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Abstract

We estimate the output gap that is consistent with a fully specified DSGE model.

Given the structural parameters estimated using Bayesian methods, we estimate the

output gap that is defined as a deviation of output from its flexible-price equilibrium.

Our output gap illustrates the U.S. business cycles well, compared with other estimates.

We find that the main source of the output gap movements is the demand shocks, but

that the productivity shocks contributed to the stable output gap in the late 1990s. The

robustness analysis shows that the estimated output gap is sensitive to the specification

for monetary policy rules.
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1 Introduction

Macroeconomic analysis often takes account of the output gap, defined as a deviation of

actual output from its trend or potential level. This is because the output gap is considered

to be an important indicator of overall macroeconomic conditions and to play a significant

role in the determination of inflation. A problem is that potential output is not observable,

forcing researchers to rely on uncertain estimates. In this paper, we estimate the output

gap based on a dynamic stochastic general equilibrium (DSGE) model using Bayesian

techniques.

Various methods have been proposed to estimate the potential output. One of the

easiest ways is to consider a certain univariate moving average of actual output as potential

output. The HP filter, proposed by Hodrick and Prescott (1997), is widely used. The main

drawback of such an approach is the lack of economic content. Another approach often

employed is a production function approach. In this approach, an aggregate production

function is estimated, and then “normal” amount of inputs are substituted in it to calculate

the potential output. Examples are found in Clark (1979) and Congressional Budget Office

(1995), among others. Although economic structure is considered, the output gap by this

definition has only weak links to other economic relationships such as the Phillips curve for

inflation. To incorporate a definition of the output gap into the Phillips curve relationship,

Laxton and Tetlow (1992) extended the HP filter to a multivariate setting and computed

potential output linked to inflation fluctuations. Also, Kuttner (1994) considered potential

output as an unobserved stochastic trend and applied the Kalman filter to extract it, given

simple output and inflation equations. These models exploit reduced-form equations and

the output gaps obtained from their methods are a nonaccelerating-inflation or constant-

inflation measure.

In contrast to these previous approaches, the output gap that is estimated in this

paper is consistent with a fully specified New Keynesian DSGE model, which is derived

from optimization problems of households and firms. Since the macroeconomic dynamics

in this model are governed by deep parameters that are not affected by policy changes,

our approach is designed to overcome the Lucus (1976) critique of reduced-form models for

their lack of microfoundations. Moreover, the output gap in this framework is defined as a

deviation of actual output from its flexible-price equilibrium level. As argued in Woodford

(2003), an optimal monetary policy will replicate the flexible-price equilibrium that delivers
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more efficient allocation. Therefore, from a welfare perspective, the corresponding output

gap should be a useful indicator for monetary policy.

Another feature of this paper is that the model is estimated using Bayesian meth-

ods. Bayesian estimation strategies help to estimate DSGE models with cross-equation

restrictions, which cope well with misspecification and identification problems. In contrast

to estimation of a single equation, estimation of the entire model in the full-information

likelihood-based approach implicitly generates an optimal set of instruments for the struc-

tural parameters. In our approach, the potential output is extracted by using a Kalman

filter algorithm, given the posterior distributions of the structural parameters. The fully

specified DSGE model incorporated with data allows us to understand variability of the

output gap, not only structurally but also historically.

The output gap we estimate in this paper is conceptually similar to the ones in Edge,

Kiley, and Laforte (2007) for the U.S. and Smets and Wouters (2003) for the Euro area,

who estimate larger-scale DSGE models with Bayesian techniques and extract the model-

based output gaps.1 They define potential output as the flexible-price-and-wage level of

output attainable in the absence of the associated shocks. According to their estimates,

the output gaps have been negative at all times since the middle of the 1990s, so that

they might not be successful in illustrating the business cycles and overall macroeconomic

conditions. In contrast, our estimate of the output gap exhibits the cyclical movements

during the period and is considered to be a plausible measure of business conditions.

In terms of modeling strategy, their models contain various kinds of shocks, even under

flexible prices and wages, which complicate interpretation of the output gap variability.

Our estimation of the output gap would be, on the other hand, a possible benchmark since

it is based on a simple New Keynesian framework widely used in the recent monetary

economics, which allows us to understand easily the driving forces of the output gap and

other macroeconomic variables. Furthermore, we extensively document the sensitivity of

our output gap estimates to alternative model specifications, choice of priors, and sample

periods. While robustness of structural parameters has been carefully examined in the

Bayesian DSGE literature, little attention has been paid to the sensitivity of the implied

state transition of model variables. In this respect, this paper investigates the effect of

1Also, Walsh (2006) extracts the output gap using the DSGE model developed by Levin, Onatski,

Williams, and Williams (2006), and points out that the estimated output gap has little relationship to the

unemployment rate.
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various estimation assumptions to the output gap movements.

This paper is structured as follows. The next section provides a simple variant of the

prototypical New Keynesian model that is used for our analysis. Section 3 explains the

Bayesian estimation strategies. In Section 4, our baseline estimation results are presented.

Section 5 checks the robustness of our empirical analysis. Section 6 concludes the paper.

2 The Model

We consider a simple variant of the standard New Keynesian DSGE model. The model is

consistent with optimizing behavior of households and monopolistically competitive firms

that face price stickiness. Monetary policy follows an interest-rate feedback rule. Below

is a brief description of the model. Note that all real variables below are detrended by a

non-stationary trend component of the productivity process Āt with the constant growth

rate γ∗ to guarantee stationarity of the model.

2.1 The Representative Household

The representative household is infinitely lived and derives utility from a composite con-

sumption good Ct, real money balances Mt/Pt, and leisure 1−Nt. We introduce multiplica-

tive consumption habit formation, as studied in Fuhrer (2000). The household maximizes

the following expected utility function:

Et

∞∑
i=0

βiDt+i


 1

1− τ

(
Ct+i

Ch
t+i−1

)1−τ

+
µ

1− b

(
Mt+i

Pt+i

)1−b

− χ
N1+η

t+i

1 + η


 ,

where Dt is a preference shock that is interpreted as an IS or real demand shock, and Ch
t−1

represents a habit stock with the habit persistence parameter 0 < h < 1. 0 < β < 1 is the

discount factor, τ−1 > 0 is the intertemporal substitution elasticity, b > 0 and η > 0 are

associated with elasticities of substitution against consumption, and µ > 0 and χ > 0 are

scale factors.

Given the aggregate price index, the budget constraint is:

Ct +
Mt

Pt
+

Bt

Pt
=

(
Wt

Pt

)
Nt +

Mt−1

Pt
+ Rt−1

(
Bt−1

Pt

)
+ Πt,

where Bt is nominal government bonds that pay the nominal interest rate Rt, Wt/Pt is the

real wage, and Πt is real profits received from firms.
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The first-order conditions for the household’s optimization problem are:

U∗
C,t

Ct
= βRtEt

(
U∗

C,t+1

Ct+1

Pt

Pt+1

)
, (1)

Dtµ (Mt/Pt)
−b

U∗
C,t/Ct

=
Rt − 1

Rt
, (2)

DtχNη
t

U∗
C,t/Ct

=
Wt

Pt
, (3)

where

U∗
C,t = Dt

(
Ct/Ch

t−1

)1−τ
− βhEt

[
Dt+1

(
Ct+1/Ch

t

)1−τ
]

. (4)

Log-linear approximation of (1) and (4) around the steady state together with the equilib-

rium condition such that Ct = Yt yields the Euler equation:

u∗c,t − yt = Etu
∗
c,t+1 −Etyt+1 + rt −Etπt+1, (5)

with

u∗c,t =
(1− τ)
(1− βh)

[(
1 + βh2

)
yt − hyt−1 − βhEtyt+1

]
+

1
1− βh

dt − βh

1− βh
Etdt+1, (6)

where the lower-case letters with time subscripts represent the percentage deviations from

their steady-state values. Also, approximating (3) yields

dt + ηnt − u∗c,t + ct = wt − pt. (7)

2.2 The Firms

The final (composite) consumption good Yt is produced using differentiated intermediate

goods Yt(j), j ∈ [0, 1] produced by monopolistically competitive firms in the following

technology:

Yt =
[∫ 1

0 Yt(j)
λt−1

λt dj

] λt
λt−1

,

where λt is the time-varying elasticity of demand for each intermediate good. The cost

minimization problem of the final good sector gives the demand function for good j:

Yt(j) =
(

Pt(j)
Pt

)−λt

Yt, (8)

and the aggregate price index:

Pt =
[∫ 1

0 Pt(j)1−λtdj
] 1

1−λt . (9)

5



Each monopolistically competitive firm faces a downward-sloping demand curve (8) for

its differentiated product Yt(j). The production function is linear in labor input Nt(j):

Yt(j) = AtNt(j), (10)

where At is an exogenous productivity disturbance.

Each firm’s cost minimization problem, subject to the production function (10), is given

by:

min
Nt

(
Wt

Pt

)
Nt + Φt (Yt(j)−AtNt(j)) ,

where Φt is the firm’s real marginal cost. The first-order condition provides:

Φt =
Wt/Pt

At
. (11)

Following Calvo (1983), the firms are assumed to have an opportunity to change their

prices in a given period only with probability 1 − ω. Each firm j chooses the price Pt(j)

to maximize expected discounted profits:

Et

∞∑
i=0

ωiQt,t+i

[(
Pt(j)
Pt+i

)
Yt+i(j)− Φt+iYt+i(j)

]
,

where Qt,t+i = βi U∗C,t+i/Ct+i

U∗C,t/Ct
is the stochastic discount factor. Subject to the demand curve

(8) with the equilibrium condition such that Ct(j) = Yt(j), the first-order condition for

each firm implies the optimal price P ∗
t chosen by all firms adjusting at time t:

P ∗
t

Pt
= Zt

Et
∑∞

i=0 ωiQt,t+iYt+iΦt+i

(
Pt+i

Pt

)λt

Et
∑∞

i=0 ωiQt,t+iYt+i

(
Pt+i

Pt

)λt−1
, (12)

where Zt = λt
λt−1 captures time-varying markup. From (9), the aggregate price is given by:

Pt =
[
ωP 1−λt

t−1 + (1− ω) P ∗1−λt
t

] 1
1−λt .

Linear approximation around the steady state of Pt and P ∗
t gives the New Keynesian

Phillips curve:

πt = βEtπt+1 +
(1− βω) (1− ω)

ω
ϕt +

1− ω

ω
(zt − βωEtzt+1) , (13)

where πt denotes the inflation rate, ϕt = wt − pt − at is the real marginal cost, and the

time-varying markup zt is interpreted as a cost-push shock to the firms’ price setting. All

of the variables are expressed as percentage deviations from their steady-state values.
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2.3 Flexible-Price Equilibrium and the Output Gap

The output gap is defined as a deviation of the actual output from some measure of potential

output. While previous studies have advocated various indexes of potential output, this

paper focuses on the output gap that is defined as the deviation of actual output from its

flexible-price equilibrium output that would prevail in the absence of cost shocks. As argued

in Woodford (2003), an optimal monetary policy replicates the flexible-price equilibrium,

which can be the first-best outcome under the assumption that the government offsets

monopolistic distortions by appropriate subsidies. Thus, the output gap that is defined

here should be a useful welfare measure for monetary policy makers.

Consider the case where all of the firms adjust their prices every period, abstracting

from cost-push shocks. The flexible price setting is characterized when ω = 0, P ∗
t = Pt,

and Zt = Z̄ in (12). Then, the definition of real marginal cost (11) implies:

Wt

Pt
=

At

Z̄
.

Combining this relationship with the first-order condition (3), which relates the real wage

to the marginal rate of substitution between consumption and leisure, the flexible price

equilibrium satisfies:
DtχNη

t

U∗
C,t/Ct

=
At

Z̄
.

Log-linear approximation around the steady state yields:

dt + ηnf
t − u∗fc,t + cf

t = at, (14)

where the superscript f means the flexible-price equilibrium. Similarly, the production

function (10) can be linearized as:

yf
t = nf

t + at. (15)

From (14) and (15), together with the equilibrium condition such that yf
t = cf

t , the flexible-

price equilibrium output yf
t can be written as:

yf
t = at +

1
1 + η

u∗fc,t −
1

1 + η
dt, (16)

with

u∗fc,t =
(1− τ)
(1− βh)

[(
1 + βh2

)
yf

t − hyf
t−1 − βhEty

f
t+1

]
+

1
1− βh

dt − βh

1− βh
Etdt+1. (17)
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Thus, fluctuations in the flexible-price equilibrium output depend not only on the produc-

tivity disturbance but also on the demand shock (specifically, the preference shock).

Then, the output gap is defined as:

gapt = yt − yf
t ,

which measures the percentage deviation of the actual output from the flexible-price equi-

librium output.

2.4 Monetary Policy

The model is closed by specifying a monetary policy rule. The monetary policy rule is

of the standard Taylor-type; that is, the central bank adjusts the nominal interest rate in

response to the movement of inflation and the output gap from its respective target level.

The log-linearized version of the policy rule is:

rt = ρrrt−1 + (1− ρr)
[
ψππt + ψy

(
yt − yf

t

)]
+ εr,t, εr,t ∼ N(0, σ2

r ), (18)

where 0 ≤ ρr < 1 determines the degree of interest rate smoothing, ψπ > 0, and ψy > 0.

εr,t is an exogenous policy shock that can be interpreted as an unsystematic component of

the monetary policy.

2.5 Exogenous Shock Processes and Equilibrium System

As sources of equilibrium dynamics, we assume that the demand shock dt, the cost shock

zt, and the productivity shock at follow the stationary first-order autoregressive processes:

dt = ρddt−1 + εd,t, 0 ≤ ρd < 1, εd,t ∼ N(0, σ2
d), (19)

zt = ρzzt−1 + εz,t, 0 ≤ ρz < 1, εz,t ∼ N(0, σ2
z), (20)

at = ρaat−1 + εa,t, 0 ≤ ρa < 1, εa,t ∼ N(0, σ2
a). (21)

We now have a general equilibrium system that consists of the equations (5), (6), (7),

(13), (16), and (17) together with the fundamental shock processes (19), (20), and (21).

3 Estimation Strategy

We apply Bayesian techniques in order to estimate structural parameters in the fully spec-

ified DSGE model. Bayesian estimation strategies help to estimate DSGE models with
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cross-equation restrictions, coping well with misspecification and identification problems.

Given the estimated parameters, the potential output is estimated using a Kalman filter

algorithm. In this section, we begin with a review about the Bayesian method. Next, we

describe the data used for estimation and explain the prior distributions of the parameters.

3.1 Bayesian Estimation Methodology

In solving a rational expectations system, we follow the approach of Sims (2002).2 To obtain

a canonical form of the rational expectations system, we define the vector of the model vari-

ables st =
[
yt, πt, rt, u

∗
t , y

f
t , u∗ft , dt, zt, at, Etyt+1, Etπt+1, Ety

f
t+1, Etu

∗f
t+1, yt−1

]′
,3 the vector

of exogenous fundamental disturbances εt = [εd,t, εz,t, εa,t, εr,t]
′, and the vector of endoge-

nous forecast errors ηt =
[
(yt − Et−1yt) , (πt − Et−1πt) , (yf

t − Et−1y
f
t ), (u∗ft − Et−1u

∗f
t )

]′
.

Then, the system of equations can be written in the canonical form:

Γ0 (θ) st = Γ1 (θ) st−1 + Ψ0 (θ) εt + Π0 (θ) ηt, (22)

where Γ0, Γ1, Ψ0 and Π0 are the conformable matrices of coefficients that depend on the

structural parameters θ. The solution is of the form:4

st = Γ (θ) st−1 + Ψ (θ) εt. (23)

Let Y T be a set of observable data. Since the rational expectations solution (23)

and a set of measurement equations that relates data to the model variables st provide

a state-space representation, the likelihood function L(θ|Y T ) can be evaluated using the

Kalman filter. The Bayesian approach places a prior distribution p (θ) on parameters and

updates the prior through the likelihood function. Bayes’ Theorem provides the posterior

distribution of θ:

p
(
θ|Y T

)
=

L
(
θ|Y T

)
p (θ)∫

L (θ|Y T ) p (θ) dθ
.

Markov Chain Monte Carlo methods are used to generate the draws from the posterior

distribution. Based on the posterior draws, we can make inference on the parameters.5 For

2Sims’ solution method generalizes the technique in Blanchard and Kahn (1980).

3Note that some of the variables are erased by combining equilibrium conditions. Also, yt−1 is added

in the vector of the model variables st so that we can relate st to output growth data in the state-space

representation explained below.

4We only consider the parameter space that leads to equilibrium determinacy.

5For our subsequent analysis, 500,000 draws are generated with a random-walk Metropolis Algorithm,

and the first 50,000 draws are discarded.
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details of its computational implementation, see Schorfheide (2000). The marginal data

density, which assesses the overall fit of the model, is given by:6

p
(
Y T

)
=

∫
L(θ|Y T )p(θ)dθ.

Our primary interest is to extract an estimate of the potential output, which is one

of the state variables in the present model, so that the output gap can be calculated as

a deviation of the actual output from the potential. Conditional on each draw of the

parameters and a set of observables, the Kalman filter generates one-sided estimates of

the state variables, based on previous observations, and the Kalman smoother computes

two-sided estimates that incorporate data through the end of the sample. Throughout this

paper, we consider the latter as the estimated state time series.

3.2 Data and Priors

The data used for estimation are the output growth rate (Y GRt), the inflation rate (INFt),

and the nominal interest rate (INTt) in the U.S. economy. The output growth is calculated

from real GDP, in per capita terms, divided by the labor force. The inflation rate is based

on the CPI excluding food and energy, i.e., core CPI. The nominal interest rate is the

Federal Funds Rate. The GDP and the CPI are seasonally adjusted. Inflation and the

interest rate are annualized. All data are at quarterly frequencies from 1982:4 to 2006:4.7

The measurement equations that relate the model variables st to the data is of the form:



Y GRt

INFt

INTt


 =




γ∗

π∗

r∗ + π∗


 +




1 0 0 0 0 0 0 0 0 0 0 0 0 −1

0 4 0 0 0 0 0 0 0 0 0 0 0 0

0 0 4 0 0 0 0 0 0 0 0 0 0 0


 st,

where γ∗ is the steady-state growth rate of a nonstationary technology shock, while r∗ and

π∗ are the annualized inflation and real interest rate at the steady state.

Priors for the structural parameters are summarized in Table 1. The inverse of intertem-

poral substitution elasticity τ , the habit persistence parameter h, and the probability ω

that prices remain unchanged for the next period are in line with the estimates of a sim-

ilar model that is reported in Lubik and Schorfheide (2004). The discount factor β is

6The marginal data densities are approximated using the harmonic mean estimator that is proposed by

Geweke (1999).

7The beginning of the sample is determined to exclude the possibility of equilibrium indeterminacy,

based on the finding in Lubik and Schorfheide (2004).
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Table 1: Prior and posterior distributions of the parameters

Prior

Parameter Range Density Mean 90% interval

τ <+ Gamma 1.86 [ 1.61, 2.11]

h [0, 1) Beta 0.50 [ 0.25, 0.74]

ω [0, 1) Beta 0.66 [ 0.58, 0.74]

r∗ <+ Gamma 3.00 [ 2.60, 3.42]

η <+ Gamma 1.00 [ 0.58, 1.39]

ψπ <+ Gamma 1.50 [ 1.25, 1.74]

ψy <+ Gamma 0.50 [ 0.34, 0.66]

ρr [0, 1) Beta 0.50 [ 0.25, 0.75]

ρd [0, 1) Beta 0.50 [ 0.25, 0.75]

ρz [0, 1) Beta 0.50 [ 0.25, 0.75]

ρa [0, 1) Beta 0.50 [ 0.25, 0.74]

γ∗ <+ Gamma 0.50 [ 0.00, 1.16]

π∗ <+ Gamma 3.36 [ 2.53, 4.16]

σr <+ InvGamma 0.50 [ 0.22, 0.80]

σd <+ InvGamma 0.50 [ 0.21, 0.79]

σz <+ InvGamma 0.50 [ 0.21, 0.78]

σa <+ InvGamma 0.50 [ 0.21, 0.79]

ln p(Y T )

Posterior

Mean 90% interval

1.75 [ 1.51, 1.97]

0.59 [ 0.39, 0.79]

0.82 [ 0.78, 0.86]

2.75 [ 2.42, 3.09]

0.79 [ 0.46, 1.11]

1.55 [ 1.29, 1.80]

0.69 [ 0.51, 0.86]

0.74 [ 0.67, 0.80]

0.79 [ 0.72, 0.86]

0.84 [ 0.76, 0.92]

0.90 [ 0.83, 0.98]

0.43 [ 0.38, 0.48]

3.37 [ 2.87, 3.88]

0.14 [ 0.12, 0.16]

1.39 [ 1.05, 1.72]

0.45 [ 0.28, 0.62]

0.87 [ 0.64, 1.08]

-287.60

Note: The prior is truncated at the boundary of the determinacy region.

parameterized in terms of the steady-state real interest rate r∗ so that the conversion is

β = [exp(r∗/400)]−1. The prior means for r∗ and π∗ are based on historical averages of the

actual data. The parameter η, which is associated with the substitution elasticity between

consumption and labor, is distributed around one following standard calibration exercises

in business cycle research. The monetary policy parameters ψπ and ψy are set on the basis

of Taylor (1993). The autoregressive coefficients of the shocks, ρd, ρz, and ρa, and the

variances of the fundamental shocks, σr, σd, σz, and σa, are centered at 0.5, upon which

we allow for relatively wide confidence intervals.
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4 Empirical Results

In this section, we provide baseline results of our empirical analysis. We begin by explaining

the posterior distribution of the structural parameters. Next, we present the estimated

output gap and investigate its properties. Robustness of the estimates is examined in the

next section.

4.1 Posterior Distribution of the Structural Parameters

The last two columns in Table 1 reports posterior distributions of the structural parameters.

The posterior means for intertemporal substitution elasticity τ−1, the habit persistence

parameter h, the steady-state real interest rate r∗, the monetary policy coefficient on

inflation rate ψπ, the trend growth rate γ∗, and the steady-state inflation π∗ are almost the

same as their corresponding prior means. The parameter ω, the so-called Calvo parameter,

is higher than its prior. The mean value 0.82 implies that firms set prices approximately

every six quarters. The parameter η that relates to the elasticity for labor supply is smaller

than the prior. The monetary policy coefficient on the output gap ψy is higher than the

example in Taylor (1993), implying more importance of the output gap to the Fed’s reaction

function. The policy smoothing parameter ρr is higher than the prior, which is consistent

with the empirical studies on the monetary policy rules.

The autoregressive coefficients for the fundamental shocks, ρd, ρz, and ρa, which rep-

resent persistency of the shocks, take remarkably high values. This result suggests that

the stickiness observed in actual data is captured by the persistency of the shocks whereas

the simple New Keynesian framework itself characterizes forward-looking behavior of the

agents. While the variances of the demand shock σd and the productivity shock σa are

larger than the priors, those of the policy shock σr and the cost shock σz are relatively

smaller.

4.2 Propagation of the Fundamental Shocks

The primary interest of this paper is to extract the series of the output gap based on the

estimated DSGE model and to investigate the background of the output gap fluctuations.

Before proceeding to such analyses, it is useful to compute impulse responses and variance

decompositions to understand the propagation mechanism of the structural shocks.

Figure 1 graphs impulse responses of output, inflation, the nominal interest rate, and

12



Figure 1: Impulse responses

the potential output to the following four shocks: demand, technology, marginal cost,

and policy shock. Each graph plots the posterior mean (solid lines) and pointwise 90%

posterior probability intervals (dashed lines) for the impulse response to one-standard-

deviation shocks in terms of percentage deviation from the steady state. Since the model is

based on a prototypical New Keynesian monetary DSGE framework with habit formation,

the impulse responses here are quite standard. A positive demand shock (specifically,

the preference shock) increases both actual output and potential output, but the increase

in the potential output is less than the actual, so that inflation rises. In response to

inflation, the central bank raises the interest rate. A positive technology shock boosts

the potential output and has a negative effect on marginal cost and, hence, on inflation.

Responding to low inflation, the central bank lowers the interest rate. Actual output also

increases because of the high productivity and the low interest rate. A cost shock causes

the monetary authority to raise the interest rate. The tightening monetary policy depresses

13



Table 2: Variance decompositions

Shock Mean 90% interval

Output

Demand 0.49 [ 0.25, 0.71]

Productivity 0.46 [ 0.24, 0.68]

Cost 0.01 [ 0.00, 0.01]

Policy 0.04 [ 0.01, 0.06]

Interest rate

Demand 0.48 [ 0.34, 0.64]

Productivity 0.27 [ 0.16, 0.39]

Cost 0.15 [ 0.06, 0.24]

Policy 0.09 [ 0.05, 0.13]

Shock Mean 90% interval

Inflation

Demand 0.19 [ 0.06, 0.30]

Productivity 0.15 [ 0.04, 0.25]

Cost 0.64 [ 0.45, 0.85]

Policy 0.02 [ 0.00, 0.04]

Potential output

Demand 0.09 [ 0.00, 0.21]

Productivity 0.91 [ 0.79, 0.99]

Cost 0.00 [ 0.00, 0.00]

Policy 0.00 [ 0.00, 0.00]

the economy. A positive monetary policy shock has a contractionary effect on both output

and inflation. Notice that the cost and policy shocks have no effect on potential output.

Table 2 reports variance decompositions for output growth, inflation, the nominal in-

terest rate, and potential output growth. To understand the variability of the output gap,

the decompositions for actual and potential output are of particular importance. Actual

output is driven by both demand and productivity shock while potential output movements

are mainly due to productivity shock. For the two series, the contributions of the cost and

policy shocks are negligible. Based on these findings together with the observation in the

impulse response analysis, we historically evaluate the output gap variability in the next

subsection.

4.3 Output Gap

Figure 2 plots the posterior mean of the two-sided smoothed estimate of the output gap

(thick solid line) and its 90 percent confidence intervals (dashed lines). Deviation of output

from its HP trend8 is also presented for the purpose of comparison (thin solid line). The

shaded areas indicate recessions as dated by the National Bureau of Economic Research

(NBER).

Our model-consistent output gap had been positive during the late 1980s, but turned

to be negative in the first half of the 1990s, reflecting the severe concern in financial sectors.

8The smoothing parameter of the HP filter is set at 1600.
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Figure 2: Output gaps

As the economy boomed in the latter half of the 1990s, the gap exceeded its desired level

and attained the high level toward 2000. After the collapse of the so-called IT bubbles at

the beginning of 2001, the output gap dropped to be negative, and has been around the

neutral level since 2005. A remarkable characteristic of our model-based output gap is that

the periods when it sharply fell to be negative correspond well to the dates of recessions

published by the NBER and that the gap had recovered from the bottom or stayed positive

during the boom. This property suggests that the output gap can be a reasonable indicator

for overall macroeconomic conditions. The HP-based output gap is, however, inconsistent

with the boom in the middle of the 1990s; that is, it dropped during the booms in 1993

and 1995 owing to temporary stagnation of the actual output since the potential output is

assumed to evolve smoothly at all times. In contrast, our model-based output gap takes

account of the steadily high inflation rate during the period, so that it exhibits few changes

in 1993 and 1995.

According to Edge, Kiley, and Laforte (2007), who exploit a larger model for the U.S.

economy and estimate the output gap that is conceptually similar to ours, their output

gap has been negative at all times since the middle of the 1990s. On the other hand, our

estimate of the output gap exhibits cyclical movements during the period and is successful
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Figure 3: Historical estimates of the shocks

in illustrating the business cycles. A possible interpretation of this difference is that their

output gap has less correlation with actual output and, hence, a relatively closer link to

inflation, so that the gap captures downward trend in inflation. The weak link between

their output gap and actual output is ascribed to the richness of their model; that is, their

model contains various kinds of shocks, even under flexible prices and wages, and these

shocks have substantial effects on potential output in the same direction as actual output,

which results in a weak relationship between the output gap and actual output.

An important advantage of the DSGE-based output gap is that we can infer the driving

forces of the output gap and the relevant macroeconomic variables structurally. Figure 3

depicts the historical mean estimates of the fundamental shocks: demand shocks dt (thick

solid line), productivity shocks at (thick dashed line), cost shocks zt (thin dashed line),

and policy shocks εr,t (thin solid line), and Figure 4 graphs the contributions of each shock

to the output gap historically.9 The figures show that the large swings in the demand

shocks are the main source of the output gap movements. In particular, both of the two

9The total of the stacked column tends not to be equal to our estimate of the output gap in a few periods

from the beginning of the sample. This is because the series of the output gap and the fundamental shocks

are the Kalman smoothed estimates while the contributions of each shock are computed by substituting

the historical estimates of the shocks into the structural moving average representation.
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Figure 4: Historical decomposition of the output gap

recessions are triggered by the sharp drops in the demand disturbances. Our estimates,

however, reveal a stark difference between the two recession periods. Whereas productivity

had been sluggish under the first recession in the early 90s, it had exhibited high growth

and had negative impact on the output gap in the second recession after the collapse of

the IT bubbles. We can also see that the cost shocks negatively affected the output gap in

and after the first recession due to the high interest rate responding to inflation. Another

finding is that, during the latter half of the 90s, the demand and productivity expanded

simultaneously, which gave rise to the stable output gap and, hence, stable inflation. This

finding contributes to the recent discussions on the “good luck” hypothesis that explains the

recent stable inflation regime; the literature typically documents decreasing volatilities of

the associated shocks,10 our analysis rests on tracking the comovements of the fundamental

shocks.

10See, for instance, Canova, Gambetti, and Pappa (2005) and Sims and Zha (2006).
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5 Robustness Analysis

The DSGE-consistent output gap we have computed is conditional on the modeling frame-

work and the estimation assumptions. In this section, we investigate the robustness of our

baseline results by considering modifications with respect to the model specification, the

priors, and the estimation sample.

5.1 Alternative Model Specifications

While an advantage of the full-information likelihood-based approach is to implicitly gen-

erate an optimal set of instruments for the coefficients of the equations, a weakness is

that it is potentially sensitive to model misspecification. In this subsection, we check the

robustness of our baseline estimates by exploiting alternative specifications to the baseline

model.

We first consider the case where the utility function for the representative household

is specified without habit formation, i.e., h = 0 in the baseline system of equations. Then,

the model is reduced to the prototypical New Keynesian model described in Walsh (2003)

or Woodford (2003).

Gaĺı and Gertler (1999) suggest that postwar U.S. inflation dynamics is consistent with

a simple hybrid variant of the New Keynesian Phillips curve that allows for a fraction of

firms that use a backward-looking rule to set prices. Let λ denote a fraction of the firms

that set their prices using a simple rule of thumb that is based on the recent history of

aggregate price. Then, the hybrid New Keynesian Phillips curve is of the following form:

πt =
λ

φ
πt−1 +

βω

φ
Etπt+1 + (1− λ)

[
(1− βω) (1− ω)

φ
ϕt +

1− ω

φ
(zt − βωEtzt+1)

]
, (24)

with φ = ω + λ [1− ω (1− β)]. The prior for λ is distributed according to a Beta-

distribution with mean 0.5 and standard deviation 0.1.

As for the monetary policy, the monetary policy rule specified as (18) assumes that the

monetary authority have complete information on the output gap when they make their

decision. Orphanides, Porter, Reifschneider, Tetlow, and Finan (2000), however, show that

it may be preferable for the policy to respond to output growth rather than the output gap

when the measurement errors of the output gap are taken into account. Thus, we consider

the following reaction function that reacts to the actual output growth rate instead of the

output gap:

rt = ρrrt−1 + (1− ρr) (ψππt + ψy∆yt) + εr,t. (25)
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Table 3: Parameter estimation results based on alternative specifications

Parameter

λ

τ

h

ω

r∗

η

ψπ

ψy

ρr

ρd

ρz

ρa

γ∗

π∗

σr

σd

σz

σa

ln p(Y T )

Without habit

Mean 90% interval

1.76 [ 1.53, 1.99]

0.80 [ 0.76, 0.85]

2.74 [ 2.40, 3.08]

0.87 [ 0.52, 1.23]

1.61 [ 1.36, 1.87]

0.71 [ 0.53, 0.90]

0.72 [ 0.66, 0.79]

0.83 [ 0.78, 0.89]

0.83 [ 0.74, 0.93]

0.96 [ 0.93, 0.99]

0.42 [ 0.38, 0.47]

3.52 [ 3.01, 4.04]

0.15 [ 0.13, 0.18]

1.42 [ 1.09, 1.74]

0.42 [ 0.27, 0.57]

0.75 [ 0.62, 0.89]

-292.36

Hybrid Phillips curve

Mean 90% interval

0.47 [ 0.28, 0.66]

1.81 [ 1.57, 2.04]

0.82 [ 0.68, 0.95]

0.76 [ 0.70, 0.82]

2.68 [ 2.36, 2.98]

0.84 [ 0.50, 1.18]

1.50 [ 1.27, 1.73]

0.67 [ 0.49, 0.84]

0.72 [ 0.66, 0.78]

0.69 [ 0.58, 0.80]

0.47 [ 0.25, 0.69]

0.72 [ 0.58, 0.88]

0.47 [ 0.43, 0.50]

3.36 [ 2.94, 3.79]

0.14 [ 0.12, 0.16]

1.24 [ 0.86, 1.61]

1.22 [ 0.43, 1.99]

1.06 [ 0.61, 1.50]

-302.21

Output growth rule

Mean 90% interval

1.68 [ 1.45, 1.92]

0.37 [ 0.21, 0.52]

0.82 [ 0.77, 0.86]

2.67 [ 2.34, 2.99]

0.85 [ 0.51, 1.20]

1.81 [ 1.59, 2.02]

0.57 [ 0.41, 0.72]

0.72 [ 0.67, 0.78]

0.89 [ 0.85, 0.94]

0.49 [ 0.22, 0.76]

0.96 [ 0.93, 0.99]

0.44 [ 0.38, 0.50]

3.56 [ 3.08, 4.05]

0.18 [ 0.16, 0.21]

1.17 [ 0.85, 1.47]

0.36 [ 0.21, 0.50]

0.88 [ 0.71, 1.06]

-289.17

Table 3 summarizes posterior distributions of the parameters based on the alternative

specifications above. Without habit formation, i.e., h = 0, the changes in the estimated

parameters are quite marginal from the baseline case. With the hybrid Phillips curve (24),

while a fraction of the rule-of-thumb price setters λ has a similar distribution to the prior,

the autoregressive coefficient for the cost shock ρz becomes smaller as a result of the internal

dynamic structure that is embedded in the hybrid Phillips curve. The other parameters are,

by and large, in line with the baseline estimates. In the case with the alternative monetary

policy rule specified as (25), the habit persistence parameter h and the autoregressive

coefficient on the cost shock ρz take smaller values, reflecting the additional lag structure

by including the output growth yt−yt−1 in the policy rule. Notice that each marginal data

density ln p(Y T ) indicates that alternative specifications considered here do not contribute

19



-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06

Baseline

Without habit

Hybrid Phillips curve

Output growth rule

Figure 5: Output gaps based on different model specifications

to a better fit of the model. This finding, in turn, validates our baseline specification in an

empirical sense.

Figure 5 compares the mean estimates of the output gaps extracted from the alternative

model specifications. The output gap without habit formation (thin solid line) and that

with the hybrid Phillips curve (thin dashed line) is almost the same as that in the baseline

case (thick solid line). This is considered as a result that the differences of the estimated

parameters are marginal and that overall model properties remain unchanged. As for

the case with the output growth rule (thick dashed line), however, the output gap is

dramatically different from the baseline estimate. In particular, the series of the output

gap under the alternative policy rule is quite similar to that of inflation throughout the

sample. This is because the DSGE-based output gap has a close link to inflation. When

the output gap is included in the policy rule, the movements of the gap directly affect

the nominal interest rate and are, then, transmitted to actual output through the Euler

equation. Thus, in the process of estimation, more information on the interest rate and

output data is used to determine the evolution of the output gap. Under the output growth

rule, in contrast, the output gap is linked to the interest rate and output only through the

inflation channel, and, hence, the connection between the output gap and inflation becomes
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Table 4: Parameter estimation results based on alternative priors

Parameter

τ

h

ω

r∗

η

ψπ

ψy

ρr

ρd

ρz

ρa

γ∗

π∗

σr

σd

σz

σa

ln p(Y T )

Loose prior

Mean 90% interval

1.57 [ 1.18, 1.93]

0.81 [ 0.60, 0.99]

0.85 [ 0.80, 0.89]

2.45 [ 1.95, 2.94]

0.71 [ 0.19, 1.20]

1.50 [ 1.03, 1.96]

0.92 [ 0.55, 1.30]

0.76 [ 0.69, 0.83]

0.75 [ 0.57, 0.89]

0.84 [ 0.76, 0.93]

0.82 [ 0.69, 0.96]

0.45 [ 0.41, 0.50]

3.08 [ 2.47, 3.68]

0.14 [ 0.12, 0.16]

1.13 [ 0.51, 1.68]

0.54 [ 0.28, 0.79]

1.00 [ 0.57, 1.47]

-279.77

Tight prior

Mean 90% interval

1.82 [ 1.69, 1.94]

0.48 [ 0.37, 0.59]

0.75 [ 0.71, 0.78]

2.87 [ 2.69, 3.06]

0.91 [ 0.72, 1.10]

1.59 [ 1.47, 1.72]

0.55 [ 0.46, 0.65]

0.70 [ 0.64, 0.77]

0.79 [ 0.71, 0.87]

0.77 [ 0.54, 0.94]

0.97 [ 0.95, 0.99]

0.38 [ 0.32, 0.45]

3.56 [ 3.22, 3.91]

0.17 [ 0.14, 0.20]

1.07 [ 0.85, 1.30]

0.30 [ 0.20, 0.39]

0.83 [ 0.69, 0.96]

-300.39

strong. The last finding sheds light on an important property of system-based estimates of

the output gap since most of the previous studies only consider Phillips curve relationships

to estimate the output gap.

5.2 Alternative Priors

Bayesian estimation strategies allow likelihood functions to be weighted by prior distri-

butions, which play important roles to estimate fully specified DSGE models. The prior

provides information that is not contained in the data, and helps to avoid identification

problems. However, since changes in the prior distributions affect a shape of the corre-

sponding posterior, Bayesian estimation results might be changed depending on the priors.

To assess the sensitivity of our estimates to the choice of priors, we reestimate the baseline

model under two alternative priors: the “loose” prior and the “tight” prior. In principle,
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Figure 6: Output gaps based on different priors

the loose priors exploit more information on data, and the tight priors reflect more beliefs

of researchers. The loose and tight prior modify the baseline prior so that the standard

deviations for a subset of the parameters, {τ, h, ω, r∗, η, ψπ, ψy, γ
∗, π∗}, become doubled

and half, respectively.

The resulting posterior distributions under different priors are summarized in Table 4.

As expected, for most of the parameters, deviations of the posterior estimates from the

prior means are remarkable under the loose prior, and the tight prior delivers the estimates

close to the prior. Figure 6 depicts the corresponding estimates of the output gap. We can

see that the output gap under the tight prior (thin solid line) exhibits smaller volatility.

This result is due to the smaller values of the habit persistence parameter h and the Calvo

parameter ω under the tight prior, which reduces the endogenous volatilities generated by

the shocks. On the other hand, the gap under the loose prior (dashed line) is almost the

same as the baseline (thick solid line), implying that the baseline estimates have already

exploited enough information contained in the data.
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Table 5: Parameter estimation results based on different samples

Parameter

τ

h

ω

r∗

η

ψπ

ψy

ρr

ρd

ρz

ρa

γ∗

π∗

σr

σd

σz

σa

ln p(Y T )

1982Q4–2003Q4

Mean 90% interval

1.74 [ 1.51, 1.97]

0.59 [ 0.39, 0.81]

0.82 [ 0.78, 0.86]

2.78 [ 2.43, 3.12]

0.79 [ 0.46, 1.11]

1.55 [ 1.30, 1.81]

0.68 [ 0.50, 0.85]

0.71 [ 0.63, 0.78]

0.77 [ 0.69, 0.86]

0.84 [ 0.76, 0.92]

0.91 [ 0.84, 0.98]

0.42 [ 0.36, 0.48]

3.45 [ 2.90, 3.99]

0.15 [ 0.12, 0.17]

1.36 [ 1.02, 1.70]

0.45 [ 0.28, 0.61]

0.88 [ 0.65, 1.10]

-261.79

1982Q4–2000Q4

Mean 90% interval

1.72 [ 1.48, 1.94]

0.58 [ 0.35, 0.82]

0.80 [ 0.75, 0.85]

2.88 [ 2.52, 3.22]

0.81 [ 0.47, 1.15]

1.58 [ 1.33, 1.85]

0.64 [ 0.46, 0.81]

0.70 [ 0.62, 0.79]

0.76 [ 0.68, 0.86]

0.85 [ 0.77, 0.93]

0.92 [ 0.84, 0.99]

0.45 [ 0.39, 0.51]

3.48 [ 2.91, 4.05]

0.15 [ 0.13, 0.18]

1.19 [ 0.87, 1.50]

0.41 [ 0.26, 0.56]

0.83 [ 0.62, 1.04]

-223.71

5.3 Effect of Data Accumulation

Actual real-time analysis is conducted through reestimating the structural parameter and

reextracting the state variables when new data are available. This subsection especially

considers the effect of data accumulation to the smoothed estimates of the output gap.

While the Kalman filter generates one-sided estimates of the potential output, the

Kalman smoother computes two-sided estimates by reevaluating one-sided estimates back-

ward from the end of the sample. This implies the possibility that the smoothed estimate

of the output gap is revised, every time when new data are added, not only at the end of

the sample but also throughout the sample. In particular, a relatively large revision may

occur toward the end of the sample. Also, since the state variables are evaluated given each

draw of structural parameters, changes in the estimated parameters may cause substantial

changes in the output gap if extension in the sample size coincides with some structural
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Figure 7: Effect of data accumulation

changes. This causes a serious problem when policy makers try to measure the output

gap accurately and use the measurement in making a real-time assessment of business con-

ditions. Below, we examine how the sample addition affects the estimate of the output

gap.11

Table 5 reports the parameter estimation results based on different samples, i.e., 1982Q4–

2003Q4 and 1982Q4–2000Q4. The structural parameters are fairly stable against addition

to the sample, and, hence, the effect of changes in parameters to the estimates of the out-

put gap should be negligible. Figure 7 shows how sample addition affects the two-sided

smoothed estimates of the output gap. The revision at the end of each sample is more than

0.3 percent, which should not be ignored on account of the scale of the series. In particu-

lar, the gap estimated through 2000Q4 (thin solid line) becomes positive while the baseline

(thick solid line) has negative values. Although substantial revisions are made only for a

few periods near the end of the sample, minor revisions are found throughout the sample.

This finding together with the result of parameter stability implies that the effect of data

accumulation is ascribed to the smoothing procedure that reevaluates one-sided estimates

11See Orphanides and van Norden (2002) for comprehensive analysis of real-time estimates for a variety

of output gaps.
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backward from the end of the sample.

6 Conclusion

In this paper, we estimated the output gap that is consistent with the fully specified DSGE

model. The model-based estimation of the output gap has several advantages. First, the

output gap is a useful measure for welfare since the model is derived from optimizing

behavior of households and firms. Second, based on our Bayesian estimation results, the

output gap is a plausible indicator for macroeconomic conditions. Third, the structural

parameters and fundamental shocks provide an economic interpretation for movements of

the estimated output gap.

According to our robustness analysis, however, researchers need to be careful in as-

sessing the estimated output gap since our estimation procedure is subject to model spec-

ifications, choice of priors, and data accumulation. Our analysis particularly shows that

the result is sensitive to the alternative specification for the monetary policy rule, which

is relevant to an information assumption on the central bank. Therefore, it could be an

extension to consider an alternative information assumption on households and firms or

introduce learning expectations for the agents, and, then, examine the implied output gaps.
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