed with qij

qi
.

Now we can introduce an in�nitesimal generator matrix Q, de�ned by

Q =

26664
�q1 q12 � � � q1K
q21 �q2 � � � q2K
...

...
. . .

...
qK1 qK2 � � � �qK

37775
which satis�es the following properties:
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�
PK

j=1 qij = 0; for 1 � i � K

� 0 � �qii = qi � 1, for 1 � i � K

� qij � 0 for 1 � i; j � K with i 6= j.

(2.5)

Given this, a transition probability matrix for the interval �t can be expressed
as

P(t; t+�t) = I+�tQ+ o(�t)

where I is an identity matrix. Anm-period (notm-step) transition probability matrix
can be obtained in a similar manner. Let s denote t+m�t. Then, we have

P(t; s) � (I+�tQ)
m

=

�
I+

(s� t)
m

Q

�m
:

Taking the limit m!1, we have

P(t; s) = exp((s� t)Q) (2.6)

where exp(hQ) =
1P
n=0

(hQ)
n

n!
:

Thus, by calculating matrix exponentials of a generator matrix Q, one can obtain
a transition probability matrix for an arbitrary period.
Making the default state K absorbing in a CTMC is identical to the condition

that qK = 0 and pKj = 0; 8 j 2 S; j 6= K. This absorbing assumption leads to the
following result

lim
h!1

exp(hQ)! D (2.7)

where D is de�ned by (2.2).

2.3. Estimation of Markov Chains

For a DTMC with discrete observations: The conventional approach for
estimating a transition probability matrix for a time-homogeneous DTMC with dis-
crete observations for each obligor x = fx(tn)jn = 1; : : : ; Tg is the cohort method.
With this method, the likelihood function is derived fromK independent multinomial
distributions. Hence, the likelihood is
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L(P) =
KQ
i=1

KQ
j=1

p
Nij(m)
ij

where Nij(m) is the number of obligors migrating from grade i to grade j during
the period of m observations. The maximum likelihood estimator for a transition
probability is given by

p̂ij =
Nij(m)

Ni(m)
(2.8)

where Ni(m) =
PK

j=1Nij(m).

For a CTMC with continuous observations: In estimating an empirical
generator matrix, the maximum likelihood estimation is equally tractable if con-
tinuous observations (i.e. fully time-stamped observations) for each obligor x =
fx(t)j0 � t � Tg are available. Consider the likelihood of observations with a tran-
sition from i to j at time �1; followed by a subsequent transition from j to k at time
�2; and etc., for each obligor. Assuming that an initial state probability is known,
the likelihood can be expressed as

L (Q) = exp(�qi(�2 � �1))qij exp(�qj(�3 � �2))qjk � � �

=
KQ
i=1

Q
i 6=j
(qij)

Nij(T ) exp(�qiRi(T )) (2.9)

where Ri(t) =
R t
0
1fx(s)=igds, which is the total value of the holding time at rating

grade i by the time t. Nij(t) is the number of times for ij transition by the time t.
The log-likelihood is

logL (Q) =
KP
i=1

P
j 6=i
log(qij)Nij(T )�

KP
i=1

P
j 6=i
qijRi(T ): (2.10)

Hence, the maximum likelihood estimator for the elements of an in�nitesimal
generator matrix is explicitly given as

q̂ij =
Nij(T )

Ri(T )
: (2.11)

For a DTMC with continuous observations, one can easily estimate a transition
probability matrix by calculating the equation (2.6). Hence, our �nal problem, and
our topic of interest, is whether one can estimate an empirical generator matrix from
discrete time observations.
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2.4. The Embeddability Problem

The equation (2.6) provides a connection between the generator matrix and the
transition probability matrix. One may consider the empirical transition probability
matrix ~P a sampling of a time-homogeneous CTMC at regular intervals �t. Given
the transition data, ~P can be obtained via the cohort method given in (2.8). Then,
a natural idea to obtain an empirical generator matrix ~Q is to solve the equation

~P = exp(~Q�t). (2.12)

Indeed, if ~P belongs to P = fexp(Q)jQ 2 Qg, where Q is the set of valid generator
matrices as given in (2.5), then the solution to (2.12) is identical to the maximum
likelihood estimator, whose likelihood is de�ned as

L(Q) =
KQ
i=1

KQ
j=1

p(Q)
Nij(m)
ij (2.13)

where p(Q)ij is the ij th element of a matrix exponential of Q. In this case, ~P is
called embeddable. In many cases, however, the solution ~Q is not necessarily a valid
generator matrix because it may have complex or negative o¤-diagonal elements.
This issue is called the �embeddability problem�. Necessary and su¢ cient conditions
where ~P is embeddable are already for the case where K = 2. However, for greater
dimensions of K, only some partial conditions are known, which do not provide a
complete characterization of uniquely embeddable ~P. Unfortunately, it is known that
the embeddability problem is nearly unavoidable in credit risk modeling. Israel et al.
(2001) provide several necessary conditions for the non-existence of an exact valid
generator. One of these conditions poses a serious challenge for obtaining a genera-
tor matrix by solving the equation (2.12). Speci�cally, if the following condition is
satis�ed with respect to ~P, an exact generator matrix does not exist:

� There are states i and j such that j is accessible from i, but pij = 0:

This condition is likely to hold for the majority of empirical rating transition
matrices. For example, high investment grades tend to exhibit zero default probabil-
ity in the empirical transition probability matrix, even if the true probability is not
zero. However, default state is accessible from the same high investment grades if
successive downgrades are considered. Hence, the above condition is almost unavoid-
able and a simple matrix logarithm of an empirical transition matrix is very likely
to contain negative o¤-diagonal elements. Following Israel et al. (2001), we provide
a typical example of this condition, using the average annual transition matrix of
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corporations over the period 1981-2003, published by Standard & Poor�s.

AAA AA A BBB BB B CCC/C D

AAA 92.07 7.09 0.63 0.15 0.06 0.00 0.00 0.00

AA 0.62 90.84 7.76 0.59 0.06 0.10 0.02 0.01

A 0.05 2.09 91.38 5.79 0.44 0.16 0.04 0.05

BBB 0.03 0.21 4.10 89.37 4.82 0.86 0.24 0.37

BB 0.03 0.08 0.40 5.53 83.25 8.15 1.11 1.45

B 0.00 0.08 0.27 0.34 5.39 82.41 4.92 6.59

CCC/C 0.10 0.00 0.29 0.58 1.55 10.54 52.80 34.14

D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100

Table 1: Adjusted transition probability matrix ~P (%)
of S&P corporate data, 1981-20032

Note that ~p13 > 0 and ~p37 > 0, but ~p17 = 0. Hence, ~P satis�es the condition
provided above and therefore an exact valid generator matrix does not exist. If the
solution ~Q is not a valid generator matrix, the resulting transition probability matrix
will not preclude the possibility of containing negative or complex elements because
P � I+�tQ holds.
There are two possible explanations why the solution ~P does not belong to P.

The �rst is that the true transition probability matrix P is not embeddable either and
hence is not generated byQ 2 Q. Admittedly, this possibility is di¢ cult to dismiss as
some previous empirical studies have con�rmed time inhomogeneity and non-Markov
properties in the historical movements of credit rating matrices. The assumption of
a time homogeneous CTMC may be especially dubious over a long time horizon
(say, greater than 20 years). A time-inhomogenous and non-Markov model would be
preferable if possible. However, internal data at individual banks and data for LDP-
related assets are limited in both time series and cross-sectional dimensions. Modeling
time-inhomogenous and non-Markov movements seems di¢ cult in situations where
only limited discretely observed data are available. Indeed, the validity of time-
homogeneous Markov assumption seems to depend on the asset type and on the time
horizon of historical data. For example, empirical studies by Kiefer et al. (2004) show
that time-homogeneous Markov assumption holds for the transitions of municipal
bond ratings for up to �ve years, while the transitions of sovereign bonds are well
described under the same assumption even in the long run.
Therefore, knowing that time-homogeneous Markov assumption is still open to

question, the paper proceeds by considering the second explanation, where the true
P can be considered embeddable, driven by some Q 2 Q, but the observed ~P is not
embeddable due to the variability and �niteness of the observable rating migration
data.

2To preclude the e¤ect of rounding, the diagonal elements in ~P are adjusted such that each of
the rows adds up to one.
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There are several ways to cope with the embeddability problem. One way is to
adjust the matrix logarithm of ~P =2 P such that the adjusted ~Q satis�es the proper-
ties of (2.5). Speci�cally, the approach �rst sets the negative o¤-diagonals to zero and
then adds the extra value to the other elements to compensate. There are a variety of
numerical procedures, from ad hoc adjustment to optimization-based adjustment, as
shown in Israeli et al. (2001) and in Kreinin and Sidelnikova (2002). Another way to
�nd the empirical generator matrix is to consider the maximization of (2.13) directly
over the space Q, instead of solving (2.12). Kalb�eisch and Lawless (1985) argue that
the maximization of (2.13) is preferable even when ~P is embeddable because solving
(2.12) does not provide the standard errors of the parameters. However, even if one
resorts to the maximization of (2.13), there is a possibility that the maximum like-
lihood estimator does not exist. In this respect, Bladt and Sørensen (2005) provide
theoretical evidence for the existence and non-existence of the maximum likelihood
estimator. According to their results, the maximum likelihood estimator does not
exist on Q, when det(~P) = 0. To clarify what this condition means, assume that
~P is a �-year transition probability matrix. If one remembers that ~P � exp(�Q),
this condition implies that the determinant of exp(�Q) is likely to be near zero. As
the authors explain, if the underlying Markov process is ergodic, exp(�Q) converges
to the singular matrix as � ! 1 (as given in (2.7)). Hence, the non-existence of a
generator is more likely to occur as the observation interval increases. Also, the non-
existence case becomes more likely as the speed of migration, given the observational
interval �, increases (hence, the relative size of � increases). This increase in the
relative size of � can be interpreted as a situation where the observations become
more discrete and partial (hence, the data become less informative). Although a due
care should be taken, the majority of annual (or bi-annual) ordinary credit rating
data seems to have empirical properties in which det(~P) 6= 0 and its eigenvalues are
all distinct. Kreinin and Sidelnikova (2001) indicate these empirical properties as the
common characteristics of most credit rating matrices. According to the result by
Bladt and Sørensen (2005), if ~P =2 P but det(~P) 6= 0 and all the eigenvalues are dis-
tinct, the maximum likelihood estimator, given the empirical credit rating transition
data, is likely to be on the boundary of Q, where some in�nitesimal parameters are
zero. Finally, one can use a Bayesian inference to obtain a valid empirical generator
by specifying a suitable prior distribution to ensure the non-negativity of qij . The key
issue in the Bayesian inference is how to obtain the posterior distribution for given
observations. A recent trend is to employ MCMC methods for the calculation of
integrals with respect to the posterior distribution, as shown by Bladt and Sørensen
(2005) in the case of a time-homogeneous Markov chain.
The next section provides more detail of methods for estimating a valid empirical

generator matrix against the embeddability problem.
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3. METHODOLOGIES FOR DISCRETE TIME OBSERVATIONS

This section details the �ve competing methods for obtaining a valid generator
matrix given empirical credit rating data, namely, diagonal adjustment, weighted
adjustment, quasi-optimization approach, expectation-maximization algorithm and
Markov chain Monte Carlo estimation.

3.1. Diagonal Adjustment and Weighted Adjustment

Israel et al. (2001) suggest the use of a matrix logarithm to solve the equation
(2.12) as

~Q =
1

(s� t) log
~P(t; s): (3.1)

The logarithm of a matrix is de�ned by its power series as

log(~P) = (~P� I)� (
~P� I)
2

2

+
(~P� I)
3

3

� (
~P� I)
4

4

+ � � �

where I is an identity matrix. Israel et al. (2001) also present some necessary
conditions for the existence of a real matrix logarithm, given ~P. However, the equa-
tion (3.1) generates ~Q with negative o¤-diagonal elements, due to the embeddability
problem. To cope with this, the authors provide two adjustment methods for log(~P),
based on simple numerical procedures, called diagonal adjustment (DA) and weighted
adjustment (WA).
With the DA method, all negative o¤-diagonal elements in each row are replaced

with zero and the diagonal elements are re-calculated as the negative sum of the
non-diagonal elements, in order to satisfy the properties of a generator matrix given
in (2.5). In contrast, with the WA method, any negative o¤-diagonals are, as with
the DA, set to zero, but all the other non-zero elements, together with the diagonal
elements, are modi�ed to ensure that the matrix has rows that sum to zero.
Let ~qDAij and ~qWA

ij denote the elements of an empirical generator matrix obtained
by the DA and the WA method, respectively. The computational procedures for the
DA and the WA can be summarized as follows:

1. let ~qij denote an adjusted elements of the matrix logarithm of ~P and qij denote
the elements of the matrix logarithm ~P before the adjustment. Obtain ~qij as
follows,

~qij =

�
0 if (i 6= j) and qij < 0
qij otherwise

:

2. for the DA, set the diagonal elements to the negative sum of the non-diagonal
elements as below,

~qDAii = �
PK

j=1;j 6=i ~qij for i = 1; 2; : : : ;K

13



for the WA, adjust non-zero elements according to their relative magnitudes as
below,

~qWA
ij = ~qij � j~qij j

PK
j=1 ~qijPK
j=1 j~qij j

for i; j = 1; 2; : : : ;K:

3.2. Quasi-optimization of the Generator

The DA and the WA method are very parsimonious approaches as they both do
not involve complex calculations. However, these adjustments are not based on any
norm or any optimality. In this respect, Kreinin and Sidelnikova (2001) have extended
the post-adjustment method by incorporating a distance-minimizing optimization,
called quasi-optimization of the generator (QOG). In the QOG, approximating the
generator matrix is reformulated as the problem of minimizing the sum of squared
deviations between log(~P) and Q 2 Q. Thus, the problem setting is de�ned by

min
Q2Q




Q� log(~P)


 (3.2)

for �nding the optimal Q� 2 Q. Note that the above problem can be solved on a row
by row basis because the conditions of a generator matrix (2.5) are closed on each row.
Hence, (3.2) can be reduced to K independent problems of minimizing the Euclidean
distance between a row of log(~P) and a row ofQ 2 Q. Let z = (z1; z2; : : : ; zK) denote
a row of Q 2 Q, which is permutated such that z1 is a diagonal element in the row.
Note that the permutation does not a¤ect the solution in this problem setting. The
feasible set of z can be expressed as a standard cone C(K) as

C(K) =
n
z 2 RK j

PK
i=1 zi = 0; z1 � 0; zi � 0 for i � 2

o
:

A row of log(~P) is considered a point a =(a1; a2; : : : ; aK) 2 RK . Then, the prob-
lem (3.2) is reduced to the nonlinear programming problem for �nding the optimal
z� 2 C(K) as de�ned by

min
z2C(K)

PK
i=1 (ai � zi)

2
: (3.3)

Kreinin and Sidelnikova (2001) also provide a fast computational algorithm for
solving (3.3). The trick of their algorithm is to transform the multivariate nonlinear
constrained problem (3.3) into a univariate problem. The computational algorithm
is as follows:

1. Construct b = (b1; b2; : : : ; bK j bi = ai + �) for i = 1; 2; : : :K, where � =
� 1
K

PK
i=1 ai.

2. Compute the vector â = �(b), where � is a permutation that orders b such
that bi � bi+1.
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3. Find the smallest number m�, for 2 � m � K � 1, which satis�es (K �m +

1)âm+1 �
�
â1 +

PK�m�1
i=0 âK�i

�
� 0.

4. Construct the vector z� 2 C(K), whose element is de�ned by

zi=

(
0 if 2 � i � m�

âi � 1
K�n�+1

�
â1 +

PK
j=m�+1 âj

�
otherwise

:

5. Compute the inverse permutation ��1(z�), which is the solution of QOG.

Appendix A provides an exposition, based on Tuenter (2000), on the derivation
of the QOG algorithm.
The great advantage of the post-adjustment methods, including the DA and the

WA, is that an approximated generator matrix can be obtained even with a single
transition probability matrix, as long as the real matrix logarithm exists. One may
�nd it especially helpful when only an average annual rating matrix is available,
which is often the case for assets belonging to LDPs.

3.3. Expectation Maximization Algorithm

Another way to cope with the embeddability problem is to apply a maximum like-
lihood estimation directly to (2.13) as is shown by Kalb�eisch and Lawless (1985).
However, when the estimation involves incomplete data either in the form of missing
data or latent variables, an ordinary maximum likelihood estimation may be di¢ cult
to apply. The estimation of a generator matrix from empirical rating matrices is a
typical example for this incomplete-data problem. In these cases, an iterative scheme
called an expectation maximization (EM algorithm) is often used to obtain the max-
imum likelihood estimator, as shown in Asmussen et al. (1996) and in Bladt and
Sørensen (2005). The basic idea of the EM algorithm is simple: replace missing values
with estimated values and then estimate parameters. The algorithm is characterized
by iterations of the Expectation-step (E-step) and the Maximization-step (M-step).
The E-step is to construct a complete data by replacing unobserved parts with their
respective expected values conditional on the observed data, assuming some initial
set of parameters. The M-step is to implement the maximum likelihood estimation
using the constructed complete data. New estimates obtained in the M-step are then
used as the parameters in the next E-step. These two steps are iterated until con-
vergence of the likelihood function is achieved. For details of the EM algorithm, see
McLachan & Krishnan (1997).
Let us review the procedures for the EM-algorithm to determine an empiri-

cal generator matrix for rating grades. Assume that we have a set of discretely
observed migrating data xobs for a portfolio of N obligors with T observations.
The observational interval �t is assumed to be equidistant (say, annual). The
set of the data xobs contains a discrete time observation for each obligor h, de-
noted by xh =

�
xh(tn) 2 Sjn = 1; : : : ; T

	
, for 1 � h � N . Let E

�
Nij(T )jxobs

�
and

E
�
Ri(T )jxobs

�
denote the conditional expectation of the number of transitions from
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rating grade i to rating grade j and the conditional expectation of the total amount
of time in rating grade i, given a discrete time observation xobs, respectively. Then,
we can rewrite the log likelihood (2.10) as

E
�
logL(Q)jxobs

�
=

KP
i=1

P
j 6=i
log(qij)E

�
Nij(T )jxobs

�
�

KP
i=1

P
j 6=i
qijE

�
Ri(T )jxobs

�
:

Then, in the M-step, the maximum likelihood estimator for qij can be obtained
explicitly as

~qij =
E
�
Nij(T )jxobs

�
E [Rj(T )jxobs]

: (3.4)

Note that the conditional expectations in (3.4) can be expressed as

E
�
Nij(T )jxobs

�
=

NP
h

E
�
Nh
ij(T )jxh

�
; E

�
Ri(T )jxobs

�
=

NP
h

E
�
Rhi (T )jxh

�
(3.5)

where E
�
Nh
ij(T )jxh

�
and E

�
Rhi (T )jxh

�
are the conditional expectation of the number

of transitions from rating grade i to rating grade j and the conditional expectation
of the total amount of time in rating grade i, given a discrete time observation
xh, respectively. Hence, the intractable part of the algorithm is the computation
of E

�
Nh
ij(T )jxh

�
and E

�
Rhi (T )jxh

�
in (3.5) in the E-step. Let xh(tn+1) and xh(tn)

denote the rating grade observed at tn+1 and tn for each obligor h, respectively. The
Markov property allows us to have

E
�
Rhi (T )jxh

�
=

T�1P
n=1

E
�
Rhi (�t)jXh(tn+1) = x

h(tn+1); X
h(tn) = x

h(tn)
�

and

E
�
Nh
ij(T )jxh

�
=

T�1P
n=1

E
�
Nh
ij(�t)jXh(tn+1) = x

h(tn+1); X
h(tn) = x

h(tn)
�
:

Thus, the computation of E
�
Rhi (T )jxh

�
and E

�
Nh
ij(T )jxh

�
is reduced to the cal-

culation of the conditional expectation over the interval between tn and tn+1. Let
ei be a K vector of zeros with one in position i. Then, for each obligor and for each
interval, we have

E
�
Rhi (�t)jXh(tn+1) = x

h(tn+1); X
h(tn) = x

h(tn)
�

=
1

D
� eTxh(tn)

�Z tn+1

tn

exp((s� tn)Q)(eie
T
i ) exp((tn+1 � s)Q)ds

�
exh(tn+1)

(3.6)
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and

E
�
Nh
ij(�t)jXh(tn+1) = x

h(tn+1); X
h(tn) = x

h(tn)
�

=
1

D
� eTxh(tn)

�
qij

Z tn+1

tn

exp((s� tn)Q)(eie
T
j ) exp((tn+1 � s)Q)ds

�
exh(tn+1)

(3.7)

where

D = eTxh(tn) exp((tn � tn+1)Q)exh(tn+1):

See Appendix B for a brief exposition, based on the result by Asmussen et al.
(1996), on the derivation of (3.6) and (3.7). The key numerical procedure here is
the calculation of the integrals of matrix exponentials in the expectations. There are
several options available for the computation. Asmussen et al. (1996) use the Runge-
Kutta algorithm to solve a system of matrix-valued di¤erential equations for (3.6)
and (3.7), while Bladt and Sørensen (2005) employ the uniformization approach for
computing the integrals. In control theory, the calculation of the augmented matrix
exponentials, proposed by van Loan (1978), is usually selected for these computa-
tional problems. We applied the uniformization method and the approach provided
by van Loan to several simulated samples and con�rmed that both of the methods
generate the same default probabilities at the level of the displayed �gures in this
paper. The next empirical section provides empirical results based on van Loan�s ap-
proach. Appendix C also provides details of the computation of integrals of matrix
exponentials.
The procedures of the EM algorithm are summarized as follows:

1. LetQ0 be the a matrix with the initial generator matrix. SetQk = Q0 initially.
2. Calculate (3.6) and (3.7) for all the obligors in the portfolio over each interval,
up to T .

3. Calculate ~qij =
E[Nij(T )jxobs]
E[Ri(T )jxobs] to obtain a new

~Q. Then, set Qk = ~Q and go to
2.

4. Iterate 2.� 3. until the convergence of the likelihood function is achieved.

3.4. Markov Chain Monte Carlo Estimation

Markov Chain Monte Carlo (MCMC) estimation approximates the posterior dis-
tribution for parameters � or latent variables Y , given observations X, through
samples obtained by generating a sequence of Markov chain

�
�(g); Y (g)

	G
g=1

from
the posterior distribution p(�; Y jX). Without any optimization, one can estimate
variables of interests by summarizing the statistics of these simulated samples. For
example, the posterior mean estimate of f(�; Y ) de�ned by
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E [f(�; Y ) j X] =
Z
f(�; Y )p(�; Y jX)d�dY

is obtained as
1

G

PG
g=1 f(�

(g); Y (g)):

Note that using the Bayes rule we can factorize the posterior distribution into
the components as

p(�; Y jX) / p(Xj�; Y )p(Y j�)p(�)

where p(�) is the prior distribution of parameters. Here, we may �nd one of the
advantages of the MCMC in the presence of a prior distribution. The prior distri-
bution allows us to impose economic or statistical constraints on the inferences of
the parameters. This means that in the context of estimating a generator matrix,
positivity conditions can be easily imposed on qij by choosing the appropriate p(Q).
Hence, for the estimation, the key issues are the choice of a prior distribution

p(Q) and the method used to generate the sequence
�
Q(g); X(g)

	G
g=1
, from the high-

dimensional joint posterior distribution conditional on partial observations X = x.
Bladt and Sørensen (2005) propose Gibbs sampling for generating the sequence.
Speci�cally, given an initial Q(0), the Gibbs sampler proceeds as:

1. Draw X(1) � p(XjQ(0); x)
2. Draw Q(1) � p(QjX(1); x)
� � � � � �

The iteration of this sampling process generates a sequence
�
Q(g); X(g)

	G
g=1
,

which converges to p(Q; Xjx). For the choice of p(Q), Bladt and Sørensen (2005)
propose a gamma distribution given by

p(Q) /
KQ
i=1

Q
j 6=i
q
�ij�1
ij e�qij�i (3.8)

where �ij > 0; i; j 2 S and �i > 0; i 2 S are the constant values provided exoge-
nously. Thus, we have qij � �(1=�i; �ij), where the mean and variance are given by
�ij
�i
and �ij

�2i
respectively. Since the likelihood function for the complete data is given

as (2.9), the posterior distribution of Q is written as

p(QjX;x) = p(QjX)
/ p(Q)p(XjQ)

=
KQ
i=1

Q
j 6=i
q
Nij(T )+�ij�1
ij e�qij(Ri(T )+�i):
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Note that the posterior distribution ofQ also follows a gamma distribution, which
makes the drawing Q(i) � p(QjX(i); x) tractable. As for the drawing of the Markov
process X(i+1) � p(XjQ(i); x), Bladt and Sørensen (2005) suggest that a simple
rejection sampling can be applied as follows: First, obtain the sample of holding time
Sk by drawing from fk = qk exp (�qk�t), where �t(= tn � tn�1) is the equidistant
observation interval. If tn�1 + Sk < tn, then let the process make a transition to
another rating grade with the probability of qkj=qk. Continue this procedure until
the process reaches an observed rating grade by time tn�1+�t (otherwise the sample
is rejected). If the sample is accepted, obtain the records for the holding time and
the number of transitions by time tn�1 + �t. Continue this procedure until all the
other observed transitions from time tn�1 to tn are realized. Then repeat the same
simulation from time tn to tn+1. Thus, thanks to the Markov property, we can
implement the simulation on an interval-by-interval basis3 .

Following Bladt and Sørensen (2005), we summarize the procedures of the MCMC
approach as follows:

1. Construct the initial Q by drawing qij from �(1=�i; �ij) for j 6= i.
2. Simulate a continuous time Markov chain X(t) with the generator matrix Q
such that all the observations over each interval �t are realized. Repeat this
simulation up to time T .

3. Calculate the statistics ~Nij(T ) and ~Ri(T ) from the accepted samples in 2:
4. Construct a new Q by drawing qij from �(1=( ~Ri(T ) + �i); ~Nij(T ) + �ij).
5. Iterate 2: � 4: up to G times. Then, summarize the statistics of interests fromn

q
(g)
ij

oG
g=1

:

4. NUMERICAL STUDIES

This section explores statistical di¤erences of the �ve competing methods through
Monte Carlo experiments and their practical impact on real banking applications. An
empirical generator matrix for Japanese corporations is also provided. The following
notation is used throughout the section:

� a prespeci�ed true generator matrix: Q
� an estimate of Q by the DA method: ~QDA

� an estimate of Q by the WA method: ~QWA

� an estimate of Q by the QOG method: ~QQOG

� an estimate of Q by the EM algorithm: ~QEM

� an estimate of Q by the MCMC: ~QMC

Also, let P(Q) denote the matrix exponential of Q (hence, P(Q) = exp(Q)).
3The author thanks Mogens Bladt for recognizing this point.
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4.1. Monte Carlo Experiments

4.1.1. Procedures

We assume that a true generator matrix Q is given to us as follows.

Aaa Aa A Baa Ba B Caa D

Aaa ­0.071371 0.065881 0.005490 0.000000 0.000000 0.000000 0.000000 0.000000

Aa 0.008506 ­0.123337 0.114831 0.000000 0.000000 0.000000 0.000000 0.000000

A 0.000600 0.033012 ­0.117043 0.080430 0.003001 0.000000 0.000000 0.000000

Baa 0.001469 0.000734 0.088133 ­0.163046 0.067569 0.004407 0.000734 0.000000

Ba 0.000000 0.000000 0.009159 0.184699 ­0.293077 0.096166 0.003053 0.000000

B 0.000000 0.000000 0.002280 0.014822 0.093489 ­0.246265 0.124273 0.011401

Caa 0.000000 0.000000 0.000000 0.000000 0.000000 0.120209 ­0.540939 0.420730

D 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 2: True generator matrix Q for the Monte Carlo experiments

This generator matrix is taken from the paper by Christensen, Hansen and Lando
(2004), which provides an empirical generator matrix based on the continuously
observed rating data (hence, the complete data) for senior unsecured debt issues in
the United States4 . The observation period for the above generator matrix is from
the 1st of January 1995 to the 31st of December 1999, based on �Moody�s Corporate
Bond Default Database�. For a description of the data, see the original paper.
We create a synthetic migration database by simulating sample paths of a Markov

jump process, given the true generator matrix in Table 2. Considering the limitedness
of internal migration records of individual banks, we set the number of obligors in
each rating grade to be 100. Also, a maturity of sample is set to seven years. Hence,
for each simulation, seven partially observed migrating matrices for 700 obligors are
constructed. The 250 simulations are implemented and the 250 generator matrices
are estimated from the simulated seven-year annual migration histories for the DA,
the WA, the QOG, the EM algorithm and the MCMC.
For the MCMC, 10,000 intensity matrices, including a burn-in period 5of 1,000

iterations, are drawn for each estimation. For the choice of the prior parameters
given in (3.8), we utilize the results of the EM algorithm. Speci�cally, we set �ij to
zero if the ij th elements of the generator matrix, estimated by the EM algorithm,
converge to the value less than 1e-14. Otherwise, �ij is set to 1. Also, �i is set to 1.
Normally, the posterior mean of the distribution is chosen for the point estimate of the
parameters. Instead of the mean estimate, we choose the posterior mode estimate
from the samples of ~qij because the posterior distribution for some parameters is

4To preclude the e¤ect of rounding, diagonal elements are adjusted from the original generator
matrix so that each row adds up to zero.

5The �rst n samples are usually discarded to allow the Markov chain to approach its stationary
distribution. These n values are known as a �burn-in�.
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found to be heavily skewed. To obtain the posterior mode, we use a kernel smoothing
method with the normal kernel function to �nd the density. To restrict the density
to positive values, we apply the logarithmic transform to the samples. The density
is evaluated at 100 equally-spaced points.
We provide some examples of the estimated generator matrix before analyzing

the results. Table 3 shows a set of the 250th estimates for the generator matrix
obtained by the �ve estimation methods.

Q* DA =

Aaa Aa A Baa Ba B Caa D

Aaa ­0.067939 0.062851 0.005087 0.000000 0.000000 0.000001 0.000000 0.000000

Aa 0.006932 ­0.139647 0.132640 0.000000 0.000051 0.000024 0.000000 0.000000

A 0.002164 0.031909 ­0.121346 0.086827 0.000413 0.000000 0.000032 0.000000

Baa 0.002630 0.001270 0.091054 ­0.180665 0.082242 0.003469 0.000000 0.000000

Ba 0.000000 0.000000 0.000000 0.211340 ­0.315921 0.103667 0.000000 0.000914

B 0.000006 0.000000 0.004982 0.000000 0.117700 ­0.302074 0.179387 0.000000

Caa 0.000000 0.000008 0.000000 0.000222 0.000000 0.150542 ­0.611930 0.461158

D 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Q* WA =

Aaa Aa A Baa Ba B Caa D

Aaa ­0.067859 0.062777 0.005081 0.000000 0.000000 0.000001 0.000000 0.000000

Aa 0.006785 ­0.136673 0.129815 0.000000 0.000049 0.000024 0.000000 0.000000

A 0.002162 0.031870 ­0.121197 0.086720 0.000413 0.000000 0.000032 0.000000

Baa 0.002629 0.001270 0.091009 ­0.180577 0.082202 0.003467 0.000000 0.000000

Ba 0.000000 0.000000 0.000000 0.205863 ­0.307734 0.100981 0.000000 0.000890

B 0.000006 0.000000 0.004905 0.000000 0.115882 ­0.297409 0.176616 0.000000

Caa 0.000000 0.000008 0.000000 0.000221 0.000000 0.149948 ­0.609515 0.459339

D 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Q* QOG=

Aaa Aa A Baa Ba B Caa D

Aaa ­0.067833 0.062798 0.005034 0.000000 0.000000 0.000000 0.000000 0.000000

Aa 0.005016 ­0.135739 0.130723 0.000000 0.000000 0.000000 0.000000 0.000000

A 0.002111 0.031856 ­0.121101 0.086774 0.000360 0.000000 0.000000 0.000000

Baa 0.002601 0.001241 0.091024 ­0.180519 0.082213 0.003439 0.000000 0.000000

Ba 0.000000 0.000000 0.000000 0.206324 ­0.304976 0.098652 0.000000 0.000000

B 0.000000 0.000000 0.002686 0.000000 0.115404 ­0.295181 0.177091 0.000000

Caa 0.000000 0.000000 0.000000 0.000000 0.000000 0.149015 ­0.608646 0.459631

D 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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Q* EM =

Aaa Aa A Baa Ba B Caa D

Aaa ­0.067778 0.062904 0.004874 0.000000 0.000000 0.000000 0.000000 0.000000

Aa 0.006925 ­0.133669 0.126744 0.000000 0.000000 0.000000 0.000000 0.000000

A 0.002173 0.031864 ­0.116871 0.082627 0.000206 0.000000 0.000000 0.000000

Baa 0.002442 0.001140 0.087266 ­0.176067 0.082361 0.002858 0.000000 0.000000

Ba 0.000000 0.000000 0.000000 0.200875 ­0.294905 0.094030 0.000000 0.000000

B 0.000000 0.000000 0.003981 0.000000 0.110317 ­0.278473 0.164174 0.000000

Caa 0.000000 0.000000 0.000000 0.000000 0.000000 0.143990 ­0.598919 0.454929

D 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Q* MC =

Aaa Aa A Baa Ba B Caa D

Aaa ­0.066968 0.061980 0.004988 0.000000 0.000000 0.000000 0.000000 0.000000

Aa 0.007334 ­0.135485 0.128151 0.000000 0.000000 0.000000 0.000000 0.000000

A 0.002255 0.030827 ­0.115493 0.081752 0.000659 0.000000 0.000000 0.000000

Baa 0.002190 0.001284 0.085048 ­0.173103 0.081350 0.003231 0.000000 0.000000

Ba 0.000000 0.000000 0.000395 0.199069 ­0.294236 0.094772 0.000000 0.000000

B 0.000000 0.000000 0.003209 0.000545 0.105667 ­0.271037 0.160036 0.001581

Caa 0.000000 0.000000 0.000000 0.000000 0.001023 0.143992 ­0.585474 0.440458

D 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 3: The 250th estimates of a generator matrix based
on the DA, the WA, the QOG, the EM and the MCMC

We provide typical example graphs for the estimated posterior density, correlo-
gram and sample path by the MCMC. Figure 1 presents the graphs of ~q12, ~q13, ~q31and
~q35 with respect to the same 250th estimated generator matrix.
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Figure 1: Examples of the posterior distribution, correlogram
and sample paths of ~q12, ~q13, ~q31and ~q35

The distributions of some parameters are heavily skewed. This is especially the
case with the ~q35, where the peak of the distribution is barely found near zero. This
implies that the di¤erence between the posterior mean estimate and the posterior
mode estimate is not negligible in this test. Note that none of the �gures of correlo-
gram and sample paths show any alarming pathology in the sampling.

4.1.2. Di¤erence by Default Probabilities

Default probabilities can be calculated using the matrix exponentials. We �rst
examine descriptive results of the Monte Carlo experiments. Table 4 shows the aver-
age of one-year default probabilities based on the 250 simulations. Table 5 provides
the mean di¤erence of the default probabilities based on the full set of 250 estimates.

23



DA WA QOG EM MCMC

Aaa 0.0000200 0.0000196 0.0000028 0.0000022 0.0000017

Aa 0.0003564 0.0003484 0.0000643 0.0000550 0.0000443

A 0.0035477 0.0035090 0.0016666 0.0014105 0.0011234

Baa 0.0394906 0.0390563 0.0298908 0.0260767 0.0206377

Ba 0.2353155 0.2308084 0.1754193 0.1476192 0.1293078

B 2.7628071 2.6962556 2.7124158 2.4275994 2.3806991

Caa 34.0043320 33.8769068 33.9248198 32.9734381 32.5564478

P(Q)

Aaa 0.0000011

Aa 0.0000185

A 0.0006722

Baa 0.0208731

Ba 0.1605010

B 3.0429080

Caa 32.6242442

Table 4: Mean estimates of default probabilities (%)

DA WA QOG EM MCMC

Aaa -0.0000189 -0.0000185 -0.0000017 -0.0000011 -0.0000006

Aa -0.0003380 -0.0003299 -0.0000458 -0.0000365 -0.0000259

A -0.0028754 -0.0028367 -0.0009943 -0.0007382 -0.0004511

Baa -0.0186175 -0.0181832 -0.0090178 -0.0052037 0.0002354

Ba -0.0748145 -0.0703074 -0.0149183 0.0128819 0.0311932

B 0.2801009 0.3466523 0.3304921 0.6153086 0.6622089

Caa -1.3800878 -1.2526625 -1.3005755 -0.3491938 0.0677965

Table 5: Mean di¤erences of the default probabilities
with respect to P(Q) (%)

Looking at the di¤erence in Table 5, we �nd that the MCMC gives the lowest
errors in the rating grades except Ba and B. The EM and the QOG rank second and
third respectively in the rating grades from Aaa to Baa. The results of the DA and
the WA have the worst and the second worst errors respectively in the rating grades
from Aaa to Ba. In summary, with respect to investment grades (i.e. from Aaa to
Baa), we can rank the �ve methods in the order of the MCMC, the EM, the QOG,
the WA and the DA. However, the descriptive results in the non-investment grade
are still mixed.
To make a more clear evaluation of these estimated default probabilities, we then

implement a bootstrapping simulation to derive the con�dence intervals of default
probabilities, given the true Q. We thereby examine whether the default probabil-
ities in Table 4 are statistical distinguishable from the true probabilities of default.
Generating a history of the rating process for a continuous time Markov chain is car-
ried out by random sampling from the exponential and the multinomial distributions.
The initial distribution of obligors and the simulation horizon for the bootstrapping
simulation are the same as those for the creation of the synthetic migration data. The
100,000 bootstrapping simulations are carried out. The procedures for bootstrapping
are summarized as follows:
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1. Generate the histories of all the obligors for a horizon, which follows a contin-
uous time Markov chain.

2. Calculate the statistics ~Nij(T ) and ~Ri(T ) and estimate ~Q from the estimator
given in (2.11).

3. Compute P(~Q) to derive the default probabilities of the non-default rating
grades.

4. Iterate 2: � 4:up to the number of simulations.

Figure 2 shows the bootstrapped distribution of default probabilities for Aaa and
Caa as an example. Table 6 provides the resulting con�dence interval of default
probabilities from the bootstrapped distributions.

Figure 2: Bootstrapped distribution of default probability
for Aaa and Caa

Critical Value (5%)

lower bound upper bound

Aaa 0.00000012 0.0000039

Aa 0.0000033 0.0000530

A 0.0001393 0.0018182

Baa 0.0038980 0.0610191

Ba 0.0833848 0.2684161

B 2.1646062 4.1133453

Caa 28.0858111 37.7123761

Critical Value (1%)

lower bound upper bound

Aaa 0.00000006 0.0000056

Aa 0.0000022 0.0000704

A 0.0000930 0.0023687

Baa 0.0026707 0.0783694

Ba 0.0683690 0.3106287

B 1.9310066 4.4845520

Caa 26.7377488 39.4521377

Table 6: Con�dence interval of default probabilities (%)

Most striking is the statistical result with respect to the MCMC. Its mean default
probabilities of the non-default rating grades are all within the con�dence intervals.
In contrast, the mean default probabilities of Aaa, Aa and A with respect to the DA
and the WA methods are all above the upper bound with a critical value of 1%. In
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other words, it can be stated with 99% con�dence that the default probabilities with
respect to the DA and the WA for these rating grades are �too large�from the true
ones. As for the EM algorithm and the QOG, the null hypothesis is rejected with
regard to Aa at a critical value of 5%.
There are two main points we can take from these results: First, the MCMC

may be the best performer to capture investment grade default probabilities in the
�nite-sample setting. Second, the DA and the WA may create a signi�cant deviation
in the estimated default probabilities of investment grades, considering their poor
�nite-sample performances regarding Aaa, Aa and A. The evaluation of the test
result between the EM algorithm and the QOG is still di¢ cult, although the result
implies that the two methods are more accurate then the DA and the WA and are less
precise than the MCMC in terms of estimating investment grade default probabilities.
To further investigate the statistical di¤erence between these methods, we employ
another measure for evaluating the competing methods in the next test.

4.1.3. Di¤erence by the L1 and Singular Value Decomposition Metrics

The di¤erence by default probability is not necessarily a su¢ cient indicator for
the comparison of competing methods because we are dealing with a �matrix�, not
a scalar. Special measures are required to examine how the estimated generator
matrix di¤ers from the true one. We employ the following two metrics to measure
the distance between two di¤erent transition matrices A = faijg and B = fbijg, for
i; j 2 K.

DL1(A;B) =
1

K2

P
i;j

jaij � bij j ; DSvd(A;B) =MSvd(A)�MSvd(B);

where MSvd(~P) =

PK
i=1

q
�i(~PT ~P)

K
; ~P = P� I:

DL1 may be intuitively easier to understand since it measures the distance by the
mean absolute di¤erence between the elements of the transition matrices. In con-
trast, DSvd, developed by Jafry and Schuermann (2004), is a singular-value-based
metric focusing on the mobility matrix ~P. The authors explain that MSvd(~P) is
identical to the average probability of migration, if there is such an average proba-
bility constant across all possible states. According to their empirical studies, DSvd
is more appropriate in measuring the di¤erence of the transition matrices than other
ordinary metrics since it captures the o¤-diagonal di¤erences better.
In order to make statistical tests with these metrics, we again implement a boot-

stapping simulation to derive the distribution of the two distance metrics between
P(Q) and P(~Q). The 100,000 simulations are carried out in the similar way as be-
fore. Figure 3 shows the bootstrapped distribution for the DL1 and DSvd metrics.
Table 7 and Table 8 provide the con�dence interval for the DL1 metric and the one
for the DSvd metric, respectively
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Figure 3: Bootstrapped distribution of the DL1 and the DSvd distance
metrics between P(Q) and P(~Q)

upper bound

Critical Value (0.05) 0.0046

Critical Value (0.01) 0.0052

Table 7: Con�dence intervals of DL1 distance
between P(Q) and P(~Q)6

lower bound upper bound

Critical Value (0.05) -0.0127 0.0110

Critical Value (0.01) -0.0166 0.0146

Table 8: Con�dence intervals of DSvd distance
between P(Q) and P(~Q)

Now we can evaluate the mean distance metrics between the true P(Q) and the
�ve estimation methods. Table 9 provides the distance metrics of the �ve estimation
methods based on the 250 simulations.

DA WA QOG EM MCMC

DL1 0.00493 0.00472 0.00471 0.00422 0.00404

DSvd -0.01429 -0.01278 -0.01234 -0.00805 -0.00549

Table 9: Averages of the two distance metrics with respect to
P(Q) based on the full set of 250 samples.

6The con�dence interval for the DL1 metric is expressed in only one direction because it is
non-negative by de�nition.
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Remarkably, both of the distance metrics regarding the MCMC and the EM
algorithm are well within the con�dence levels. This implies that the MCMC and the
EM algorithm are likely to generate statistically indistinguishable transition matrices
from the true P(Q). Moving on to the comparison of the rest of the methods, with
respect to the DA and the WA method, the null hypothesis is rejected at a critical
value of 5% for both the DL1 distance and the DSvd distance. Interestingly, the null
hypothesis regarding the QOG is also rejected at a critical value of 5 % for the DL1
distance, implying that the elements in the generator matrix by the QOG may be
more biased than those estimated by the EM algorithm or the MCMC.
On balance, the test results almost parallel with those given in the di¤erence

by default probability. Thus, the DA and the WA method clearly underperform
the other methods, while the MCMC again gives the most accurate performance of
all. As for the DL1 distance, the QOG generates a larger deviation than the EM
algorithm and the MCMC. Hence, the main point from the statistical results in this
section is that we can rank the small-sample performances of the �ve methods in
the order of the MCMC, the EM, the QOG, the WA and the DA. In particular,
the statistical results substantially di¤er between the �rst three methods and the
latter two methods. This is not surprising because the DA and the WA method lack
norm or optimality in their algorithm as mentioned earlier. The result that the QOG
slightly underperforms the EM algorithm and the MCMC is not necessarily a puzzle
as well. Since the nature of the QOG is ��tting�, not �statistical inference�after all,
it can be expected that the possibility of �over-�tting�makes the QOG more subject
to the variability of the �nite-sample data than the EM algorithm and the MCMC.

4.1.4. Relevance to Risk Management

To illustrate the economic relevance of the statistical results in this section, we
investigate the impact of the biases in the estimation of investment grade default
probabilities on the loss calculation with respect to economic capital. Speci�cally,
given a hypothetical credit portfolio and prespeci�ed true parameters, we implement
a simulation exercise to examine how much the economic capital based on parameters
yielded by the �ve estimation methods deviate from the economic capital based on
the true parameters. The economic capital is the amount of capital that banks and
insurance companies set aside for a bu¤er against potential losses from their business
activities and is usually de�ned as the �-quantile of a portfolio�s loss distribution
minus its expected loss. In deriving a loss distribution, we employ the so-called one-
factor asset value model with the assumption that asset correlation is the same across
all the obligors in the portfolio.
For the construction of a hypothetical investment grade portfolio, we utilize the

work of Gordy (2000), in which several exemplary banking loan distributions are
provided based on internal Federal Reserve Board surveys of large banking orga-
nizations. To focus the issue of LDPs, we modify the setting of Gordy (2000) by
excluding Ba, B, and Caa from the loan sample so that the hypothetical portfolio is
composed of investment grade loans. The resulting distribution of obligors for the
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portfolio is given in Table 10. The loan size of any single obligor is assumed to be
the unit and the loss given default is set to 45% for every exposure.

Aaa Aa A Baa

191 295 1463 1896

Table 10: Sample distribution of obligors for a hypothetical
investment grade portfolio

In the asset value model, di¤erences of the default probabilities may have a sig-
ni�cant impact on the loss distribution by a¤ecting the value of default thresholds
and asset correlation. For the default threshold, note that an ordinary calibration
method for a default threshold for rating grade k is given as

�k = �
�1(pk) k = 1; :::;K

where pk is an unconditional default probability of rating grade k and ��1(�) is
the inverse of the cumulative normal distribution function. Hence, biases in the
estimation of a default probability lead to those in the default threshold. Table 11
shows the default thresholds calculated using the default probabilities in Table 4.

DA WA QOG EM MCMC

Aaa -5.0691 -5.0725 -5.4286 -5.4716 -5.5169
Aa -4.4898 -4.4947 -4.8420 -4.8728 -4.9152
A -3.9731 -3.9757 -4.1494 -4.1875 -4.2388
Baa -3.3563 -3.3594 -3.4326 -3.4694 -3.5318

P(Q)

-5.5909
-5.0842
-4.3527
-3.5288

Table 11: Default thresholds based on the default
probabilities in Table 4.

For the asset correlation, to be sure, a usual practice is to employ equity return as
its proxy. A number of empirical studies, however, report that the equity correlation
may be a poor proxy of the asset value model (See De Servigny and Renault (2002)
and Zeng and Zhang (2002)). In contrast, recent studies suggest the use of maximum
likelihood estimation to back out the asset correlation from the default (panel) data
(See Gordy and Heitfeld (2002), Düllmann and Scheule (2003) and Demey et al.
(2004)). In the normal maximum likelihood estimation for the asset correlation,
the likelihood function contains default thresholds as cardinal inputs. To clarify this
point, consider a likelihood function under the assumption of a homogeneous portfolio
with K rating grades, given T observations of default data. Let mk;j and dk;j denote
the number of obligors and defaults at rating grade k at time j, respectively. Also,
let pC(�k; �) denote a conditional default probability for an obligor in rating grade
k which is given as

pC(�k; �) = �

�
�k �

p
�Zp

1� �

�
;
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where Z is a common, standard normally distributed factor Z. Then, the log-
likelihood function for the asset correlation is given as

Lj(�) =
TX
j

log

Z 1

�1

KQ
k=1

�
mk;j

dk;j

�
pC(�k; �)

dk;j (1� pC(�k; �))mk;j�dk;j�(z)dz: (4.1)

Thus, the likelihood is a function of default thresholds and the di¤erence of their
values may also in�uence the maximum likelihood estimator of the asset correlation
to a signi�cant degree7 . Hence, the following simulation exercises cover two cases.
In the �rst case, the asset correlation is exogenously set to 0.258 . Di¤erences of
default thresholds only matter in this case. Another case is to employ the maximum
likelihood estimator of the asset correlation obtained through (4.1) using di¤erent
thresholds from the DA, the WA, the QOG, the EM algorithm, and the MCMC.
To capture the average estimates, a set of synthetic default data is simulated 250
times by setting the true default thresholds to be those of P(Q) and the true asset
correlation to be 0.25. Unlike the case of estimating default probabilities, here we
create a larger synthetic database (consider, for example, external databases from
rating agencies mapped to internal default records) because utilizing an internal
rating data for estimating the asset correlation seems still inconceivable in real ap-
plications. Speci�cally, we set a sample of maturity to be T = 20 years and the
total number of observed �rms for Aaa, Aa, A and Baa at each year t to be 100,
300, 800 and 1500, respectively. A standard Gaussian quadrature is applied to the
numerical integration for the maximization of (4.1). Table 12 shows a summary of
the averages of the maximum likelihood estimator of the asset correlation based on
the 250 simulations. Not surprisingly, the mean estimates from the DA reveals the
largest deviation from the true �, while the value from the MCMC is well estimated,
closest to 0.25.

DA WA QOG EM MCMC

Mean estimates ~� 0.384 0.382 0.327 0.301 0.261
~� / True � (0.25) 154% 153% 131% 120% 104%

Table 12: Averages of the estimated asset correlation
based on the 250 simulations

7 It is possible to estimate the threshold �k and the asset correlation � jointly. However, unless it
is assumed that all �rms in the sample have a single default probability, the increase in the number
of parameters to be estimated may discourage practitioners to adopt the joint estimation. In this
regard, the past empirical studies assume the existence of a single default probability for the whole
portfolio in the case of the joint estimation (See Gordy and Heitfeld (2002) and Demey et al.(2004)).

8According to the empirical study by Bluhm and Overbeck (2003) based on the unsmoothed
Moody�s corporate bond dafault data, the asset correlation in investment grades were found to
range from 15.95% to 31.5%. We set the true asset correlation to be 0.25 (25%) based on these
results.
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We generate a loss distribution of the portfolio with 500,000 simulations for the
�ve methods and the true parameters. The table 13 shows a summary of the com-
puted economic capitals of the �rst case where the asset correlation is equally set
to 0.25. �True E.C.�denotes the economic capital using the true default thresholds
and the true asset correlation.

DA WA QOG EM MCMC

Econ. Capital (99%) 5.04 5.05 3.79 3.37 2.97
E.C. (99%) / True E.C. <2.97> 170% 170% 128% 114% 100%

DA WA QOG EM MCMC

Econ. Capital (99.9%) 17.19 17.20 13.69 11.92 10.17
E.C.(99.9%) / True E.C.<10.17> 169% 169% 135% 117% 100%

Table 13: Computed economic capitals of the �rst case.

A special attention should be paid here to the magnitude of the di¤erences
of economic capitals yielded by the �ve methods. Remarkably, the level of eco-
nomic capital involving the MCMC is the same as the true economic capital, re-
gardless of the con�dence levels. In contrast, the economic capitals involving the
DA and the WA are almost 70% larger than the true value at both the 99% and
the 99.9% con�dence level. Even with respect to the QOG, its magnitude of the
di¤erence from the true value amounts to nearly 30% at the 99% con�dence level.

DA WA QOG EM MCMC

Econ. Capital (99%) 6.39 6.39 4.68 3.82 2.97
E.C. (99%) / True E.C. <2.97> 215% 215% 158% 129% 100%

DA WA QOG EM MCMC

Econ. Capital (99.9%) 31.59 31.14 19.53 15.97 11.07
E.C.(99.9%) / True E.C.<10.17> 311% 306% 192% 157% 109%

Table 14: Computed economic capitals of the second case

Table 14 shows a summary of the computed economic capitals of the second
case in which the asset correlations in Table 12 are applied. Not surprisingly, the
di¤erences become even more signi�cant, due to the biases in the estimation of the
asset correlation. The economic capitals based on the DA and the WA are twice larger
and three times larger than the true value at the 99% and the 99.9% con�dence level
respectively. The economic capital involving the QOG almost doubles the true value
at the 99.9% con�dence level. Even with respect to the EM algorithm, its magnitude
of the di¤erence of economic capital amounts to nearly 60%. In contrast, the MCMC
shows only the 9% di¤erence from the true economic value at the 99.9% con�dence
level.
Although the results are still case-speci�c, it can be safely said that the di¤erences

in the estimation methods of a generator matrix have the potential to a¤ect the level
of a loss distribution and the resulting economic capital for the investment grade
portfolio.
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4.2. The Generator Matrix for Japanese Corporations

Finally, we provide an empirical study based on the annual transition data of
Japanese corporations. The migration data is taken from Rating and Investment
Information, Inc.�s (R&I) public database. The sample period is from 1991 until
2000. The rating information for the categories �Non-Rated�and �Lost�are discarded
from our database. Because the records of transitions involving �CCC/C�are not
included in the selected sample period, the category �CCC/C� is omitted in the
database (hence, the size of the data matrix here is 7� 7). The MCMC is applied to
the estimation of the generator matrix, based on the same procedure in the section of
the Monte Carlo experiments. Then, point estimates of one-year default probability
are determined and a bootstapping simulation is carried out to obtain the upper
bounds of the default probability for the given estimated generator matrix.
For the comparison, we �rst provide one-year default probabilities based on the

ordinary cohort-based matrix in Table 14.

Cohort-based

AAA 0.000000

AA 0.000000

A 0.038895

BBB 0.109449

BB 2.173913

B 17.500000

Table 14: Default probabilities based on the cohort method (%)

Note that the estimates include zero values for default probability in the two
highest rating grades. Table 15 shows the estimated generator matrix ~QMC by the
MCMC method. Table 16 provides the point estimate of one-year default probabili-
ties, together with their upper bounds based on the 95% and the 99% quantiles from
the 100,000 bootstrapping simulations.

AAA AA A BBB BB B D

AAA ­0.1069178 0.1069178 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

AA 0.0009415 ­0.0909755 0.0898465 0.0001875 0.0000000 0.0000000 0.0000000

A 0.0000000 0.0124148 ­0.0776680 0.0647725 0.0000811 0.0000000 0.0003996

BBB 0.0000000 0.0001995 0.0335721 ­0.0823580 0.0481388 0.0000922 0.0003555

BB 0.0000000 0.0000000 0.0000000 0.0664727 ­0.1189581 0.0340593 0.0184261

B 0.0000000 0.0000000 0.0000000 0.0338534 0.0253521 ­0.2593532 0.2001477

D 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Table 15: Estimated empirical generator matrix ~QMC by the MCMC method,
based on the R&I database from 1991 to 2000
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Point Estimate Upper bound (95%) Upper bound (99%)

AAA 0.000061 0.000185 0.000266

AA 0.001760 0.005092 0.006953

A 0.040626 0.115069 0.153956

BBB 0.082000 0.150236 0.186805

BB 2.040510 2.891271 3.289120

B 17.654014 25.607993 29.555664

Table 16: Point estimate and upper bounds of the default
probabilities based on the MCMC method (%)

The results of Table 16 are similar to those of Lando and Skødeberg (2002) and
Fuertes and Kalotychou (2005). Non-zero default probabilities are obtained for all the
non-default rating grades. The upper bounds of default probabilities in investment
grades seem reasonable as compared, for example, with those derived by ordinary
binomial methods.

5. CONCLUDING REMARKS

This paper considers the estimation of an empirical generator matrix from dis-
cretely observed rating transitions in search for probabilities of rare default events
in high investment grades. The �ve competing estimation methodologies: diagonal
adjustment, weighted adjustment, quasi-optimization approach, expectation maxi-
mization algorithm and Markov chain Monte Carlo estimation �are investigated in
terms of the accuracy and statistical validity of the estimated default probability
and various matrix norms. The implications for banking risk management are also
explored with a case study regarding economic capital for a hypothetical investment
grade portfolio. The paper then presents an empirical generator matrix based on the
annual transition data of Japanese corporations.
The results of Monte Carlo experiments suggest that the choice of estimation

methodology is likely to signi�cantly a¤ect the resulting default probabilities and the
mobility of a transition matrix. In particular, a generator matrix determined by the
parsimonious DA or WA methods seems to be strongly a¤ected by a deviation arising
from the post-adjustment. The experiments also show that the MCMC is the only
method whose estimated default probabilities and matrix norms are all statistically
indistinguishable from true parameters in the experiments. Hence, as far as the
results here are concerned, we have reached the conclusion that the MCMC method
gives the most accurate �nite-sample performance of all the �ve method. A case
study regarding the economic capital of a hypothetical investment grade portfolio
highlights further di¤erences of these methods. Its result shows that the di¤erent
estimation methods of a generator matrix have the potential to yield signi�cantly
di¤erent estimates of a loss distribution and the resulting economic capital of the
investment grade portfolio.
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The discussions and empirical studies shown in this paper should help practition-
ers realize the value of having high-frequency observations for rating histories. If a
direct estimation based on continuously observed data is possible, one can obtain
exact maximum likelihood estimates very easily without concern for the embeddabil-
ity problem or the existence and uniqueness of the maximum likelihood estimator.
In addition, more information can be e¢ ciently taken into account because even
censored data, such as �non-rated�or �lost�, can be used in the direct estimation of
the generator matrix. In that sense, the methods investigated in this paper should
be regarded as a practical approach for use in the transition period before a more
advanced informational environment is realized for real applications.
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APPENDIX A
ON THE QOG ALGORITHM

We provide a small exposition on the QOG algorithm along the lines of the
argument found in Tuenter (2000). A row of log(~P) is permutated such that a1 �
a2 � : : : � aK . Note that the permutation does not a¤ect the solution in this
problem setting. Let z� denote the optimal solution for (3.3). Let m denote an
index for binding elements in z�i such that z

�
i = 0 for 2 � i � m and otherwise

z�i 6= 0. Also, let = denote an index for the set of binding elements in z�i such that
= = fij2 � i � mg. Using the Lagrange multipliers, we have z�i = ai + �; for i =2 =.
Then, the problem (3.3) can be rewritten as

min (K �m+ 1)�2 +
P

i2= a
2
i

s.t. (K �m+ 1)�+
P

i=2= ai = 0; � � �am
for m 2 f2; : : : ;Kg :

Hence, we have

� = � 1

(K �m+ 1)
�P

i=2= ai
�
: (A.1)

By substituting for �, we can further reduce the above problem to a univariate
problem f(m) de�ned by

min f(m) =
1

(K �m+ 1)
�P

i=2= ai
�2
+
P

i2= a
2
i (A.2)

s.t. (K �m+ 1)am �
�P

i=2= ai
�
� 0 (A.3)

for m 2 f2; : : : ;Kg :
Note that the sequence S(m) = (K �m + 1)am �

�P
i=2= ai

�
is non-decreasing

over m because

S(m)� S(m� 1) = (am � am�1) (K �m+ 2):
The function f(m) is also non-decreasing over m because

f(m)� f(m� 1) = 1

(K �m+ 1)(K �m+ 2) (S(m))
2
:

From these results, one �nds that the solution to (A.2) is the smallest index m�,
which satis�es the condition (A.3). Hence, from (A.1), the solution to the QOG is
given by

z�i=

�
0 if 2 � i � m�

ai � 1
K�m�+1

�P
i=2= ai

�
otherwise

:

37



APPENDIX B
CONDITIONAL EXPECTATION FOR THE EM ALGORITHM

This appendix roughly sketches a derivation for (3.6) and (3.7), based on the
results by Asmussen et al. (1996). We omit the notation h for simplicity in the
following derivation.

B.0.1. Total Amount of Holding Time

Remember that Ri(t) =
R tn+1
tn

1fX(s)=igds is the total time of staying in i during
the observational interval. Let x(tn) and x(tn+1) denote the rating grade observed
at tn and tn+1 respectively: Assuming that the observational interval is a constant
�t over the whole period, under the assumption of a CTMC, we have

E [Ri(�t)jX(tn+1) = x(tn+1); X(tn) = x(tn)]

=

Z tn+1

tn

E
�
1fX(s)=igjX(tn+1) = x(tn+1); X(tn) = x(tn)

�
ds

=

Z tn+1

tn

P (X (s) = i;X(tn+1) = x(tn+1)jX(tn) = x(tn))
P(X(tn+1) = x(tn+1)jX(tn) = x(tn))

ds; (B.1)

where

P(X(tn+1) = x(tn+1)jX(tn) = x(tn)) = eTx(tn) exp(Q�t)ex(tn+1); (B.2)

which can be moved outside the integral (B.1). From the Markov property, we have

Z tn+1

tn

P (X (s) = i;X(tn+1) = x(tn+1)jX(tn) = x(tn)) ds

=

Z tn+1

tn

P (X (s) = ijX(tn) = x(tn))P (X (tn+1) = x(tn+1)jX(s) = i) ds

= eTx(tn)

�Z tn+1

tn

exp(Q(s� tn))eieTi exp(Q(tn+1 � s))ds
�
ex(tn+1):

Hence, we have reached the expression (3.6).

B.0.2. Number of Transitions

Let us discretize each of the intervals by � such that (tn+1�tn)
N = �. Consider the

discretized approximation of the number of transitions from i to j as

Nij(�t) �
N�1P
g=0

1fX(tn+g�)=i;X(tn+(g+1)�)=jg:
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Then, we have

E

"
N�1P
g=0

1fX(tn+g�)=i;X(tn+(g+1)�)=jgjX(tn+1) = x(tn+1); X(tn) = x(tn)
#

=
N�1P
g=0

P(X (tn + g�) = i;X(tn + (g + 1)�) = jjX(tn+1) = x(tn+1); X(tn) = x(tn))

=
N�1P
g=0

P(X (tn + g�) = i;X(tn + (g + 1)�) = j;X(tn+1) = x(tn+1)jX(tn) = x(tn))
P(X(tn+1) = x(tn+1)jX(tn) = x(tn))

:

(B.3)

We already have P(X(tn+1) = x(tn+1)jX(tn) = x(tn)) from (B.2), which can be
moved outside the summation. Let us then consider the rest of the expressions in
(B.3). Based on the Markov property, the summation can be expressed as

N�1P
g=0

P (X (tn + g�) = i;X(tn + (g + 1)�) = j;X(tn+1) = x(tn+1)jX(tn) = x(tn))

=
N�1P
g=0

P(X (tn + g�) = i; jX(tn) = x(tn))P (X(tn + (g + 1)�) = jjX (tn + g�) = i)

�P (X(tn+1) = x(tn+1)jX(tn + (g + 1)�) = j) : (B.4)

For the middle term in last equation of (B.4), by taking the limit as � ! 0, we
have

lim
�!0

P (X(tn + (g + 1)�) = jjX (tn + g�) = i)

= qijdt:

Therefore, for (B.4), we have

lim
�!0

N�1P
g=0

eTx(tn) exp(Q�g�)eiP (J(tn + (g + 1)�) = j; J (tn + g�) = i)

�eTj exp(Q � (tn+1 � (tn + (g + 1)�)))ex(tn+1)

= eTx(tn)

�
qij

Z tn+1

tn

exp(Q(s� tn))(eie
T
j ) exp(Q(tn+1 � s))ds

�
ex(tn+1):

Thus, we have reached the expression (3.7).
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APPENDIX C
COMPUTING INTEGRALS OF THE MATRIX EXPONENTIAL

The seminal paper by Van Loan (1978) shows that the integral of the matrix
exponential can be calculated by considering the augmented matrix as follows�

F11 F12
0 F22

�
= exp

��
A11 A12

0 A22

�
t

�
:

By calculating the exponential of the augmented matrix, we obtain

F11 = exp(A11t); F22 = exp(A22t)

F12 =

Z t

0

exp(A11(t� s))A12 exp(A22s)ds:

Hence, by substituting A11 and A22 with Q, and A12 with (eieTi ) or (eie
T
j ), we

can obtain (3.6) and (3.7). For the proof and the extension, see the original paper.
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