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Abstract 

 
It can be time consuming to evaluate the risk of a large credit portfolio 
with Monte Carlo simulation. This paper introduces a simple yet efficient 
Monte Carlo method where the portfolio is divided into subportfolios of 
obligors with large exposures and those with small exposures. Neglecting 
the idiosyncratic risks in the latter subportfolio, an approximation of 
value-at-risk for the entire portfolio is obtained in a short time. The new 
method is tested using sample portfolios of nongranular 5,000 exposures. 
The technique provides accurate credit value-at-risk with a computation 
time about one-fifteenth of ordinary Monte Carlo simulation. In addition 
to the improved computational efficiency, the method can also be used to 
specify the range of a subportfolio where idiosyncratic risks do not 
contribute to the value-at-risk of the entire portfolio. This may serve as 
important information when senior credit managers review the 
appropriateness and efficiency of internal risk management systems from 
the viewpoint of obligor’s risk contribution. 
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1. INTRODUCTION 

Monte Carlo simulation is widely used to evaluate the risk of credit portfolios, however it is 
generally time consuming. Although the processing power of computers has grown year by year, 
it still takes anywhere from tens of minutes to several hours to calculate the credit value-at-risk 
of Japanese financial institutions. This is because the number of obligors in these credit 
portfolios can reach tens of thousands. This impedes the prompt reevaluation of risks in the 
entire portfolio when a credit manager observes or anticipates large changes in exposure, or 
restricts comparative analysis of the portfolio obtained by repeating Monte Carlo simulations 
with different parameter settings.1 

One way to avoid this drawback of Monte Carlo simulation is to use an analytical solution for 
credit value-at-risk. It is well known that the Asymptotic Single Risk Factor model, which laid 
the foundation of risk weight functions for the internal rating-based approach in Basel II, is the 
analytical expression of value-at-risk using a Merton-type one-factor model assuming that the 
portfolio is infinitely fine grained.2 As for the real-world portfolio with a finite number of 
obligors and a lumpy distribution of exposures, Gordy (2003) introduced the granularity 
adjustment technique and Martin and Wilde (2002) and Canabarro et al. (2003) derived a 
closed-form expression for value-at-risk in the Merton-type one-factor model. Pykhtin (2004) 
proposed an analytical approximation for value-at-risk in the multifactor Merton framework. 
However, these analytical approaches have a shortcoming in that they are not accurate when the 
portfolio is highly concentrated or when the default probabilities or correlations lie close to zero 
as shown in Tasche (2005), Ando (2005) and Higo (2006). Given the present circumstances, 
such analytical approximation does not provide a perfect alternative to Monte Carlo simulation 
methods. 

This paper introduces a hybrid method which incorporates the strong points of both the 
Monte Carlo method and analytical approximation. The sketch of the new method is as follows. 
To start with, the portfolio is divided into two subportfolios, one consisting of larger exposures 
and the other with the remainder. Ordinary Monte Carlo procedures are then used to simulate 
the loss of the former. For the latter subportfolio, the idiosyncratic risks of the obligors are 
neglected and only expected losses conditioned on systemic factors are simulated. If the latter 
subportfolio is close to the infinitely fine-grained portfolio, the sum of the losses of the two 
subportfolios becomes a good proxy for the loss of the entire portfolio. The computational 

                                                        
1 The computational complexity of Monte Carlo simulation does not matter when value-at-risk is 
calculated infrequently, e.g. monthly. However, if a bank aims for active credit portfolio management, 
where the adoption of new trades or dynamic hedging strategies is determined considering the effects on 
the value-at-risk of the entire portfolio, higher-speed technologies are needed.  

2 Basel Committee on Banking Supervision (2005). 



Bank of Japan Working Paper Series No. 06-E-19 

 3

complexity reduces as random variables representing idiosyncratic risk factors are not required 
for the latter subportfolio. The basic idea behind this method is very simple and implementation 
is relatively easy. 

2. BASIC IDEA 

2-1 COMPUTATIONAL COMPLEXITY OF A MONTE CARLO SIMULATION 

This section briefly reviews the computational complexity of a Monte Carlo simulation. We 

consider a portfolio of loans to M  obligors. Let us suppose that the losses on loans are driven 

by a vector of systematic factors { }SXXXX ,,2,1 L
v
=  and a vector of idiosyncratic factors 

{ }Mεεεε ,,, 21 L
v =  for each obligor. In general, idiosyncratic factors εv  are set to be 

independent with each other and also with X
v

. 

Let us evaluate the value-at-risk of this portfolio with a Monte Carlo simulation where the 

number of paths is N . We generate random variables representing correlated systematic factors 
and independent idiosyncratic factors for each path, and then the computational complexity of 

the simulation is ( )( )NMSO ×+2 .3 Since the number of systematic factors S  is fixed once 
one selects a risk model, the computational complexity of a simulation becomes ( )NMO × . 

This means that the time to finish the simulation doubles when the number of obligors M  or 
the number of simulation paths N  is doubled. 

The easiest way to reduce the computational complexity of Monte Carlo simulation is to 

reduce the number of obligors M  or the number of simulation paths N . It does not seem a 
good idea to reduce the number of paths because this will make the result of the simulation 
unstable. The starting point of the method used in this paper is to reduce the number of obligors 

M  instead of N to ease the burden of Monte Carlo simulation. 

 

2-2 EXPOSURE DISTRIBUTION IN REAL-WORLD CREDIT PORTFOLIO 

Chart 1 shows a sample cumulative distribution of exposures in Japanese Banks’ credit 
portfolios.4 The exposures are sorted in descending order of size. Chart 1 plots the cumulative 

                                                        
3 To be precise, we have to consider the complexity of specifying the α  percentile point, where α  is 
confidence level, among N  samples of portfolio loss. For simplicity, this computational complexity is 
omitted in the paper. 

4 The cumulative distribution is an average of ten arbitrarily chosen Japanese banks where the number of 
obligors ranges from about 3,000 to 30,000. The data are from a database in the Financial Systems and 
Bank Examination Department, Bank of Japan. 
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percentage of exposures in total exposure against the cumulative percentage of the number of 
obligors. 

Chart 1. A sample cumulative distribution of credit exposures 
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The chart shows that the largest 30% of obligors constitute more than 90% in total exposure 
and the remaining 70% of obligors make up less than 10% in total exposure. The exposure size 
of each obligor in the latter group is quite small compared with the total exposure. To a greater 
or lesser extent, heterogeneous exposure distributions are widely observed in many Japanese 
banks whose customers range from large companies to individuals. 

It seems a natural idea that the major source of risk in the credit portfolio comes from large 
exposures and small exposures would not contribute very much to the portfolio risk given the 
heterogeneous exposure distribution shown in Chart 1. 

 

2-3 A NONGRANULAR PORTFOLIO CONTAINING AN INFINITELY FINE-GRAINED 
SUBPORTFOLIO 

Let us consider the value-at-risk of a hypothetical portfolio shown in Chart 2, containing an 
infinitely fine-grained subportfolio in which the size of each exposure is negligible. 
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Chart 2. A nongranular portfolio containing an infinitely fine-grained subportfolio 

 

 

 

 

 

 

 

Let n  denote the number of obligors in subportfolio A and m  denote that in subportfolio 

B. The total number of obligors is mnM += . The obligor i  belongs to subportfolio A when 
ni ,,2,1 L=  and belongs to subportfolio B when Mmnnni =+++= ,2,1 L . 

Let us suppose that Assumption 1 is satisfied for the exposures in nongranular subportfolio A. 

0
1

>=
∑ =

iM

i i

i c
EaD

EaD
, where ic  is constant. Assumption 1

Note. iEaD  denotes gross exposure at default of obligor i . 

Assumption 1 means that the n  exposures in subportfolio A always take some positive and 

constant portion among the total exposure of the entire portfolio. Thus, we cannot neglect the 
sizes of exposures in subportfolio A. 

On the other hand, subportfolio B is assumed to be infinitely fine grained and Assumptions 2 
and 3 will be satisfied as ∞→m . 

∞→∑ +

+=

mn

ni iEaD
1

. Assumption 2

There exists 0>ζ  such that 
( )

⎟
⎠
⎞⎜

⎝
⎛= +−

+

+=

+

∑
ζ2

1

1

mO
EaD

EaD
mn

ni i

mn . Assumption 3

Assumptions 2 and 3 are to guarantee that the weight of the largest single exposure in 
subportfolio B vanishes to zero as the number of exposures increases. 

Let iL  denote the gross loss from a loan to obligor i  and ML  denote that of the entire 

Infinitely fine-grained 

subportfolio B 

(# of obligors m) 

Nongranular 

subportfolio A 

(# of obligors n) 

Note. Entire portfolio (subportfolio A plus B) is nongranular. 
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portfolio. ML  is the sum of the loss of subportfolio A denoted by A
nL , and the loss of 

subportfolio B denoted by B
mL . 

∑ =
≡

M

i iM LL
1

  

∑∑ +

+==
+=

mn

ni i
n

i i LL
11

  

B
m

A
n LL += , (1) 

where ∑ =
≡

n

i i
A
n LL

1
 and ∑ +

+=
≡

mn

ni i
B
m LL

1
.  

Let us decompose B
mL  into a systematic component and an idiosyncratic component. The 

systematic component is defined as a conditional expectation of B
mL  on systematic factors X

v
 

and denoted by [ ]XLE B
m

v
.  The idiosyncratic component is the remainder of B

mL  minus 

[ ]XLE B
m

v
. 

[ ] [ ]
44 344 21

v

43421

v

component ticIdiosyncracomponent Systematic

XLELXLELL B
m

B
m

B
m

A
nM −++=  (2) 

Let xv  be the realization of X
v

. We then have Equation 3 given the assumption that the 
subportfolio B is infinitely fine grained.5 

[ ] 0→− xLEL B
m

B
m

v  a.s. as ∞→m . (3) 

Equation 3 means that the idiosyncratic component of B
mL  is diversified away as the number 

of obligors in subportfolio B increases and B
mL  will be dominated only by the systematic 

factors X
v

. With Equations 2 and 3 we have 

                                                        
5 Gordy (2003). 
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[ ] [ ] ⎟
⎠
⎞⎜

⎝
⎛ +−=− xLELLxLEL B

m
A
nM

B
m

B
m

vv  (4) 

[ ] 0→⎟
⎠
⎞⎜

⎝
⎛ +− xLELL B

m
A
nM

v  a.s. as ∞→m . (5) 

Let ( )•αq 6 denote α  percentile of a random variable, then we have 

( ) [ ] 0→⎟
⎠
⎞⎜

⎝
⎛ +− XLELqLq B

m
A
nM

v
αα  as ∞→m . (6) 

The proof is provided in the Appendix.7 Equation 6 means that the α  percentile of loss of this 
portfolio, i.e., value-at-risk at the confidence level α  converges to that of sum of loss of 

subportfolio A and systematic component of subportfolio B as the number of obligors in B goes 
to infinity. In such a condition we will be able to neglect the idiosyncratic component of 
subportfolio B. 

 

2-4 A MEASURE FOR ‘SUFFICIENTLY’ FINE-GRAINED SUBPORTFOLIO 

Though the previous section assumes that the subportfolio B is infinitely fine grained, such a 
portfolio does not exist in the real world. In this section we consider a measure to specify a 
‘sufficiently’ fine-grained subportfolio in a portfolio with a finite number of exposures, which 
serves as a proxy for an infinitely fine-grained subportfolio. 

With regard to subportfolio B, Equation 7 will hold as ∞→m  (at the same time 

∞→M ), given Assumptions 2 and 3 in the previous section.8 

( ) 02

1

1
2

→
∑
∑

+=

+=

M

ni i

M

ni i

EaD

EaD
. (7) 

Let us substitute the denominator of Equation 7 from the square of total exposure of 
subportfolio B to that of the entire portfolio. We then have 

( ) 02

1

1
2

→
∑
∑

=

+=

M

i i

M

ni i

EaD

EaD
 as ∞→M . (8) 

                                                        
6 Refer to the Appendix for the definition of ( )•αq .  

7 Strictly speaking, Equation 6 may not hold if the conditional expectation [ ]XLE B
m

v
 is not a 

continuous function. 
8 See Appendix A in Gordy (2003). 
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Therefore we may use the condition of Equation 9, the sum of exposure weights squared in 
subportfolio, to find a ‘sufficiently’ fine-grained subportfolio B.9 

( ) 0
1

2
2

1

1
2

≈= ∑
∑
∑

+=

=

+= M

ni iM

i i

M

ni i w
EaD

EaD
, (9) 

where 
∑=

= M

i i

i
i

EaD
EaD

w
1

 is an exposure weight of obligor i  to the total exposure. 

It is not yet known how small the sum of exposure weights squared in subportfolio B should 
be to have an accurate approximation for the value-at-risk of the entire portfolio. The following 
sections will test the new Monte Carlo method which divides a portfolio into subportfolio A and 
B and neglects the idiosyncratic risks in the latter (we hereafter call the new method the 
‘segmented Monte Carlo method’). 

The following two sections compare the value-at-risk calculated by the segmented Monte 
Carlo method with the ordinary Monte Carlo method based on the default-mode Merton-type 
credit risk models which are widely used by financial institutions. Section 3 considers the 
one-factor model and the Section 4 deals with the multifactor model. 

 

3. NUMERICAL COMPARISONS ON A MERTON TYPE ONE-FACTOR MODEL 

3-1 MODEL SPECIFICATION AND COMPUTATIONAL COMPLEXITY 

In the Merton type one-factor model, the systematic factor X
v

 is not a vector but a single 
random variable X . The X  and idiosyncratic factors for M  obligors Mεεε ,,, 21 L , 
follow independent standard normal distributions denoted by ( )1,0N . We define iY , the 

corporate value of obligor i , as follows. 

iiii RXRY ε−+≡ 1 , (10) 

where iR  is a correlation coefficient between iY  and X .  

The default event occurs when the iY  dips below a threshold level of ( )iPDN 1− , where 

                                                        
9 Although Equation 7 is followed by Equation 9, the reverse is not always true. However, it can be said 
that the exposures in the subportfolio are quite small compared with total exposure when Equation 9 is 
satisfied. In practice, it would not cause a problem to specify subportfolio B using Equation 9. 
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( )•−1N  is the inverse of the cumulative distribution function of the standard normal 
distribution and iPD  denotes the default probability of obligor i . When obligor i  defaults, 
it is supposed that we will have a gross loss of ii LGDEaD ×  ( iLGD  denotes the loss ratio 
against exposure i  at default).10 iL , the individual gross loss from exposure i , is defined as 

follows. 

( ){ }ii PDNYiii LGDEaDL 11 −<
≡ . (11) 

Let ML  denote the gross loss from a portfolio of M  obligors, ML  is the sum of individual 

iL . 

∑=
≡

M

i iM LL
1

. (12) 

The ordinary Monte Carlo method will generate N  samples of ML  and picks up ( )MLqα , 

α  percentile point of ML , which will be the value-at-risk of this portfolio at confidence level 

α . 

On the other hand, following the previous section we divide the portfolio into subportfolio A 
and B and let ML′  denote a new random variable which is the sum of gross loss from 

subportfolio A and the systematic component of loss from subportfolio B. In the one-factor 
Merton framework, we have 

[ ]XLELL B
m

A
nM +≡′   

[ ]XLEL M

ni i
n

i i ∑∑ +==
+=

11
  

[ ]∑∑ +==
+=

M

ni i
n

i i XLEL
11

  

( ){ }[ ]∑∑ += ≤= −+=
M

ni PDNYii
n

i i XELGDEaDL
ii11 11   

( ){ }∑∑ +=
−

=
<+=

M

ni iiii
n

i i XPDNYLGDEaDL
1

1
1

 Pr   

( ){ }∑∑ +=
−

=
<−++=

M

ni iiiiii
n

i i PDNRXRLGDEaDL
1

1
1

1Pr ε   

( )
∑∑ +=

−

= ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
+=

M

ni
i

ii
ii

n

i i R
XRPDN

NLGDEaDL
1

1

1 1
. (13) 

                                                        
10 For simplicity, the iLGD  is assumed to a fixed, not a random, variable. 
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The segmented Monte Carlo method in the Merton type one-factor model generates the ML′  
according to Equation 13 and picks up ( )MLq ′α , i.e., the value-at-risk of ML′  instead of ML . 

Since 
( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−−

i

ii

R
XRPDN

N
1

1

 in Equation 13 is a function of iPD  and iR , Equation 13 

will be rewritten as follows when the obligors in subportfolio B are segmented into GK ×  
homogeneous groups of iPD  and iR . 

( )( ) ( )
( )

( )
{ }

∑∑ ∑∑
= = ∈

−

= ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
+=′

K

k

G

g gki
ii

n

i
iM LGDEaD

gR
XgRkPDN

NLL
1 1 ,

1

1 1
. (14) 

Note. ( )kPD  and ( )gR  denote the default probability of group k ( )Kk ,,2,1 L=  and 
the correlation of group g ( )Gg L,2,1= , respectively. 

Equation 14 means that if ii LGDEaD × , the gross loss from individual exposure, are 

summed for each homogeneous group, the computational complexity of the segmented Monte 
Carlo method with N  paths will be ( )( )GKnNO ×+× . This is ( ) MGKn ×+  time of 
the ordinary Monte Carlo method of ( )MNO × . When the number of homogeneous groups 

GK ×  is sufficiently smaller than the number of total obligors M , ( ) MGKn ×+  is 
approximately Mn  and therefore the computational complexity of the segmented Monte 

Carlo method is proportional to the ratio of number of obligors in subportfolio A to the total 
number of obligors in the entire portfolio. 

 

3-2 SAMPLE PORTFOLIO 

The number of obligors in the sample portfolio is set at 5,000. The size of the 5,000 
exposures are adjusted such that the cumulative distribution of exposures is the same as that in 
Chart 1, which shows the average distribution of real portfolios for the 10 Japanese Banks. The 
sum of exposures is set at 100 in order to make the numerical comparison easier. 

In order to test the various types of portfolio, six hypothetical cases for the individual default 
probability iPD , loss ratio at default iLGD , and correlation iR  described in Chart 3 are 

used. Cases I, II, and III are portfolios which contains a large portion of obligors with low 
default probabilities (hereafter called ‘low-PD portfolios’.) On the other hand, Cases IV, V, and 
VI represent ‘high-PD portfolios’.11 Each obligor’s loss ratio given default iLGD  is randomly 
set from 0.2 to 1.0. The correlation iR  is homogeneous among all obligors and takes values of 
                                                        
11 Each obligor’s PD and LGD is randomly set according to the component percentages in parentheses in 
Chart 3. 
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0.01, 0.10, and 0.20. 

Chart 3. Six hypothetical cases of sample portfolio 
Case # PD LGD R 

I 0.01 (100%) 
II 0.10 (100%) 
III 

0.03% (30%), 0.10% (25%), 
0.50% (20%), 1.00% (15%), 
5.00% (10%) 0.20 (100%) 

IV 0.01 (100%) 
V 0.10 (100%) 
VI 

0.03% (10%), 0.10% (15%), 
0.50% (20%), 1.00% (25%), 
5.00% (30%) 

0.2 (20%), 0.4 (20%), 
0.6 (20%), 0.8 (20%), 
1.0 (20%) 

0.20 (100%) 
Note. Values in parentheses represent the percentage of the number of obligors. 

 

3-3 SEGMENTATION OF PORTFOLIO AND COMPARISON OF VALUE-AT-RISK 

Chart 4 shows how the value of Equation 9, i.e., the sum of exposure weights squared in the 

subportfolio B ∑ +=

5000

1
2

ni iw , changes against the breakpoint index n  ( )5000,,2,1 L=n  

which divides portfolio into subportfolio A and B. The exposures are arranged in descending 
order where n  is the index for the n th largest exposure, in other words, the smallest exposure 

in subportfolio A. 

Chart 4. Sum of exposure weights squared in subportfolio B 
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Chart 4 shows that the sum of exposure weights squared in subportfolio B quickly goes to 
zero as n  increases. According to the value of sum of exposure weights squared in 

subportfolio B, we divide the sample portfolios into subportfolio A and B in six patterns as 
shown in Chart 5. The value-at-risk of the six patterns calculated using the segmented Monte 
Carlo method will be compared with those provided by the ordinary Monte Carlo method. 

Chart 5. Six segmentation patterns of portfolio 

Number of exposures Segment 
pattern ∑ +=

5000

1
2

ni iw  
Subportfolio A Subportfolio B 

Sum of exposures 
in subportfolio B 

Ordinary 
M.C. method 

–––– 5,000(100.0%) 0(0.0%)  0.0 

Pattern 1 0.003% 513(10.3%) 4,487(89.7%) 21.8 
Pattern 2 0.005% 375(7.5%) 4,625(92.5%) 27.0 
Pattern 3 0.010% 231(4.6%) 4,769(95.4%) 35.4 
Pattern 4 0.030% 92(1.8%) 4,908(98.2%) 51.6 
Pattern 5 0.050% 56(1.1%) 4,944(98.9%) 60.1 
Pattern 6 0.100% 26(0.5%) 4,974(99.5%) 72.2 

Note 1. Values in the parentheses are component percentages. 

Note 2. Total exposure of the sample portfolio is 100.0. 

The number of paths for both ordinary and segmented Monte Carlo methods is set to one 
million to reduce numerical errors in simulation. The value-at-risk at the three confidence level 
of 95%, 99%, and 99.9% are calculated for each portfolio case. The value-at-risk of the ordinary 
Monte Carlo method is deemed to be ‘true’ and the accuracy of the segmented Monte Carlo 
method will be judged using the divergence from the true value-at-risk. In the author’s 
experience, the numerical error in the value-at-risk of a nongranular credit portfolio appears to 
be several percent and therefore the segmented Monte Carlo method is considered to be accurate 
if the divergence from the ordinary Monte Carlo method is within about 1%.12 

 

3-4 RESULT 

Chart 6 compares the value-at-risk of the segmented Monte Carlo method with the ordinary 
Monte Carlo method for each case of the sample portfolio. The meshed field means that 
absolute value of divergence is larger than one percent. 
                                                        
12 The one percent criterion in this paper is based on the author’s experience and simulation system. 
Readers may choose a higher or lower criterion based on his/her experience and simulation system. To 
be statistically precise, it appears better to repeat the ordinary Monte Carlo simulation many times and 
specify the range of numerical error. However, it is very time consuming to do this with a million paths 
and therefore this paper depends on the subjective criteria from the author’s own experience. 
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Chart 6. Comparison of value-at-risk in the one-factor Merton model 

Case I. Low-PD portfolio, LGD ranges from 0.20 to 1.00 and correlation is 0.01 
95%-VaR 99%-VaR 99.9%-VaR  

 Divergence  Divergence  Divergence
Ordinary M.C. method 1.241 –––– 1.666 –––– 2.216 –––– 

Pattern 1 1.241 –0.02% 1.664 –0.14% 2.206 –0.43% 
Pattern 2 1.244 +0.25% 1.667 +0.09% 2.230 +0.64% 
Pattern 3 1.249 +0.59% 1.656 –0.62% 2.211 –0.23% 
Pattern 4 1.276 +2.80% 1.642 –1.46% 2.199 –0.77% 
Pattern 5 1.301 +4.82% 1.616 –2.98% 2.160 –2.51% 

Segmented 
M.C. 

method 

Pattern 6 1.319 +6.22% 1.568 –5.90% 2.149 –2.98% 

Case II. Low-PD portfolio, LGD ranges from 0.20 to 1.00 and correlation is 0.10 
95%-VaR 99%-VaR 99.9%-VaR  

 Divergence  Divergence  Divergence
Ordinary M.C. method 1.194 –––– 1.933 –––– 3.065 –––– 

Pattern 1 1.197 +0.24% 1.935 +0.06% 3.080 +0.50% 
Pattern 2 1.192 –0.17% 1.938 +0.26% 3.090 +0.80% 
Pattern 3 1.194 –0.06% 1.935 +0.08% 3.101 +1.19% 
Pattern 4 1.179 –1.27% 1.913 –1.07% 3.048 –0.54% 
Pattern 5 1.166 –2.34% 1.888 –2.34% 3.014 –1.67% 

Segmented 
M.C. 

method 

Pattern 6 1.107 –7.28% 1.822 –5.77% 2.915 –4.89% 

Case III. Low-PD portfolio, LGD ranges from 0.20 to 1.00 and correlation is 0.20 
95%-VaR 99%-VaR 99.9%-VaR  

 Divergence  Divergence  Divergence
Ordinary M.C. method 1.442 –––– 2.659 –––– 4.896 –––– 

Pattern 1 1.445 +0.19% 2.671 +0.43% 4.881 –0.31% 
Pattern 2 1.446 +0.27% 2.687 +1.06% 4.919 +0.45% 
Pattern 3 1.438 –0.31% 2.675 +0.58% 4.893 –0.06% 
Pattern 4 1.429 –0.93% 2.645 –0.54% 4.902 +0.12% 
Pattern 5 1.421 –1.47% 2.626 –1.25% 4.806 –1.84% 

Segmented 
M.C. 

method 

Pattern 6 1.403 –2.75% 2.608 –1.92% 4.758 –2.83% 

Case IV. High-PD portfolio, LGD ranges from 0.20 to 1.00 and correlation is 0.01 
95%-VaR 99%-VaR 99.9%-VaR  

 Divergence  Divergence  Divergence
Ordinary M.C. method 2.512 –––– 3.320 –––– 4.293 –––– 

Pattern 1 2.519 +0.25% 3.323 +0.11% 4.287 –0.16% 
Pattern 2 2.517 +0.18% 3.319 –0.03% 4.301 +0.18% 
Pattern 3 2.509 –0.12% 3.313 –0.19% 4.282 –0.26% 
Pattern 4 2.498 –0.59% 3.298 –0.65% 4.262 –0.72% 
Pattern 5 2.480 –1.29% 3.281 –1.18% 4.253 –0.93% 

Segmented 
M.C. 

method 

Pattern 6 2.430 –3.28% 3.194 –3.79% 4.105 –4.40% 
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Case V. High-PD portfolio, LGD ranges from 0.20 to 1.00 and correlation is 0.10 
95%-VaR 99%-VaR 99.9%-VaR  

 Divergence  Divergence  Divergence
Ordinary M.C. method 3.377 –––– 5.103 –––– 7.667 –––– 

Pattern 1 3.371 –0.18% 5.088 –0.31% 7.623 –0.57% 
Pattern 2 3.374 –0.08% 5.113 +0.19% 7.652 –0.20% 
Pattern 3 3.355 –0.65% 5.092 –0.22% 7.632 –0.45% 
Pattern 4 3.349 –0.82% 5.064 –0.78% 7.582 –1.10% 
Pattern 5 3.349 –0.83% 5.050 –1.05% 7.433 –3.05% 

Segmented 
M.C. 

method 

Pattern 6 3.310 –1.98% 4.989 –2.24% 7.392 –3.58% 

Case VI. High-PD portfolio, LGD ranges from 0.20 to 1.00 and correlation is 0.20 
95%-VaR 99%-VaR 99.9%-VaR  

 Divergence  Divergence  Divergence
Ordinary M.C. method 3.872 –––– 6.659 –––– 11.087 –––– 

Pattern 1 3.874 +0.04% 6.692 +0.49% 11.107 +0.17% 
Pattern 2 3.869 –0.08% 6.636 –0.34% 11.068 –0.17% 
Pattern 3 3.873 +0.01% 6.645 –0.21% 11.090 +0.03% 
Pattern 4 3.861 –0.29% 6.652 –0.11% 11.104 +0.15% 
Pattern 5 3.846 –0.68% 6.583 –1.14% 10.993 –0.85% 

Segmented 
M.C. 

method 

Pattern 6 3.822 –1.30% 6.566 –1.40% 11.033 –0.49% 

Examining Cases I to VI, the divergence becomes larger as the number of pattern increases, 
i.e., as the number of exposures in the subportfolio B increases. Based on the experiential 
criteria of one percent divergence, it seems that the segmented Monte Carlo method of Pattern 3 
gives an accurate approximation for the value-at-risk obtained using the ordinary Monte Carlo 
method. In segmentation Pattern 3, the number of obligors is 4,769, which is 95.4% of all 
obligors, and the sum of exposure weights squared in subportfolio B is 0.01%. 

Chart 7 shows how the value-at-risk in Case I evolves. This suggests that the value-at-risk 
using the segmented Monte Carlo method of Patterns 1, 2, and 3 becomes close to the ‘true’ 
value-at-risk using the ordinary Monte Carlo method as the number of paths increases. 

Chart 8 compares the cumulative distributions of portfolio loss by the segmented Monte 
Carlo method of Pattern 3 and 4 with the ordinary Monte Carlo method in Case I. It is observed 
that the distribution by the segmented Monte Carlo method of Pattern 4 apparently differs from 
that by the ordinary Monte Carlo simulation. On the other hand, the distribution by the 
segmented Monte Carlo method of Pattern 3 is almost the same as that by the ordinary Monte 
Carlo method except in the lower left corner of the chart. This suggests that the segmented 
Monte Carlo method of Pattern 3 accurately approximates not only the value-at-risk at the 
confidence levels of 95%, 99%, and 99.9%, but also the whole distribution of portfolio loss. 
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Chart 7. Convergence of value-at-risk in Case I 
Note. The divergence in the chart is the rate of divergence against the value-at-risk by the 

ordinary Monte Carlo method when the 1,000,000th path is finished. 
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Chart 8. Cumulative distribution of portfolio loss in Case I 
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Chart 9 shows the computation time for the segmented Monte Carlo method. With respect to 
segmentation Pattern 3, the number of exposures in subportfolio A is 231 and takes up only 
4.6% of the total number of exposures, and the computation time is about one-fifteenth (6.3%) 
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of the ordinary Monte Carlo method.13 

Chart 9. Computation time of the segmented Monte Carlo method (average of Cases I to IV) 
Number of exposures Segment 

pattern ∑ +=

5000

1
2

ni iw  
Subportfolio A Subportfolio B 

Computation 
time 

Ordinary 
M.C. method –––– 5,000(100.0%) 0(0.0%) 1.000 

Pattern 1 0.003%  513(10.3%) 4,487(89.7%) 0.119 
Pattern 2 0.005%  375(7.5%) 4,625(92.5%) 0.092 
Pattern 3 0.010%  231(4.6%) 4,769(95.4%) 0.063 
Pattern 4 0.030% 92(1.8%) 4,908(98.2%) 0.036 
Pattern 5 0.050% 56(1.1%) 4,944(98.9%) 0.030 
Pattern 6 0.100% 26(0.5%) 4,974(99.5%) 0.024 

Note 1. Values in the parentheses are component percentages in the number of obligors. 

Note 2. Computation time is standardized against the ordinary Monte Carlo method. 

 

3-5 COMPARISON WITH AN ANALYTICAL APPROXIMATION METHOD 

Chart 10 compares the value-at-risk obtained by the granularity adjustment method proposed 
by Martin and Wilde (2002) and Canabarro et al. (2003) with those using the ordinary Monte 
Carlo method of one million paths. 

Chart 10. Value-at-risk by the granularity adjustment method 
95%-VaR 99%-VaR 99.9%-VaR 

Granularity 
adj. method 

Granularity 
adj. method 

Granularity 
adj. method 

Case 
# 

Ordinary 
M.C. 

method  Divergence

Ordinary
M.C. 

method  Divergence

Ordinary 
M.C. 

method  Divergence
I 1.241 1.509 +21.6% 1.666 2.010 +20.6%  2.216 2.600 +17.4% 
II 1.194 1.203  +0.7% 1.933 1.890  –2.2%  3.065 2.986  –2.6% 
III 1.442 1.432  –0.8% 2.659 2.644  –0.6%  4.896 4.859  –0.8% 
IV 2.512 2.891 +15.1% 3.320 3.695 +11.3%  4.293 4.654  +8.4% 
V 3.377 3.349  –0.8% 5.103 5.008  –1.9%  7.667 7.458  –2.7% 
VI 3.872 3.874  +0.0% 6.659 6.628  –0.5% 11.087 11.043  –0.4% 

It takes only a few seconds to calculate value-at-risk by the granularity adjustment method 
and the divergence from the ordinary Monte Carlo simulation is less than 1% for Cases III and 
VI, where the correlation is higher than in the other cases. However, as the correlation becomes 

                                                        
13 With the sample portfolio of 5,000 exposures with one million paths, the gross computation time of an 
ordinary Monte Carlo method implemented by the author is 112 minutes. It takes only seven minutes 
when the segmented Monte Carlo of Pattern 3 is applied. The simulation program is written using C++ 
language and runs on a personal computer with Windows 2000, Celeron 2.00GHz CPU, and 521MB 
RAM. 
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lower, the accuracy worsens. The divergence is about 20% in Case I where the portfolio 
contains a large portion of obligors whose probabilities of default are low and the correlation is 
0.01. 

The segmented Monte Carlo method is inferior to the granularity adjustment method from the 
viewpoint of computational time. However, an advantage of the segmented Monte Carlo method 
is that it gives an accurate approximation of value-at-risk, even if a portfolio contains a large 
portion of low-PD obligors or where the correlation is close to zero. In these instances, the 
granularity adjustment method does not work well. 

 

4. NUMERICAL COMPARISONS ON A MERTON-TYPE MULTIFACTOR MODEL 

4-1 MODEL SPECIFICATION AND COMPUTATIONAL COMPLEXITY 

In this section we test the segmented Monte Carlo method on the default-mode Merton-type 

multifactor model. The systematic factors X
v

 are assumed to be S  random variables which 
follow the multidimensional standard normal distribution. 

{ } ( )QNXXXX S ,0,,, 21 ～L
v
= . (15) 

Note. The Q  represents correlation matrix between systematic factors. 
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, where ijji ,, ρρ = . 
 

Ss ,,2,1 L=  represents the index for the sector that each obligor belongs to, e.g., industries, 
countries, or region. We define iY , the corporate value of obligor i  belonging to the sector s , 

by the systematic factor { }sisX ∈  and an idiosyncratic factor iε  which is independent of the 

{ }sisX ∈ . 

isissii RXRY ε,, 1−+≡ , (16) 

where siR ,  is an intrasector correlation coefficient between iY  and sX . 

As is in the previous section for the one-factor model, idiosyncratic factors Mεεε ,,, 21 L  
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follow independent standard normal distributions and gross loss of exposure i , 

ii LGDEaD × 14, will arise if iY  is below the threshold of ( )iPDN 1− . The definitions of iL  

and ML  are the same with those in the previous section. 

( ){ }ii PDNYiii LGDEaDL 11 −<
≡ . (17) 

∑=
≡

M

i iM LL
1

. (18) 

Let ML′  denote a random variable which is the sum of gross loss from subportfolio A and the 

systematic component of loss from subportfolio B. In the multifactor Merton framework, we 
have 
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The segmented Monte Carlo method in the multifactor Merton framework generates ML′  
according to Equation 19 and find the α  percentile of ML′ , which is the proxy for the 

value-at-risk of the entire portfolio. Since 
( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−−

si

ssii

R

XRPDN
N

,

,
1

1
 depends on s , iPD  

and siR , , we can rewrite Equation 19 as follows when the obligors in subportfolio B are 

                                                        
14 As is in the previous section, the LGD is assumed to be a fixed value and not a random variable. 
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segmented into GKS ××  homogeneous groups with respect to s , iPD  and siR , . 
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. (20) 

Note 1. S , K  and G  are the number of sectors, values of iPD , and siR , , respectively. 

Note 2. ( )kPD  denotes the default probability of group k . 

Note 3. ( )gRs  denotes correlation of group g  onto sX . 

Equation 20 means that if the ii LGDEaD ×  are summed for each homogeneous group, the 

computational complexity of the segmented Monte Carlo method with N  paths will be 
( )( )GKSnNO ××+× . Compared with the one-factor model, the number of homogeneous 

groups becomes S  times that in Equation 14 and this would reduce the computational 
efficiency. However, if the total number of groups, GKS ×× , is sufficiently smaller than the 

number of total obligors, M , the computational complexity of segmented Monte Carlo method 
is proportional to the ratio of number of obligors in subportfolio A to the total number of 
obligors as shown in the previous section. 

 

4-2 SAMPLE PORTFOLIO 

The number of exposures in the sample portfolio and the distribution of exposures are the 
same as those in the previous section. The number of sectors representing industries is set at 10. 

The correlation matrix for the systematic factors X
v

 is provided in Chart 11, which was 
generated using 10 monthly TOPIX industrial indices from 2001 to 2005. 

Chart 11. Correlation matrix of systematic factors 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 
X1 1 0.38 0.44 0.48 0.59 0.23 0.50 0.38 0.45 0.44 
X2 0.38 1 0.48 0.40 0.61 0.42 0.57 0.67 0.48 0.63 
X3 0.44 0.48 1 0.59 0.70 0.30 0.54 0.48 0.56 0.60 
X4 0.48 0.40 0.59 1 0.64 0.26 0.51 0.41 0.48 0.45 
X5 0.59 0.61 0.70 0.64 1 0.53 0.83 0.43 0.73 0.77 
X6 0.23 0.42 0.30 0.26 0.53 1 0.55 0.32 0.41 0.50 
X7 0.50 0.57 0.54 0.51 0.83 0.55 1 0.45 0.85 0.85 
X8 0.38 0.67 0.48 0.41 0.43 0.32 0.45 1 0.29 0.50 
X9 0.45 0.48 0.56 0.48 0.73 0.41 0.85 0.29 1 0.80 
X10 0.44 0.63 0.60 0.45 0.77 0.50 0.85 0.50 0.80 1 
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With regard to the portfolio conditions, six hypothetical cases for the individual default 
probability PD , loss ratio given default LGD , sector s , and intrasector correlation sR  are 

used. Following the previous section, Cases I, II, and III represent low-PD portfolios and Cases 
IV, V, and VI represent high-PD portfolios. 

Chart 12. Six hypothetical cases of sample portfolio 
Case # PD LGD Sector Rs 

I 0.01 (100%) 
II 0.10 (100%) 
III 

0.03% (30%), 0.10% (25%), 
0.50% (20%), 1.00% (15%), 
5.00% (10%) 0.20 (100%) 

IV 0.01 (100%) 
V 0.10 (100%) 
VI 

0.03% (10%), 0.10% (15%), 
0.50% (20%), 1.00% (25%), 
5.00% (30%) 

0.2 (20%), 
0.4 (20%), 
0.6 (20%), 
0.8 (20%), 
1.0 (20%) 

10% for 
each sector 

0.20 (100%) 
Note. Values in parentheses represent the percentage of the number of obligors. 

 

4-3 SEGMENTATION PATTERN AND COMPARISON OF VALUE-AT-RISK 

The segmentation pattern is the same as those in Chart 5 for the one-factor model. The 
procedure to compare the segmented Monte Carlo method with the ordinary Monte Carlo 
method follows that in the previous section. 

 

4-4 RESULT 

Chart 13 compares the value-at-risk of the segmented Monte Carlo with the ordinary Monte 
Carlo for each case of sample portfolio. As in Chart 6, the meshed field means that absolute 
value of divergence is larger than one percent. 

Chart 13. Comparison of value-at-risk in multifactor Merton model 

Case I. Low-PD portfolio, LGD ranges from 0.20 to 1.00 and intrasector correlation is 0.01 
95%-VaR 99%-VaR 99.9%-VaR  

 Divergence  Divergence  Divergence
Ordinary M.C. method 1.333 –––– 1.816 –––– 2.427 –––– 

Pattern 1 1.334 +0.09% 1.811 –0.23% 2.420 –0.27% 
Pattern 2 1.338 +0.44% 1.819 +0.21% 2.431 +0.18% 
Pattern 3 1.338 +0.37% 1.812 –0.22% 2.421 –0.25% 
Pattern 4 1.358 +1.89% 1.818 +0.11% 2.402 –1.03% 
Pattern 5 1.384 +3.87% 1.835 +1.07% 2.387 –1.62% 

Segmented 
M.C. 

method 

Pattern 6 1.410 +5.83% 1.636 –9.90% 2.333 –3.85% 
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Case II. Low-PD portfolio, LGD ranges from 0.20 to 1.00 and intrasector correlation is 0.10 
95%-VaR 99%-VaR 99.9%-VaR  

 Divergence  Divergence  Divergence
Ordinary M.C. method 1.899 –––– 2.807 –––– 4.011 –––– 

Pattern 1 1.903 +0.23% 2.804 –0.12% 3.998 –0.34% 
Pattern 2 1.899 +0.00% 2.806 –0.04% 4.036 +0.61% 
Pattern 3 1.897 –0.10% 2.811 +0.14% 4.020 +0.22% 
Pattern 4 1.893 –0.34% 2.801 –0.20% 4.000 –0.28% 
Pattern 5 1.884 –0.81% 2.788 –0.67% 3.994 –0.42% 

Segmented 
M.C. 

method 

Pattern 6 1.848 –2.68% 2.747 –2.15% 3.966 –1.13% 

Case III. Low-PD portfolio, LGD ranges from 0.20 to 1.00 and intrasector correlation is 0.20 
95%-VaR 99%-VaR 99.9%-VaR  

 Divergence  Divergence  Divergence
Ordinary M.C. method 1.442 –––– 2.354 –––– 3.840 –––– 

Pattern 1 1.442 –0.03% 2.354 +0.00% 3.841 +0.02% 
Pattern 2 1.444 +0.14% 2.350 –0.17% 3.826 –0.34% 
Pattern 3 1.437 –0.37% 2.345 –0.38% 3.834 –0.15% 
Pattern 4 1.430 –0.82% 2.332 –0.94% 3.833 –0.18% 
Pattern 5 1.428 –0.93% 2.328 –1.12% 3.841 +0.03% 

Segmented 
M.C. 

method 

Pattern 6 1.390 –3.59% 2.262 –3.90% 3.710 –3.38% 

Case IV. High-PD portfolio, LGD ranges from 0.20 to 1.00 and intracorrelation is 0.01 
95%-VaR 99%-VaR 99.9%-VaR  

 Divergence  Divergence  Divergence
Ordinary M.C. method 2.443 –––– 3.276 –––– 4.357 –––– 

Pattern 1 2.437 –0.26% 3.271 –0.17% 4.342 –0.35% 
Pattern 2 2.436 –0.30% 3.263 –0.42% 4.337 –0.44% 
Pattern 3 2.432 –0.44% 3.266 –0.31% 4.340 –0.39% 
Pattern 4 2.422 –0.87% 3.241 –1.07% 4.303 –1.23% 
Pattern 5 2.412 –1.28% 3.232 –1.35% 4.305 –1.18% 

Segmented 
M.C. 

method 

Pattern 6 2.429 –0.59% 3.199 –2.37% 4.286 –1.63% 

Case V. High-PD portfolio, LGD ranges from 0.20 to 1.00 and intrasector correlation is 0.10 
95%-VaR 99%-VaR 99.9%-VaR  

 Divergence  Divergence  Divergence
Ordinary Monte Carlo 2.621 –––– 4.084 –––– 5.967 –––– 

Pattern 1 2.620 –0.06% 4.086 +0.06% 5.948 –0.31% 
Pattern 2 2.619 –0.08% 4.100 +0.40% 5.923 –0.72% 
Pattern 3 2.618 –0.13% 4.087 +0.09% 5.941 –0.42% 
Pattern 4 2.585 –1.40% 4.054 –0.73% 5.909 –0.96% 
Pattern 5 2.579 –1.63% 4.052 –0.78% 5.836 –2.19% 

Segmented 
Monte- 
Carlo 

Pattern 6 2.537 –3.22% 4.013 –1.73% 5.843 –2.08% 
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Case VI. High-PD portfolio, LGD ranges from 0.20 to 1.00 and intrasector correlation is 0.20 
95%-VaR 99%-VaR 99.9%-VaR  

 Divergence  Divergence  Divergence
Ordinary M.C. method 3.397 –––– 5.548 –––– 8.473 –––– 

Pattern 1 3.402 +0.14% 5.559 +0.20% 8.565 +1.08% 
Pattern 2 3.395 –0.06% 5.549 +0.01% 8.549 +0.90% 
Pattern 3 3.391 –0.20% 5.523 –0.46% 8.480 +0.07% 
Pattern 4 3.375 –0.66% 5.531 –0.32% 8.475 +0.02% 
Pattern 5 3.363 –1.02% 5.529 –0.34% 8.444 –0.34% 

Segmented 
M.C. 

method 

Pattern 6 3.316 –2.41% 5.450 –1.77% 8.361 –1.32% 

The results are similar to those in the previous section. Looking through Cases I to VI, the 
segmented Monte Carlo method of Pattern 3 gives an accurate approximation for the 
value-at-risk using the ordinary Monte Carlo method. 

Chart 14 shows how the value-at-risk in Case V evolves. This suggests that the value-at-risk 
by the segmented Monte Carlo method of Patterns 1, 2 and 3 get close to the true value-at-risk 
obtained by the ordinary Monte Carlo method as the number of paths increases. 

Chart 14. Convergence of value-at-risk in Case V 

Note. The ‘divergence’ in the chart means the rate of divergence against the value-at-risk 

by the ordinary Monte Carlo method when the 1,000,000th path is finished. 
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Chart 15 compares the cumulative distribution of portfolio loss in the segmented Monte 
Carlo method of Pattern 3 with the ordinary Monte Carlo method in Case V. It seems difficult to 
distinguish the two curves. This suggests that the segmented Monte Carlo method of Pattern 3 
accurately approximates not only the value-at-risk at the confidence levels of 95%, 99%, and 
99.9%, but also the whole distribution of portfolio loss. 
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Chart 15. Cumulative distribution of portfolio loss in Case V 
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The computation time of the segmented Monte Carlo method of Pattern 3 is about 
one-fifteenth (6.9%) of the ordinary Monte Carlo method. 

Chart 16. Computation time of the segmented Monte Carlo method (average of Cases I to V) 
Number of exposures Segment 

pattern ∑ +=

5000

1
2

ni iw  
Subportfolio A Subportfolio B 

Computation 
time 

Ordinary 
M.C. method –––– 5,000 (100.0%) 0 (0.0%) 1.000 

Pattern 1 0.003% 513 (10.3%) 4,487 (89.7%) 0.124 
Pattern 2 0.005% 375 (7.5%) 4,625 (92.5%) 0.097 
Pattern 3 0.010% 231 (4.6%) 4,769 (95.4%) 0.069 
Pattern 4 0.030% 92 (1.8%) 4,908 (98.2%) 0.042 
Pattern 5 0.050% 56 (1.1%) 4,944 (98.9%) 0.035 
Pattern 6 0.100% 26 (0.5%) 4,974 (99.5%) 0.029 

Note 1. Values in the parentheses are the component percentages in the number of obligors. 

Note 2. Computation time is standardized on the ordinary Monte Carlo method. 

 

4-5 COMPARISON WITH AN ANALYTICAL APPROXIMATION METHOD 

Chart 17 compares the value-at-risk obtained by the multifactor adjustment method proposed 
by Pykhtin (2004) with those of the ordinary Monte Carlo method with one million paths. 
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Chart 17. Value-at-risk by the multifactor adjustment method 
95%-VaR 99%-VaR 99.9%-VaR 

Multifactor 
adj. method 

Multifactor 
adj. method 

Multifactor 
adj. method 

Case 
# 

Ordinary 
M.C. 

method  Divergence

Ordinary
M.C. 

method  Divergence

Ordinary 
M.C. 

method  Divergence
I 1.333 2.033 +52.55% 1.816 2.728 +50.24% 2.427 3.525 +45.27%
II 1.899 1.976 +4.04% 2.807 2.808 +0.03% 4.011 3.934 –1.93%
III 1.442 1.437 –0.35% 2.354 2.315 –1.65% 3.840 3.725 –2.99%
IV 2.443 3.174 +29.93% 3.276 4.098 +25.07% 4.357 5.168 +18.63%
V 2.621 2.693 +2.73% 4.084 3.814 –6.60% 5.967 5.404 –9.43%
VI 3.397 3.414 +0.49% 5.548 5.293 –4.60% 8.473 8.113 –4.25%

The multifactor adjustment method gives a good approximation for the value-at-risk by the 
ordinary Monte Carlo method in Cases III and VI, where the intrasector correlation is relatively 
high. However, it becomes quite inaccurate when the intrasector correlation becomes close to 
zero in Cases I and IV. It can be said that an advantage of the segmented Monte Carlo method is 
that it gives an accurate approximation of value-at-risk even if the multifactor adjustment 
method does not work well. 

From the viewpoint of computation complexity, the multifactor adjustment method proposed 
by Pykhtin (2004) has one disadvantage in that it explicitly evaluates the correlation of all pairs 

of idiosyncratic factors and thus the computation complexity becomes ( )2MO , where M  is 
the number of obligors.15 Therefore the computational efficiency of the multifactor adjustment 

method rapidly decreases as M  increases. The segmented Monte Carlo method could be less 
time consuming than the multifactor adjustment method if the number of obligors is large.16 

 

5. CONCLUSION 

5-1 PROS AND CONS OF THE SEGMENTED MONTE CARLO METHOD 

The basic idea of the segmented Monte Carlo method is quite simple. It is naturally expected 
that the idiosyncratic factors of small exposures would have little to do with the risk of the 
                                                        
15 In the original multifactor model, it is assumed that the idiosyncratic factors are independent as 
explained in Section 4-1. However, the multifactor adjustment method proposed by Pykhtin (2004) 
transforms the original multifactor model into a “comparable one-factor model” and the independency of 
the idiosyncratic factors will not hold. 

16 With the program implemented by the author, it takes about nine minutes to calculate the value-at-risk 
of a sample portfolio with the multifactor adjustment method. Since we have to reevaluate value-at-risk 
for different confidence levels, it takes about 30 minutes to provide the value-at-risk at the three 
different confidence levels. On the other hand, it takes seven minutes to apply the segmented Monte 
Carlo method of Pattern 3 to the sample portfolio, where the number of paths is one million. The 
segmented Monte Carlo method can simultaneously evaluate the value-at-risk at three different 
confidence levels as is in the ordinary Monte Carlo method. 
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entire portfolio. To apply the method, a portfolio is divided into two parts: subportfolio A 
constituting larger exposures and subportfolio B comprising smaller exposures. In the 
segmented Monte Carlo method, the ordinary procedure will be applied to the former but only 
the expected value of loss given systematic factors will be simulated in regard to the latter. 

The new method is tested on sample portfolios which reflect the granularity of Japanese 
banks and shows a nice approximation for the value-at-risk obtained with the ordinary Monte 
Carlo method, while the computation time is about one-fifteenth of the ordinary Monte Carlo 
method. Compared with the analytical solutions proposed by Canabarro et al. (2003) and 
Pykhtin (2004), the segmented Monte Carlo method has an advantage in that it is accurate, even 
in conditions where these analytical solutions do not work well.17 In addition, the segmented 
Monte Carlo method is easy to implement if the ordinary Monte Carlo method has been based 
on the Merton framework. As discussed in Section 3 and 4, the ordinary Monte Carlo method 
will be transformed to the segmented Monte Carlo method by changing program codes to sum 
up losses given default of small exposures by the homogeneous groups of sector, default 
probability and correlation.18 

Although this paper shows the numerical examples only in the Merton framework, the basic 
idea in Section 2 is applicable to any credit risk model that uses systematic and idiosyncratic 
factors. If we can specify the expectation of loss from subportfolio B conditioned on systematic 

factors, [ ]XLE B
m

v
, it is anticipated that the segmented Monte Carlo method will contribute to 

the computational efficiency to a greater or lesser extent.19 

On the other hand, the segmented Monte Carlo method may have a weak point in that we do 
not know the relation between the sum of exposure weights squared in subportfolio B, 

∑ +=

M

ni iw
1

2 , and the accuracy of value-at-risk. What we know is only that the smaller 

                                                        
17 The segmented Monte Carlo method appears easier than the analytical solutions in handling the 
problem of accuracy in approximation. The accuracy of analytical solutions tested in this paper becomes 
worse when a portfolio has a large portion of obligors whose default probabilities and correlations on 
systematic factors are low. When we observe inaccurate results from these analytical solutions, there is 
no good remedy to help improve accuracy since we can not change the default probabilities or 
correlation. On the other hand, if we observe inaccurate results from the segmented Monte Carlo method, 
the accuracy can be improved by narrowing the range of subportfolio B at the cost of computational 
efficiency. 

18 However, the computational efficiency may decrease if the sector, default probability and correlation 
are segmented finely and the number of homogeneous groups of obligors in subportfolio B becomes 
large. 

19 Strictly speaking, the segmented Monte Carlo method might lead to inaccurate approximations if the 

[ ]XLE B
m

v
 is not a continuous function. 
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∑ +=

M

ni iw
1

2  is better. The numerical examples in this paper show that the segmented Monte 

Carlo method of Pattern 3, where ∑ +=

M

ni iw
1

2  is 0.01%, gives accurate approximations, 

however, an appropriate value of ∑ +=

M

ni iw
1

2  may depend on conditions in the portfolios, the 

credit risk models used or the allowances for the accuracy of value-at-risk. Numerical 
comparisons as in Section 3 and 4 will be needed before we apply the segmented Monte Carlo 

method to a new portfolio. An appropriate value of ∑ +=

M

ni iw
1

2  will be determined via such 

analyses, considering the trade-off relationship between computational efficiency and the degree 

of accuracy. Furthermore, the appropriateness of the value of ∑ +=

M

ni iw
1

2  should be tested 

periodically since any portfolio will change as time goes by. 

 

5-2 SECONDARY EFFECT: IDENTIFYING THE RETAIL POOL FROM THE VIEWPOINT 
OF PORTFOLIO RISK 

One weak point of the segmented Monte Carlo method is that we need to experientially 
specify the ‘sufficiently fine-grained’ subportfolio B based on numerical analyses of risk. 
However, this process may at the same time give us important information which relates to the 
appropriateness of risk management systems inside banks. 

The subportfolio B in this paper appears to correspond to the retail pool. The retail pool in 
general is defined by some criteria on the types of obligors and loan, e.g., individual, corporate 
size, mortgage or consumer loan, and sometimes by the dollar amount of the loan. It can be said 
that determining the range of subportfolio B in the process of segmented Monte Carlo 
simulation is to identify the retail pool from the viewpoint of risk, i.e., the risk contribution of 
idiosyncratic factors to the risk of the entire credit portfolio. 

The analyses in this paper identified that subportfolio B comprises the smaller 95% of 
obligors, whose total exposure constitute about 30% of the entire portfolio exposure. This 
means that fluctuations in the expected loss for this subportfolio by systematic factors are more 
important than the idiosyncratic risk of each obligor when we consider the risk of the entire 
portfolio. However, a risk manager may excessively examine the idiosyncratic factors of these 
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small obligors and place less emphasis in the analysis on the evolution of average loss.20 It may 
be useful to check the appropriateness and efficiency of the risk management system based on 
analysis of the range of subportfolio B. At the same time, one may wish to check if obligors 
belonging to subportfolio A, who have a nonnegligible impact on the risk of entire portfolio, are 
segmented into the retail pool by mistake. 

The segmented Monte Carlo method proposed in this paper has a secondary merit in that one 
can review the appropriateness and efficiency of the internal credit management system from 
the viewpoint of the contribution of idiosyncratic factors to the risk of the entire portfolio, in 
addition to improving the computational efficiency of Monte Carlo simulation. 

 

 

                                                        
20 To avoid any misunderstanding, the author does not say that we can fully neglect the idiosyncratic 
factors of small obligors. It is essential for retail business to properly judge the credit worthiness of 
every obligor. What the author means is that analysis of the average loss of subportfolio B becomes 
more important for managers who are in charge of the risk control for the entire portfolio.  
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APPENDIX. PROOF OF EQUATION 621 

Let ( ) { }n
A εεεε ,,, 21 L

v
=  and ( ) { }Mnn

B εεεε ,,, 21 L
v

++=  denote vectors of idiosyncratic 

factors for the obligors in subportfolio A and B, respectively. The gross loss of subportfolio A, 

A
nL , and that of entire portfolio, ML , are the functions of systematic factors and the above 

idiosyncratic factors. 

( )( )AA
n

A
n XLL εv

r
,=  

( ) ( )( )BA
MM XLL εε vvr

,,=  

Let xv  and ( )Aev  be the realization of X
v

 and ( )Aεv , respectively. From Equation 5, 
Equation A-1 below is satisfied as ∞→m  (at the same time ∞→M  since nmM += ). 

( ) ( )( ) ( )( ) [ ] 0,,, →⎟
⎠
⎞⎜

⎝
⎛ +− xLEexLexL B

m
AA

n
BA

M
vvvvvv ε  a.s. (A-1)

Almost sure convergence implies convergence in probability, so for all xv , ( )Aev  and 0>ζ , 

( ) ( )( ) ( )( ) [ ] ( ) 1,,,, Pr →⎟
⎠
⎞

⎜
⎝
⎛ <⎟

⎠
⎞⎜

⎝
⎛ +− AB

m
AA

n
BA

M exxLEexLexL vvvvvvvv ζε  as ∞→m . (A-2)

If MF  is the cumulative distribution function of ML , then Equation A-2 implies 

( )( ) [ ] ( )

( )( ) [ ] ( ) 1,|,

,|,

→⎟
⎠
⎞⎜

⎝
⎛ −+−

⎟
⎠
⎞⎜

⎝
⎛ ++

AB
m

AA
nM

AB
m

AA
nM

exxLEexLF

exxLEexLF

vvvvv

vvvvv

ζ

ζ
 (A-3)

as ∞→m . Because MF  is bounded in [ ]1,0 , we must have the following two equations. 

( )( ) [ ] ( ) 1,|, →⎟
⎠
⎞⎜

⎝
⎛ ++ AB

m
AA

nM exxLEexLF vvvvv ζ  as ∞→m . (A-4)

( )( ) [ ] ( ) 0,|, →⎟
⎠
⎞⎜

⎝
⎛ −+ AB

m
AA

nM exxLEexLF vvvvv ζ  as ∞→m . (A-5)

Let +
mS  denote the set of xv  and ( )Aev  such that ( )( ) [ ]xLEexL B

m
AA

n
vvv +,  is less than or equal 

                                                        
21 The proof in this appendix is based on Appendix B in Gordy (2003). 
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to its α  percentile,22 i.e., 

( ) ( )( ) [ ] ( )( ) [ ]
⎭
⎬
⎫

⎩
⎨
⎧ ⎟

⎠
⎞⎜

⎝
⎛ +≤+≡+ XLEXLqxLEexLexS B

m
AA

n
B
m

AA
n

A
m

vvvvvvvv εα ,,, .  

By construction, 

( )( ) α≥∈ +
m

A Sex vv,Pr . (A-6)

By the usual rules for conditional probability, we have 

( )( ) [ ] ⎟
⎠
⎞⎜

⎝
⎛ +⎟

⎠
⎞⎜

⎝
⎛ + ζεα XLEXLqF B

m
AA

nM

vvv
,   

( )( ) [ ] ( ) ( )( )

( )( ) [ ] ( ) ( )( )++

++

∉⋅⎟
⎠
⎞

⎜
⎝
⎛ ∉+⎟

⎠
⎞⎜

⎝
⎛ ++

∈⋅⎟
⎠
⎞

⎜
⎝
⎛ ∈+⎟

⎠
⎞⎜

⎝
⎛ +=

m
A

m
AB

m
AA

nM

m
A

m
AB

m
AA

nM

SXSXXLEXLqF

SXSXXLEXLqF

εεζε

εεζε

α

α

vvvvvvv

vvvvvvv

,Pr,,

,Pr,,

  

( )( ) [ ] ( ) ( )( )++ ∈⋅⎟
⎠
⎞

⎜
⎝
⎛ ∈+⎟

⎠
⎞⎜

⎝
⎛ +≥ m

A
m

AB
m

AA
nM SXSXXLEXLqF εεζεα

vvvvvvv
,Pr,,   

( )( ) [ ] ( ) αεζεα ⎟
⎠
⎞

⎜
⎝
⎛ ∈+⎟

⎠
⎞⎜

⎝
⎛ +≥ +

m
AB

m
AA

nM SXXLEXLqF vvvvv
,, . (A-7)

For all ( ) +∈ m
A Sex vv, , we have 

( )( ) [ ] ( )

( )( ) [ ] ( ) 1,,

,,1

→⎟
⎠
⎞⎜

⎝
⎛ ++≥

⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞⎜

⎝
⎛ +≥

AB
m

AA
nM

AB
m

AA
nM

exxLEexLF

exXLEXLqF

vvvvv

vvvvv

ζ

ζεα

 (A-8)

as ∞→m , so the dominated convergence theorem implies that 

( )( ) [ ] ( ) 1,, →⎟
⎠
⎞

⎜
⎝
⎛ ∈+⎟

⎠
⎞⎜

⎝
⎛ + +

m
AB

m
AA

nM SXXLEXLqF εζεα
vvvvv

 as ∞→m . (A-9)

Plugging Equation A-9 into A-7, we have 

( )( ) [ ] αζεα ≥⎟
⎠
⎞⎜

⎝
⎛ +⎟

⎠
⎞⎜

⎝
⎛ + XLEXLqF B

m
AA

nM

vvv
,  as ∞→m . (A-10)

                                                        
22 For an arbitrary random variable Z , α  percentile is defined as ( ) ( ){ }αα ≥≤≡ zZzZq Prinf . 
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The other half of the proof follows similarly. Define −
mS  as 

( ) ( )( ) [ ] ( )( ) [ ]
⎭
⎬
⎫

⎩
⎨
⎧ ⎟

⎠
⎞⎜

⎝
⎛ +≥+≡− XLEXLqxLEexLexS B

m
AA

n
B
m

AA
n

A
m

vvvvvvvv εα ,,,   

so that 

( )( ) α−≥∈ − 1,Pr m
A Sex vv . (A-11)

Then 

( )( ) [ ] ⎟
⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ + ζεα XLEXLqF B
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nM

vvv
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−−
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⎠
⎞

⎜
⎝
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⎠
⎞⎜

⎝
⎛ ++

∈⋅⎟
⎠
⎞

⎜
⎝
⎛ ∈−⎟

⎠
⎞⎜

⎝
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⎞

⎜
⎝
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⎞⎜

⎝
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A
m

AB
m

AA
nM SXSXXLEXLqF εεζεα α

vvvvvvv
,Pr,, . (A-12)

For all ( ) −∈ m
A Sex vv, , we have 

( )( ) [ ] ( )

( )( ) [ ] ( ) 0,,

,,0

→⎟
⎠
⎞⎜

⎝
⎛ −+≤

⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ +≤

AB
m

AA
nM

AB
m
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exxLEexLF

exXLEXLqF
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 (A-13)

as ∞→m . So the dominated convergence theorem implies that 

( )( ) [ ] ( ) 0,, →⎟
⎠
⎞

⎜
⎝
⎛ ∈−⎟

⎠
⎞⎜

⎝
⎛ + −

m
AB

m
AA

nM SXXLEXLqF εζεα
vvvvv

 as ∞→m . (A-14)

Plugging Equation A-14 into A-12, we have 

( )( ) [ ] αζεα ≤⎟
⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛ + XLEXLqF B

m
AA

nM

vvv
,  as ∞→m . (A-15)

With the assumption that the [ ]XLE B
m

v
 is continuous, Equation A-10 and A-15 ensures that 

Equation 6 will hold. 

( ) [ ] 0→⎟
⎠
⎞⎜

⎝
⎛ +− XLELqLq B

m
A
nM

v
αα  as ∞→m .  
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