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Abstract

In this paper, we estimate time-varying biases of technical change
and their effects on productivity using econometric models of aggre-
gate and industry-level technology in Japan. In our aggregate model,
the bias of technical change for energy input was energy-saving in
the 1980s but gradually switched to energy-using around 2000. We
found little evidence that producers switched to energy-saving tech-
nical change by the end of 2008 in response to the recent surge in
energy prices. As a result, rising energy prices under the energy-
using technical change have contributed to a slowdown in TFP growth.
Meanwhile, the labor-saving technical change has made large positive
contributions to TFP growth and labor productivity growth. In our
models of individual industries, the biases of technical change for en-
ergy have been small since the 1980s and those for materials have been
substantially materials-saving in many industries.
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1 Introduction

Energy prices have risen enormously in the 2000s. Crude oil prices fell sharply

in the second half of 2008, but have surged again since early 2009. These

movements remind us of the oil crises that occurred twice in the 1970s, when

Japan’s economy suffered from significant growth slowdown. In response to

the crises, many Japanese producers changed their technology toward energy

efficiency, and that helped the substantial economic recovery in the 1980s. It

is often argued that a key innovation for the next decade will be in energy-

saving technology, which will again help the world economy and Japan’s

economy recover from the current recession.

In this paper, we estimate biases of technical change and their effects on

productivity using econometric models of aggregate and industry-level tech-

nology in Japan. Biases of technical change represent the effect of technical

change on the share of inputs in the value of output.1 The bias of tech-

nical change for energy, for instance, is energy-using (energy-saving), if the

share of energy increases (decreases) with a change in technology at a con-

stant input ratio (or relative input prices). Many theoretical and empirical

studies, especially those based on macroeconomic models, consider only unbi-

ased (“neutral”) technical change by assuming the Cobb-Douglas production

function under which the input shares are unaffected by technical change. In

reality, however, many technical changes may benefit some particular factor

of production more than others. For instance, there has been no tendency

for the returns to the skill to fall in the U.S. since the 1940s, despite a large

increase in supply of the skilled labor. The standard explanation for this ten-

dency is that the bias of technical change for skilled labor over the post-war

period has been skill-using (skill-biased). By contrast, technical change dur-

ing the late eighteenth and early nineteenth centuries, when the artisan shop

was replaced by the factory, was likely to be skill-saving (unskill-biased).2

Our models are based on the standard econometric approach to modeling

biases of technical change with the translog functional form, which was intro-

1The study on biases of technical change dates back to Hicks (1932).
2Acemoglu (2002) investigates theoretical background of these historical tendencies.

Acemoglu (2009, chapter 15) deals with this issue more extensively.
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duced by Binswanger (1974). Moreover, following Jin and Jorgenson (2008)

who estimate biases of technical change using U.S. industry-level data, we

assume that the biases of technical change are time-varying, and estimate

them by applying the Kalman filter.3 Many previous empirical studies on bi-

ases of technical change, including Kuroda, Yoshioka, and Jorgenson (1984)

who estimate the biases using Japanese data, assume constant time trends

so that biases are fixed during the sample period. However, the biases of

technical change, especially for energy, are likely to change in response to

swings in relative input prices.

Together with time-varying biases of technical change, we estimate time-

varying rate of technical change and fixed parameters on substitution among

inputs in our models.4 These enable us to consider the effects of the biases of

technical change on total factor productivity (TFP) and each factor’s average

productivity.5 The rate of technical change corresponds to the growth rate

of TFP in our models and can be decomposed into the contribution of the

biases of technical change and the neutral technical change. The contribution

of the biases of technical change is larger when the bias for an input that

is used more than other inputs (or the price of which is lower than that

of other inputs) is input-using. Moreover, we can consider the effects of

change in inputs (or input prices) on change in TFP growth under biases

of technical changes. If the bias for an input is input-using, TFP growth

accelerates as the corresponding input increases (or the corresponding input

price decreases) relative to other inputs. Many previous empirical studies

show that the oil crises in the 1970s under energy-using technical change

contributed to a slowdown in TFP growth.6

3Binswanger (1974) considers time-varying as well as constant biases of technical
change. However, his model of time-varying biases does not introduce latent variables
as Jin and Jorgenson (2008) and ours do.

4León-Ledesma, McAdam, and Willman (2009) provide an alternative approach to
jointly estimate the elasticity of substitution and biases of technical change.

5Growth in the average productivity of energy is equivalent to reduction in the “basic
unit” for energy. Note that the reduction in the basic unit for energy does not necessarily
mean the energy-saving technical change.

6For instance, Jorgenson (1981) and Kuroda, Yoshioka, and Jorgenson (1984) show
that the higher energy price was an important determinant of the productivity slowdown
in the 1970s in the U.S. and Japan, respectively.

2



Our model of the aggregate production technology in which the value of

aggregate output is allocated to capital, labor, and imported natural energy

resources is estimated using Japanese data from 1970 to 2008. The bias

of technical change for energy was energy-using in the 1970s, energy-saving

in the 1980s, and gradually switched again to energy-using around 2000.

We found little evidence that producers switched to energy-saving technical

change by the end of 2008 in response to the recent surge in energy prices.

As a result, the rising energy prices under the energy-using technical change

have contributed to a slowdown in TFP growth in the 2000s, as they did

in the 1970s. Meanwhile, the bias of technical change for labor has been

labor-saving throughout the sample period, and its pace accelerated around

the late 1990s. The labor-saving technical change has made large positive

contributions to TFP growth and labor productivity growth. The bias for

capital has been capital-using throughout the sample period.

Our models of Japanese individual industries in which the value of out-

put is allocated to capital, labor, energy, and (non-energy) materials are

estimated using Japanese data in the EU-KLEMS database from 1973 to

2005. The biases of technical change for energy and labor have been small in

many industries since the 1980s, except that the biases for labor were sub-

stantially labor-saving in some non-manufacturing industries in the 2000s.

The biases for capital have been capital-using in many industries since the

1980s. Meanwhile, the biases for materials have been material-saving and

substantial in magnitude in many industries. The differences in the estima-

tion results between our aggregate model and models of individual industries

could be explained by differences in the data, relationships with the biases

for materials, and changes in industrial structure.

The remainder of the paper is organized as follows. In Section 2, we

describe formally the definition of the biases of technical change and related

concepts, our econometric models, and estimation procedures. Section 3

reports the estimation results for our aggregate model, and Section 4 reports

those for our models of individual industries. Section 5 concludes.
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2 Concepts and Measurement

2.1 Concepts

Before considering biases of technical change, we first clarify the definition of

unbiased, i.e., “neutral” technical change. The concept of neutrality in this

paper is the “Hicks neutrality” as follows:7 technical change is said to be

neutral if the marginal rate of (technical) substitution stays constant when

the input ratio (e.g. capital-labor ratio) is held constant. This means a

homothetic inward shift of the unit isoquant, as shown in Figure 1.

We define the biases of technical change as Hicks non-neutrality. If the

marginal rate of substitution of an input (e.g. energy) for other inputs (e.g.

capital, labor, etc.) increases with a change in technology at a constant input

ratio (or relative input prices), the bias of technical change is input-using

(e.g. energy-using). If, on the other hand, the marginal rate of substitution

decreases, the bias of technical change is input-saving (e.g. energy-saving).

These cases are also shown in Figure 1.

Under cost minimization, the marginal rate of substitution must be equal

to the relative input price. Then the biases of technical change represent the

effects of technical change on the share of inputs in the value of output. Tech-

nical change is neutral, input-using, or input-saving depending on whether

the corresponding input share stays constant, increases, or decreases.

Suppose a production function is given by

Q = f(X1, X2, ..., t), (1)

where Q is output, Xi is i-th input, and the level of technology can be

represented by time t. The rate of technical change vt is defined as

vt =
∂ lnQ

∂t
. (2)

In the competitive markets for output and all inputs, the elasticity of output

7Other concepts for neutral technical change include “Harrod neutrality” and “Solow
neutrality.”
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with respect to each input i is equal to the corresponding input share vi:

vi =
∂ ln Q

∂ ln Xi
. (3)

Now the bias of technical change for input i is expressed as

vit =
∂2 ln Q

∂ lnXi ∂t

(
=

∂vt

∂ ln Xi
=

∂vi

∂t

)
. (4)

If the bias vit is positive, the corresponding input share vi increases with

a change in the level of technology and the technical change is said to be

i-using. If, on the other hand, vit is negative, vi decreases with the i-saving

technical change. At the same time, we can also derive the implications of

changes in inputs for the rate of technical change. If vit is positive, the rate

of technical change increases as the corresponding input Xi increases. If, on

the other hand, vit is negative, the rate of technical change decreases as Xi

increases. Note that if the production function is Cobb-Douglas, the biases

of technical change are always zero. Then the input shares are unaffected by

technical change and the rate of technical change is unaffected by changes in

inputs.

If the production function (1) is constant returns to scale, we can utilize

an alternative and equivalent description of the technology as the dual price

function for the producing unit:

PQ = g(P1, P2, ..., t), (5)

where PQ is the unit output price and Pi is the price of i-th input. Under

constant returns to scale, the value of output is equal to the value of all

inputs, which implies

∑
i

vi ≡
∑

i

Pi Xi

PQ Q
= 1.

We can then rewrite the equations (2) through (4) in terms of the price
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function as follows:

vt = −∂ ln PQ

∂t
(6)

vi =
∂ ln PQ

∂ ln Pi

(7)

vit =
∂2 ln PQ

∂ ln Pi ∂t

(
= − ∂vt

∂ ln Pi

=
∂vi

∂t

)
. (8)

From (8), we can derive the implications of changes in input prices for the rate

of technical change. If vit is positive, the rate of technical change decreases

as the corresponding input price Pi increases. If, on the other hand, vit is

negative, the rate of technical change increases as Pi increases.8

2.2 Econometric Models

In our econometric models of individual industries, we assume that the value

of output in each industry j is allocated to capital, labor, and (energy and

non-energy) materials including intermediate inputs from other industries so

that the industry-level production function and price function are expressed

as follows:

Qj = fj(Kj, Lj , Ej, Mj , t)

PQj = gj(PKj, PLj, PEj, PMj, t),

where Kj is capital input, Lj is labor input, Ej is energy input, Mj is non-

energy materials input, and Pij is the input price for factor i ∈ {K, L,E, M}
in industry j. Similarly, in our aggregate model, we assume that the value

of aggregate output is allocated to capital, labor, and raw materials (natu-

ral resources) excluding domestic intermediate inputs so that the aggregate

production function and price function are expressed as follows:

Y = fY (K, L,N, t)

PY = gY (PK , PL, PN , t),

8Further details are given by Jorgenson (1986).
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where Y is aggregate output, K is aggregate capital, L is aggregate labor, N

is natural resources, and PY , PK , PL, and PN are the corresponding prices.9

Following most previous empirical studies on biases of technical change,

we estimate the price functions instead of the production functions. It is

supposed to be more convenient to work with the price functions in treating

data, implementing estimation procedures, and representing substitution and

technical change. We assume the following translog form of the aggregate

price function:

ln PY = α0 +
∑

i

αi ln Pi + αt · t

+
1

2

∑
i, k

βik ln Pi ln Pk +
∑

i

βit ln Pi · t +
1

2
βtt · t2. (9)

i, k ∈ {K, L,N}

The same functional form is applied to the industry-level price function. α0,

αi, βik are the fixed parameters to be estimated.10

Moreover, following Jin and Jorgenson (2008), we assume αt, βit, and

βtt are time-varying and introduce the latent variables fit ≡ βit · t and ft ≡
αt · t + (1/2)βtt · t2. Changes in fit represent biases of technical change and

changes in ft represent neutral technical change, as shown below. Using these

latent variables and adding time subscripts t to all variables, we rewrite the

price function (9) as

ln PY t = α0 +
∑

i

αi ln Pit

+
1

2

∑
i, k

βik ln Pit ln Pkt +
∑

i

ln Pit · fit + ft. (10)

We assume that fit are stationary for all i, ft is first-difference stationary,

and fit and ∆ft(≡ ft − ft−1) follow autoregressive processes as described in

the next subsection.

9These assumptions imply separability among the aggregates over inputs in the pro-
duction function and those over input prices in the price function.

10In the Cobb-Douglas functional form, βik and βit are assumed to be zero for all i.
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The rate of technical change is now expressed as

vt
t = −

∑
i

ln Pit · ∆fit − ∆ft. (11)

Differentiating (10) with respect to lnPit yields the input share equations:

vi
t = αi +

∑
k

βik ln Pkt + fit. (12)

If fit is increasing with time, the input share vi
t increases, holding the input

prices constant, which corresponds to the i-using technical change. If, on the

other hand, fit is decreasing with time, vi
t decreases at constant input prices,

which corresponds to the i-saving technical change.

Equation (11) implies that the rate of technical change can be decomposed

into the contribution of the biases of technical change (the first term of the

right-hand side) and the neutral technical change (the second term). The

contribution of the biases of technical change is larger when the bias for an

input whose price is higher (lower) than other input prices is input-saving

(input-using). We can also derive the implication of changes in input prices

for the rate of technical change. If the bias for an input is input-using (input-

saving) the rate of technical change decreases (increases) as the corresponding

input prices increases (decreases) relative to the other input prices.

To incorporate proper implications from the production theory into the

model and to keep the estimation feasible, we impose several restrictions on

the price function (10). First, the price function is homogeneous of degree one

so that doubling of all input prices doubles the output price, which requires

∑
i

αi = 1

∑
i

βik = 0 for each k.

Then, since the input shares sum to unity, the latent variables representing

biases of technology must sum to zero,
∑

i fit = 0. Second, the price function

8



must be monotonic, which requires

vi
t > 0 for each i.

Third, the parameters representing share elasticities must be symmetric, so

that

βik = βki.

Finally, the price function must be locally concave when evaluated at the

prices observed in the sample period, which requires that

B + vi
t v

i
t
′ − Vt

is non-positive definite at each t in the sample period, where B is the matrix

of the parameters representing share elasticities (βik), v
i
t is the vector of input

shares, and Vt is a diagonal matrix with the shares along the diagonal.

2.3 Estimation Procedures

Following Jin and Jorgenson (2008), we apply an extension of the Kalman

filter to estimate the parameter values and the paths of the latent variables in

our models. The state-space form of the models can be expressed as follows.

ft = F ft−1 + ut, (13)

yt = Axt + Hft + wt, (14)

The state equation (13) represents autoregressive processes of the station-

ary latent variables characterizing the nature of technical change.11 The

observation equation (14) represents a system of the price function and the

corresponding input share equations. For our model of the aggregate econ-

omy, from equations (10) and (12), the vectors and matrices in the above

11Jin and Jorgenson (2008) assume that the stationary latent variables follow a vector
autoregressive process.
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state-space form are defined as follows.

ft = (1, fKt, fLt, ft, ft−1)
′

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

χK δKK 0 0 0

χL 0 δLL 0 0

χP 0 0 1 + δPP −δPP

0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

yt =

(
vK

t , vL
t , ln

PQt

PNt

)′

xt =

(
1, ln

PKt

PNt

, ln
PLt

PNt

,
1

2

(
ln

PKt

PNt

)2

,
1

2

(
ln

PLt

PNt

)2

, ln
PKt

PNt

ln
PLt

PNt

)′

A =

⎛
⎜⎝

αK βKK βKL 0 0 0

αL βKL βLL 0 0 0

α0 αK αL βKK βLL βKL

⎞
⎟⎠

H =

⎛
⎜⎝

0 1 0 0 0

0 0 1 0 0

0 ln PKt

PNt
ln PLt

PNt
1 0

⎞
⎟⎠

Note that fNt, vN
t , and related parameter values can be obtained on the

assumption of homogeneity of the price function.12 The error terms ut and

wt are assumed to be serially uncorrelated and uncorrelated with each other

at all lags. The above state-space form can be similarly applied to our models

of individual industries.

The Kalman filter algorithm provides estimates of the parameter values

and time paths of the latent variables. To estimate the parameter values,

we use maximum likelihood estimation. The log-likelihood function based

on the normal distribution is computed by the forward recursion (filtering).

Given the maximum likelihood estimator, we estimate the latent variables

using the backward recursion (smoothing).13

12We confirmed that replacing fKt and vK
t or fLt and vL

t in the above model with fNt

and vN
t makes little differences to the estimation results.

13These procedures are described by, for instance, Hamilton (1994).
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One important problem in applying the Kalman filter to our models is

the potential endogeneity of the explanatory variables, xt. To deal with

this problem, we introduce instrumental variables, zt, and replace xt with

its fitted values of the OLS estimates on the instrumental variables, that

is, x̂ = xz′(zz′)−1z. Following Jin and Jorgenson (2008), we conduct a

test of over-identifying restrictions to check the validity of our instrumental

variables.14

There are also some minor problems, such as the choice of initial values

of the latent variables and parameters to be estimated in the Kalman filter

algorism. We randomly generate initial values around empirically plausible

values (or simply zero) and check the robustness of the estimation results.

At the same time, we have to select a result subject to the local concavity

constraint of the price function.

In closing this section, we point out reservations or limitations in our

econometric models and estimation procedures stated above. First, our mod-

els assume constant returns to scale technology for all industries. This as-

sumption is reasonable for the aggregate economy but may be implausible

for some industries. Second, our models assume perfect competition for all

industries and do not consider any price distortions. This assumption may

also be implausible for some industries in the short run. Third, and most

importantly, our models do not consider intertemporal optimization by pro-

ducers. It is natural to assume that producers pursue a high rate of technical

change, given by equation (11), if technical change is not completely exoge-

nous to them. Then we can conjecture that, for instance, producers who face

a high energy price or anticipate a future increase in the energy price relative

to other input prices may wish to switch to energy-saving technical change,

and vice versa. Such an endogenous technical change may be partly captured

in our estimated latent variables. Meanwhile, our estimated latent variables

may also reflect movements in input shares that are exogenous to producers.

Since our models do not consider endogenous technical change explicitly, we

14To conduct this test, we have to choose more instrumental variables than endogenous
explanatory variables. We check whether the addition of extra instrumental variables to
the observation equation will not affect the original Kalman filter by a likelihood ratio
test.
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cannot identify fundamental sources of movements in the latent variables.15

We will discuss this point in the next section, which shows our estimation

results.

3 Aggregate Technical Change

In this section, we report the estimation results for our model of aggregate

production technology. Since most of the natural energy resources for pro-

duction inputs are imported in Japan, we assume that the value of output

is allocated to capital, labor, and imported natural energy resources. Ac-

cordingly, output is defined as gross domestic product plus imported natural

energy resources.16 We first describe data used for our estimation procedures,

and then summarize the estimation results. We then discuss the effects of

the biases of technical change on the aggregate productivity in Japan.

3.1 Data

Our aggregate dataset contains annual data from 1970 to 2008. We use

National Accounts, Trade Statistics, Energy Balance Statistics, and statistics

on labor and capital (for details, see Appendix Table 1(1).) All price data

are calculated by dividing nominal (current price) data by real (constant

price) or quantity data. For instance, the price of natural energy resources

(primary energy), PN , is calculated by dividing mineral fuels imports in Trade

Statistics by the energy unit of imported primary energy in Energy Balance

Statistics. In addition, we introduce instrumental variables such as tax rates,

public investment, per-capita private financial wealth, imported oil price, and

lagged explanatory variables (see Appendix Table 1(2)).

We also check the results obtained from an extended dataset that starts

at 1956. Since the capital input data from “Japan Industrial Productivity

15Recent developments in the study on endogenous biases of technical change are sum-
marized in Acemoglu (2009, chapter 15). The earlier literature on “induced technical
change” such as Kennedy (1964) considered the endogenous biases.

16The aggregate output is calculated using the fixed base-year method with 2000 as the
base year.
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Database” are unavailable before 1970, we use “Annual Report on Gross

Capital Stock of Private Enterprises” up to 1970 in the extended dataset.

3.2 Results

Figure 2 summarizes the estimation results of the latent variables on the

biases of technical change and parameter values on the share elasticities.

Panel (1) illustrates the historical evolution of the latent variables, fKt, fLt,

and fNt, which represent the biases of technical level, where the 1970 level is

normalized to zero. Panel (2) shows the biases of technical change in five-year

periods and the full sample period from 1970 through 2008. Since 1970, the

biases of technical change have been capital-using, labor-saving, and slightly

energy-using. The bias of technical change for energy was energy-using in the

1970s, energy-saving in the 1980s, and gradually switched again to energy-

using around 2000. The pace of the capital-using technical change accelerated

in the middle of the 1980s and the pace of the labor-saving technical change

accelerated around the late 1990s. Lastly, Table (3) shows the estimated

and implied parameter values on share elasticities, βik. It also shows the

Allen–Uzawa partial elasticities of substitution between i and k, which is

calculated as σik ≡ 1 + {βik/(vi vk)} where vi and vk are the averages of vi
t

and vk
t in the sample period. According to this measure, capital and labor

are complements, capital and energy are complements, and labor and energy

are substitutes.17

In Figure 3, we plot each latent variable plotted in Figure 2(1) separately,

together with the corresponding input share and real input price (deflated

by output price). As implied by equation (12), changes in input shares are

decomposed into the effects of changes in relative input prices (the second

term of the right-hand side) and biases of technical change (the third term).

Panel (1) of Figure 3 shows that the estimated latent variable for energy

moves almost in parallel with its share and real price. This means that

substitution among inputs in response to changes in relative input prices has

17Two inputs are substitutes, neutral, and complements depending on whether the par-
tial elasticity of substitution is more than, equal to, and less than unity. In the Cobb-
Douglas functional form, the elasticity of substitution is always equal to unity.
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only a small effect on the share of energy. At the same time, the estimated

latent variable for energy implies that, as mentioned at the end of Section

2, it may reflect the movement in the share of energy that is exogenous to

producers. It is conceivable that the energy-saving technical change in the

1980s resulted partially from endogenous technical change in response to

the high energy prices following the oil crises in the 1970s rather than simply

acted as a reflection of the decrease in energy share in the 1980s. However, by

the end of 2008, there was little evidence that producers switched to energy-

saving technical change in response to the recent surge in energy prices.

Meanwhile, the labor-saving and the capital-using technical change shown

in Panels (2) and (3) may be the results of endogenous technical change in

response to the increasing trend of real wages and the decreasing trend of

real capital costs, respectively.18

In Figure 4, we plot the differences between each pair of latent variables,

together with the corresponding relative input prices. While the “relative

bias” of technical change for energy to labor has been energy-using, that

for energy to capital has been energy-saving since the 1980s. The latter

may capture energy-saving technical change embodied in capital equipments.

Meanwhile, Panel (3) suggests that the relative bias for labor to capital has

been labor-saving in response to the increasing trend of the relative price of

labor to capital.

In Figure 5, we plot each latent variable estimated from our extended

dataset that starts at 1956, together with the corresponding latent variable in

the above benchmark results (the same as plotted in Figure 2). Before 1970,

the biases of technical change were energy-saving, labor-saving, and capital-

using. After 1970, the results from the extended dataset have been similar to

the benchmark results. The pace of the recent energy-using technical change

has been not so rapid as the benchmark results and as the pace of the recent

surge in real energy prices, which could imply that endogenous energy-saving

18Real wages and real capital costs, in contrast to real energy prices, have constant
trends, which could facilitate endogenous technical change. The shares of labor and capital
have been stable as a result of the labor-saving and capital-using technical change as well
as input substitution in response to the increasing trend of real wages relative to real
capital costs.
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technical change has offset to some extent the energy-using technical change.

3.3 Effects on Aggregate Productivity

Based on the above estimation results, we discuss the effects of biases of

technical change on aggregate productivity. As implied by equation (11),

the rate of technical change, which corresponds to the growth rate of total

factor productivity (TFP),19 can be decomposed into the contribution of the

biases of technical change (the first term of the right-hand side) and the

neutral technical change (the second term). The decomposition based on

our estimation results is shown in Panel (1) of Figure 6.20 It reveals that

the biases of technical change have made a substantial contribution to the

TFP growth. Panel (2) shows the breakdown of the contribution of the

biases of technical change. As implied by the first term of the right-hand

side of equation (11), the contribution of the biases of technical change is

larger when the bias for an input whose price is higher (lower) than other

input prices is input-saving (input-using). The labor-saving technical change

accompanied by the increasing trend of real wages has steadily made a large

positive contribution to the TFP growth. By contrast, the energy-using

technical change following the surges in real energy prices made a negative

contribution to the TFP growth in 1970-75 and 2005-08, which are the only

periods when the total contributions of biases of technical change are negative

in our sample period.

In Figure 7, we illustrate the decomposition of the average productivity

of energy and labor. The growth rate of the average productivity of input

i can be decomposed into the TFP growth, vt
t, and the substitution to the

other inputs k, as follows.

∆ ln Yt − ∆ ln Xit = vt
t +
∑

k

vi
t(∆ ln Xkt − ∆ ln Xit). (15)

19Since we estimate the price function instead of production function under certain
conditions and take imported natural energy resources into account as an input factor,
our measure of TFP may be rather different from the standard measures of TFP.

20In Fugure 6, the contribution of the neutral technical change includes an estimation
error.
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Panel (1) shows that the rapid growth in energy productivity (equivalently,

the rapid fall in the basic unit for energy) in 1975-1985 was mainly driven by

input substitution rather than TFP growth. The input substitution was also

important for labor productivity growth. In Panel (2), the contribution of

the input substitution to labor productivity growth, which corresponds to the

second term of the right-hand side of equation (15), is further decomposed

into the contribution of changes in relative input prices and that of labor-

saving technical change, as follows.21

∆ ln Yt − ∆ ln Xit = vt
t +
∑

k

vi
t

(
1 +

βik

vi
t vk

t

)
(∆ ln Pit − ∆ ln Pkt) − ∆fit

vi
t

.

The labor-saving technical change has made a large contribution to the labor

productivity growth through not only TFP growth but also input substitu-

tion. In particular, the labor productivity growth in 1995-2005 was mostly

driven by the labor-saving technical change through both channels.

4 Industry-Level Technical Change

In this section, we report the estimation results for our models of individual

industries. Following many previous studies, we assume that the value of

output is allocated to capital, labor, energy, and (non-energy) materials. We

describe data, summarize the estimation results, and discuss the differences

from the results for our aggregate model in Section 3 and previous studies

on the industry-level technical change.

4.1 Data

All industry-level data we use are in the EU-KLEMS database that covers

1973 to 2005.22 We estimate the models of 10 industries including 3 material

manufacturing industries (metals; chemicals; petroleum and coal products),

21σik ≡ 1 + {βik/(vi vk)} in the second term in the right-hand side is the Allen–Uzawa
partial elasticity of substitution.

22Japanese data in the EU-KLEMS database are constructed based on “Japan Industrial
Productivity (JIP) Database.”
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3 processing manufacturing industries (machinery; electric machinery; and

transport equipment), and 4 non-manufacturing industries (transport and

storage; wholesale and retail; construction; and electricity, gas, and water

supply). Many industries are integrated into the above 10 industries, except

for most of service industries (see Appendix Table 1(1)). The total output

share of the integrated 10 industries is around 50 percent.

In the EU-KLEMS database, the intermediate inputs are divided into

energy and non-energy materials (including services). The energy inputs in

the EU-KLEMS database include intermediate inputs from energy-producing

industries for the other industries. For the energy-producing industries such

as petroleum and coal products and electricity and gas supply, imported

natural energy resources seem to be classified into (non-energy) materials as

well as energy. We show a simplified input-output table in Appendix Table

2 and depict the flows of intermediate inputs related to imported natural

resources among industries in Appendix Figure.

4.2 Results

Figure 8-1 summarizes the estimation results of the latent variables on the

biases of technical change in the full sample period from 1973 to 2005 for each

input for each industry. The pattern that occurred most frequently among

industries is energy-using, materials-saving, labor-using, and capital-using.

The biases for energy are energy-using for all industries except wholesale

and retail. The biases for materials are materials-saving for all industries

and substantial in magnitude for many industries. The two largest materials-

saving biases among industries are, however, in petroleum and coal products

and electricity and gas supply, which may include biases for imported natural

energy resources as mentioned above. Meanwhile, the biases for labor are al-

most divided between labor-using and labor-saving. This differs considerably

from the result for our aggregate model, in which the labor-saving technical

change occurred substantially in magnitude throughout the full sample pe-

riod. Lastly, the biases for capital are predominantly capital-using, as in our

aggregate model.
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In Figure 8-2, we show the biases of technical change in each decade.

Together with Figure 9, which plots the latent variables for each input for

each industry, we can follow the historical evolution of the biases of technical

change.23 The energy-using technical change occurred in all industries in

the 1970s, but the biases for energy have been small since the 1980s. The

materials-saving technical change continued almost steadily in many indus-

tries until the 1990s, but switched to material-using in some industries in

the 2000s. The labor-using technical change occurred substantially in mag-

nitude in some industries in the 1970s, but the biases for labor have been

small in most industries since the 1980s. In the 2000s, the biases for labor

are labor-saving for most industries, and their magnitudes are particularly

large in some non-manufacturing industries such as transport and storage

and wholesale and retail. The capital-using technical change has contin-

ued in many industries since the 1980s, though the capital-saving technical

change occurred substantially in magnitude in some industries in the 1970s.

4.3 Comparison with Aggregate Technical Change

We compare the above estimation results for our models of individual in-

dustries with the results for our aggregate model in Section 3. The main

differences are that the energy-saving technical change in the 1980s did not

occur substantially, and that the labor-saving technical change throughout

the sample period did not occur predominantly in the industry level.

As for the energy-saving technical change, differences in the definitions

of energy inputs in the data are important for the macro-micro differences.

As mentioned above, materials-saving technical change in petroleum and

coal products and electricity and gas supply in the 1980s could be regarded

as energy-saving technical change in the aggregate economy. Meanwhile,

secondary energy sources such as electric power are not regarded as energy

inputs in the aggregate economy. In addition, changes in industrial structure

may also be important: shifts from energy-using industries to energy-saving

23The AR(1) parameters for the latent variables for some industries are close to but less
than unity.
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industries could make a significant contribution to the energy-saving technical

change in the aggregate economy.

As for the labor-saving technical change, the relationship with the materials-

saving technical change may be important for the macro-micro differences.

The industries that experienced labor-using technical change in the full sam-

ple period, except electrical machinery, experienced materials-saving tech-

nical change substantially in magnitudes. The materials-saving technical

change for those industries may appear as labor-saving technical change in

the aggregate economy. In addition, the coverage of our models of individ-

ual industries may also be important. In some service industries that are

excluded from our coverage, labor-saving technical change might occur sub-

stantially, especially in the 2000s, as in transport and storage and wholesale

and retail.

4.4 Comparison with Previous Studies

Lastly, we compare our results with previous studies. Many previous empiri-

cal studies focus on biases of technical change in individual industries rather

than those in the aggregate economy.

Jin and Jorgenson (2008) estimate time-varying biases of technical change

in 35 U.S. industries from 1960 to 2005 by similar estimation procedures

to ours. Their results for the U.S. industries are basically similar to our

results for Japanese industries. The pattern that occurred most frequently

among U.S. industries is energy-using, materials-saving, labor-saving, and

capital-using, which is the same pattern as our results, except for labor. An

important difference is, however, in the historical evolution of the biases for

energy. In their estimation results for divided sub-samples, the biases for

energy are energy-using in the 1960–1980 sub-period but energy-saving in

the 1980–2005 sub-period. It is not clear how the data problem mentioned

above could explain the difference between their results and ours.

Kuroda, Yoshioka, and Jorgenson (1984) estimate fixed parameters on

biases of technical change in 30 Japanese industries from 1960 to 1979, based

on the constant time trend models, given by equation (9). The pattern that

19



occurred most frequently among Japanese industries in their results is energy-

using, materials-saving, labor-using, and capital-saving, which is consistent

with our results for the 1970s.

5 Concluding Remarks

In this paper, we estimate time-varying biases of technical change and their

effects on productivity using econometric models of aggregate and industry-

level technology in Japan. We found little evidence that producers switched

to the energy-saving technical change by the end of 2008 in response to

the recent surge in energy prices. As a result, rising energy prices under

the energy-using technical change have contributed to a slowdown in TFP

growth. Meanwhile, the labor-saving technical change has made large posi-

tive contributions to TFP growth and labor productivity growth.

Our estimation results imply that considering biases of technical change is

important for productivity analysis. At the same time, however, we realized

that measuring and understanding biases of technical change are not easy

tasks. In particular, since our models do not consider endogenous technical

change explicitly, we cannot identify fundamental sources of the biases of

technical change. A fruitful direction for future research would be theo-

retical investigation into endogenous technical change. Another promising

direction would be refining the dataset and developing econometric models

for improved measurement of technical change.
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     (1) Neutral technical change

     (2) Energy-using technical change

     (3) Energy-saving technical change

Figure 1. Biases of Technical Change (Concepts)

X/Q

N/Q

I0

I1

P N /P XX/N

X/N  and P N /P X  are unchanged.
(Homothetic inward shift)

C

A

X/Q

N/Q

B
I0

I1

A to B : P N /P X  increases while X/N  unchanged.
A to C: X/N decreases while P N /P X  unchanged.

D A

X/Q

N/Q

E

I0

I1 A to D : X/N increases while P N /P X  unchanged.
A to E: P N /P X  decreases while X/N unchanged.

Q : Output
N : Energy input
X : Other inputs (capital, labor, etc.)
P N : Energy input price
P X : Other input prices
I0, I1: Unit isoquants

 



     (1) Latent variables on biases of technical level

     (2) Biases of technical change

     (3) Parameters on elasticities

Note: The symbols ** indicate statistical significance at the 1% level.

Figure 2. Biases of Technical Change  (Aggregate Dataset)
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     (1) Energy 

     (2) Labor

     (3) Capital

Figure 3. Input Shares, Real Input Prices, and Biases of Technical Change
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     (1) Energy to labor

     (2) Energy to capital

     (3) Labor to capital

Figure 4. Relative Input Prices and Differences between Biases
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     (1) Biases for energy 

     (2) Biases for labor

     (3) Biases for capital

Figure 5. Results from Extended Dataset
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     (1) TFP growth and contributions of neutral technical change and biases of technical change

     (2) Contribution of biases of technical change

Figure 6. TFP Growth and Technical Change
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     (1) Energy productivity

     (2) Labor productivity

Figure 7. Average Productivity and Technical Change
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  (1) Biases for energy   (2) Biases for materials

  (3) Biases for labor   (4) Biases for capital

Figure 8-1. Biases of Technical Change (Industry-Level Dataset)

 < 73 - 05 >  < 73 - 05 >

 < 73 - 05 >  < 73 - 05 >

-15% -10% -5% 0% 5% 10% 15%

Petroleum and
 coal products

Chemicals

Metals

Machinery

Electrical
 machinery

Transport
 equipment

Transport and
 storage

Wholesale and
 retail

Construction

Electricity, gas and
 water supply

-20% -15% -10% -5% 0% 5% 10%

Petroleum and
 coal products

Chemicals

Metals

Machinery

Electrical
 machinery

Transport
 equipment

Transport and
 storage

Wholesale and
 retail

Construction

Electricity, gas and
 water supply

-15% -10% -5% 0% 5% 10% 15%

Petroleum and
 coal products

Chemicals

Metals

Machinery

Electrical
 machinery

Transport
 equipment

Transport and
 storage

Wholesale and
 retail

Construction

Electricity, gas and
 water supply

-10% -5% 0% 5% 10% 15% 20%

Petroleum and
 coal products

Chemicals

Metals

Machinery

Electrical
 machinery
Transport

 equipment
Transport and

 storage
Wholesale and

 retail

Construction

Electricity, gas and
 water supply



  (1) Biases for energy
          < 73 - 80 >     < 80 - 90 >          <  90 - 00 >    < 00 - 05 >

  (2) Biases for materials
          < 73 - 80 >     < 80 - 90 >          <  90 - 00 >    < 00 - 05 >

  (3) Biases for labor 
          < 73 - 80 >     < 80 - 90 >          <  90 - 00 >    < 00 - 05 >

  (4) Biases for capital
          < 73 - 80 >     < 80 - 90 >          <  90 - 00 >    < 00 - 05 >

Figure 8-2. Biases of Technical Change (Industry-Level Dataset)
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Figure 9-1. Biases for Energy
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Electrical machinery

Figure 9-2. Biases for Materials
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Figure 9-3. Biases for Labor
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Figure 9-4. Biases for Capital
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  (1) Details of our datasets

  (2) Instrumental variables list

Appendix Table 1. Data

1970 - 2008
(Extended Dataset: 1956 - 2008)

Cabinet Office, "National Accounts of Japan"
Ministry of Finance, "Trade Statistics of Japan"

Institute of Energy Economics, Japan, "Energy Balance Statistics"
Ministry of Internal Affairs and Communications, "Labour Force Survey"

Ministry of Health, Labour and Welfare, "Monthly Labour Survey"
Research Institute of Economy, Trade and Industry, "Japan Industrial

Productivity Database"
Cabinet office, "Annual Report on Gross Capital Stock of Private Enterprises"

Metals: Basic metals and fabricated metal

Chemicals: Chemicals and chemical products

Petroleum and coal products: Coke, refined petroleum and nuclear fuel

Machinery: Machinery, not elsewhere classified

Office, accounting and computing machinery

Electrical engineering

Medical, precision and optical instruments

Transport equipment: Transport equipment

Transport and storage: Transport and storage

Wholesale and retail: Wholesale and retail trade

Construction: Construction

Electricity, gas and water supply: Electricity, gas and water supply

Nominal Nominal GDP plus mineral fuels imports

Real Real GDP plus imported primary energy

Nominal Mineral fuels imports

Real Imported primary energy (energy unit)

-

Nominal Compensation of employees

Real Man-hours input calculated by employed person and total hours worked

Nominal Nominal GDP minus compensation of employees

Real Capital input from "Japan Industrial Productivity Database"
("Annual Report on Gross Capital Stock of Private Enterprises")

Aggregate Dataset

Sample Period

Data Sources All data are from EU-KLEMS
(http://www.euklems.net/)

Industrial Classification

Classified into following 10 industries

Capital compensation

Materials

Labour compensation

Gross output

Intermediate energy inputs

Intermediate inputs excluding energy inputs
(Intermediate material inputs and intermediate service inputs)

Labor
Labour services

Capital services

Data
Definitions

Output

Energy

Capital

Industry-Level Dataset

Electrical machinery:

1973 - 2005

All industries

1 Constant

2 Average tax rate on personal labor income

3 Average tax rate on corporate income

4 Nominal public investment

5 Private financial wealth per population over 15 years old

6 Imported oil price

7 Lagged price of output

8 Lagged price of labor service



    (1) Breakdown of intermediate inputs (ratio to nominal output)

            Notes: 1. Output shares are shown in angle brackets.
                        2. Shaded cells indicate the number is more than 5 %.
                        3. Intermediate Energy is composed of imported energy resources and input from the petroleum and electricity sectors.
                        4. Intermediate Materials are composed of imported mineral resources and basic materials, and input from basic materials sectors.

    (2) Simplified input-output table

            Notes: 1. Intermediate inputs from the same sectors are excluded.
                        2. Shaded numbers indicate more than 0.5 trillion yen.

Source: Ministry of Internal Affairs and Communications, "2000 Input-Output Tables for Japan."

Appendix Table 2. Details of Intermediate Inputs

tril. Yen

Petroleum Electricity Basic
Metals Processing Transport Non-

Manufacturing
Intermediate

outputs
Final

Demand
Domestic
Product

Petroleum and coal products 0.5 0.8 0.3 4.2 2.4 8.2 4.1 12.3

Electricity and gas supply 0.1 3.1 2.4 0.7 6.3 12.6 6.0 18.6

Basic Materials (excl. petroleum) 0.1 0.1 19.1 0.4 30.7 50.4 13.0 63.4

Processing 0.0 0.0 1.7 0.9 23.4 26.1 117.6 143.7

Transport and storage 0.4 0.4 3.0 4.3 16.6 24.8 19.0 43.8
Non-Manufacturing

(excl. transport and electricity) 0.6 4.8 15.9 38.4 13.0 72.8 349.2 422.0

Imported energy resources 5.7 2.0 0.1 0.0 0.0 0.0 7.8

Imported mineral resources 0.0 0.0 0.9 0.0 0.0 0.0 0.9

Imported basic materials 0.1 1.4 0.4 1.3 7.3

Inputs from the same industry 0.0 7.4 1.3 1.8 10.5

Other imports 0.0 0.0 0.7 2.3 0.1 3.6 6.7

Intermediate inputs 7.0 8.1 30.1 75.6 21.0 86.2 227.9

3.90.0

(%)

Imported Domestic Imported Domestic

Iron and steel <1.9> 71.7 0.1 5.3 4.1 2.1 44.3
Non-ferrous metal <0.7> 66.2 0.0 4.1 21.6 2.8 14.4
Fabricated metal <1.5> 52.3 0.0 2.1 1.7 23.8 5.8

Chemicals <2.9> 69.4 0.0 5.2 7.5 4.0 25.1
Petroleum and coal products <1.4> 58.8 44.3 0.9 0.2 0.5 4.9

Other <3.1> 57.3 0.1 3.7 2.2 3.2 21.5

Machinery <2.7> 59.1 0.0 1.2 0.3 13.9 17.5
Electrical machinery <6.4> 67.2 0.0 1.2 1.0 8.2 23.7
Transport equipment <4.7> 76.4 0.0 1.1 0.6 8.2 41.9
Precision instruments <0.4> 58.0 0.0 1.3 0.7 7.8 6.1

Other <7.9> 61.1 0.0 1.6 0.7 10.1 15.2

Transport and storage <5.3> 52.0 0.0 10.3 0.9 0.9 7.8
Wholesale and retail <10.7> 28.3 0.0 1.1 0.0 1.7 0.8

Construction <8.4> 53.7 0.0 1.4 0.6 18.4 0.3
Service activities <38.0> 34.9 0.0 1.8 0.2 4.2 17.0

Electricity and gas supply <2.1> 45.5 10.2 2.8 0.5 0.7 3.5
Mining <0.2> 50.8 0.0 3.7 0.3 3.0 0.2

Agriculture <1.6> 43.2 0.0 1.7 0.7 5.6 10.0

All
Intermediate

inputs

From
the same
industry

Intermediate Energy Intermediate Materials

Basic Materials

Processing

Non-Manufacturing



       (1) Intermediate input flows (CY2000, nominal value, trillion yen)

            Notes: 1. Arrows are shown when the amount of the flow is more than 0.5 trillion yen, except inflows from the non-manufacturing sectors
                           and imports excluding resources.
                        2. Thickness of arrows indicates the amount of flow.
                        3. Intermediate inputs from the same sectors are excluded.
                        4. Shaded sectors indicate energy-producing sector. Other sectors indicate energy-using sector.
Source: Ministry of Internal Affairs and Communications, "2000 Input-Output Tables for Japan."

Appendix Figure. Intermediate Input Flows Related to Imported Resources
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