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Abstract 

This paper examines the marginal distributions of stocks and bonds, and a 

copula between the movement of stock prices and interest rates. Because some 

widely used aggregation methods such as variance–covariance tend to 

underestimate the risk of an aggregated portfolio, a copula is utilized for risk 

aggregation, which captures various dependencies in the median and the tail of 

marginal distributions, unlike a linear correlation. In this study, various types 

of copula, including one that simultaneously captures both positive and 

negative linear correlations, are analyzed under several time periods. We 

examine data related to the Euro crisis and the post-bubble period in Japan. 

Our analyses show that widely used risk aggregation methods may 

overestimate the diversification effect. 
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1. Introduction 

Various types of risk aggregation with a diversification effect are applied in financial 

risk management. Some global banks calculate firm-wide economic capital by 

aggregating credit, market, operational, and other risk categories with a diversification 

effect. In contrast, most Japanese regional banks aggregate credit and market risk 

categories without the diversification effect. They usually aggregate the risk of bonds 

and equities with the diversification effect in their market portfolio by quantifying a 

linear correlation between stock prices and interest rates. 

Recent Japanese market data have shown a positive linear correlation between stock 

prices and interest rates, which implies an increase in bond prices together with a fall in 

stock prices. So, the measured risk of value-at-risk (VaR) or expected shortfall (ES) for 

the aggregated bond and equity portfolio becomes much smaller than the sum of the risk 

measures for those sub-portfolios. The reduction in the risk measure for an aggregated 

portfolio is called the diversification effect. Widely used aggregation methods that 

analyze recent Japanese data can sometimes show up to a 60% diversification effect. 

Some widely used aggregation methods tend to underestimate the risk of an 

aggregated portfolio. For example, variance–covariance (VCV) methods assume a 

linear correlation between some stock price and interest rate movements, although the 

correlation varies according to the size and/or direction of such movements. To avoid 

such problems, a copula is utilized for risk aggregation, which captures various 

dependencies in the center and the tail of marginal distributions, unlike a linear 

correlation. The Basel Committee on Banking Supervision [2010] indicates a copula 

method for risk aggregation, citing some parametric copulas. 

A copula can be applied to measure financial risk by considering a stressed condition. 

First, a bivariate copula with both positive and negative linear correlations can be 

applied. Using this type of copula, negative correlation can be taken into account to 

measure the aggregated risk from positively correlated historical data on average. 

Second, a copula estimated from stressed data can be applied. Even if marginal 

distributions are estimated with recent historical data, a copula can be estimated 

separately with long-past data or other market data in stress situations. For example, the 

Euro crisis data in Spain or Italy or the post-Bubble data in Japan where stock prices 
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and bond prices jointly plunged (while interest rates rose) can be utilized for the copula 

estimation. 

This paper is organized as follows. Section 2 refers to the setting of data analysis. 

Section 3 estimates a copula by using data from various markets and periods, and 

analyzes the risk measures and the diversification effect of the portfolio. Section 4 

provides the conclusions and refers to open problems. 

 

2. Setting 

2.1. Risk factors and holding period under an unconditional approach 

To measure VaR or ES for an aggregated portfolio of equities and bonds, we select 

two risk factors; daily log return of the stock price and daily changes in the 5-year 

government interest rate.1 For Japanese market data, we adopt the Nikkei-225 index as 

the stock price. 

The holding period is set to one day, which is the same as the frequency of the 

observed returns data. Daily returns are assumed to be independently identically 

distributed (i.i.d.) under an unconditional approach without using conditional 

information at the evaluation date.2 

 

2.2. Marginal distributions of risk factors 

Marginal distributions of risk factors that are adopted in widely used VaR calculation 

methods have several problems. Gaussian distribution, which is adopted by the VCV 

method, cannot capture the skewness and kurtosis observed in the historical data. 

Empirical distribution, which is adopted in the historical simulation (HS) method, 

cannot capture losses larger than the maximum loss given in the historical data. 

Against that background, we adopt the skew-t distribution proposed in Azzalini and 

Capitanio [2003] for each marginal distribution.3 The distribution has four parameters: 

                                                 
1 We use generic interest rates calculated by Bloomberg for Japanese, Spanish, and Italian 5-year 
government interest rates. 
2 For the difference in unconditional and conditional approaches, see Miura and Oue [2000], 
McNeil, Frey, and Embrechts [2005], and Isogai [2013]. 
3 Kubota [2009] adopts double exponential (Laplace) distribution to capture kurtosis. Miura and 
Oue [2000] applies logistic distribution to the daily returns of the USD/JPY exchange rate. Isogai 
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location scale , degree of freedom , and skewness . The density is given as  
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where t1,(·) is the density function of Student’s t-distribution with the degree of 

freedom  and T1,(·) is the cumulative distribution function of Student’s 

t-distribution with the degree of freedom .4 

Table 1 shows the maximum likelihood estimation for the marginal skew-t 

distributions estimated using 5-year historical data from October 1, 2007 to October 1, 

2012. The degree of freedom parameter  is 3.6 for the stock price and 2.9 for the 

interest rate, which indicates a much fatter tail than Gaussian distribution.5 

Table 1. Estimated parameters and the 99 percentile point 

location ( ) scale ( ) shape ( ) d.f. ( ) 99 percentile
Stock price     
Interest rate       

Figure 1 depicts the estimated density, which is much different from Gaussian density 

(the blue dotted curve in Figure 1). Figure 2 depicts QQ plot and goodness-of-fit tests 

for the estimated skew-t distributions. Neither test rejects the null hypothesis even at the 

10% confidence level. The skew-t distribution is accepted as each marginal distribution. 

                                                                                                                                               
[2013] adopts truncated stable distribution for the daily return of the Nikkei-225 index. Although the 
truncated stable distribution can be applied to the analyses in this paper, estimation of the 
distribution is difficult and accompanied by arbitrariness in setting truncation. So, we adopt the 
skew-t distribution for marginal distribution. 
4 The skew-t distribution is reduced to Student’s t distribution with skewness parameter  
Furthermore, Student’s t distribution converges to Gaussian distribution as →∞. In financial 
econometrics, other types of skew-t distribution, such as Hansen [1994] or Fernández and Steel 
[1998] are used in some cases. See Aas and Haff [2006] for variation of skew-t distribution. 
5 If the degree of freedom parameter  is less than two, the variance becomes infinite. If  is less 
than four, the fourth moment (kurtosis) becomes infinite. 
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Note: The blue dotted curve is fitted to Gaussian distribution. 

Figure 1. Estimated density (left: stock price, right: interest rate) 
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Stock price return Interest rate movement 

Kolmogorov–Smirnov Anderson–Darling Kolmogorov–Smirnov Anderson–Darling 

D = 0.016 
p value = 0.900 

AD = 0.307 
p value = 0.933 

D = 0.032 
p value = 0.161 

AD = 0.664 
p value = 0.590 

Notes: In the upper QQ plot, the horizontal axis denotes the theoretical value of skew-t distribution and 
the vertical axis denotes data value. In the lower test for goodness of fit, null hypothesis H0 is “Data 
have skew-t distribution.” If the p value is low, the null hypothesis H0 is rejected. 

Figure 2. QQ plot and goodness-of-fit test (left: stock price, right: interest rate) 
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2.3. Correlation structure between risk factors 

2.3.1. Copula 

We capture the correlation structure between risk factors by using a copula. A copula 

represents a joint distribution as a function of the marginal distributions. Using a copula 

),,( 1 duuC  , the joint cumulative probability (distribution function) of the d random 

variables is represented as 

 ))Pr(,),(Pr(),,Pr( 1111 dddd xXxXCxXxX   . (2) 

To employ the maximum likelihood method, the copula density ),,( 1 duuc   for the 

copula ),,( 1 duuC   is defined as6 
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d
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),,( . (3) 

There are two approaches to estimate a copula from a pseudo sample ),( 2111 uu , …, 

),( 21 NN uu .7 The first is a non-parametric approach based on joint empirical distribution. 

The second is a parametric approach to assume a parametric copula and estimate the 

parameters. 

A nonparametric copula ),( 21 uuCNP  is constructed from a joint empirical 

distribution function of the pseudo sample ),( 2111 uu , …, ),( 21 NN uu .8 The copula is 

constructed as cumulative joint probabilities less than or equal to ),( 21 uu  after giving 

1/N probability weight to each pair ),( 2111 uu , …, ),( 21 NN uu  in [0,1]×[0,1]. The 

histogram for the pseudo sample makes the nonparametric copula density ),( 21 uucNP . 

A parametric copula is estimated by maximizing the log likelihood function for the 

pseudo sample ),( 2111 uu , …, ),( 21 NN uu . The log likelihood function consists of the 

density functions (3). 

                                                 
6 Copula density does not necessarily exist. We assume that copula ),,( 1 duuC   is continuously 

differentiable and that the copula density exists. 
7 Let Nxx 111 ,,  be the stock return data, and Nxx 221 ,,  be the interest rate movement data. 

Using the distribution functions )(1 F  and )(2 F  estimated from the stock return and interest rate 

movement data respectively, the pseudo sample ),( 2111 uu , … , ),( 21 NN uu  is obtained by 

)( ijiij xFu   for Nji ,,1;2,1  . 
8 The empirical copula, a representative nonparametric copula, is defined by the empirical marginal 
distributions. The nonparametric copula in this paper assumes skew-t distribution for each margin, 
and differs from the empirical copula. 
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Tail dependence is one of the key properties for a parametric copula. The lower-tail 

dependence L  between two variables is defined as 
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The upper-tail dependence U  is defined as 
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Thus, L  and U  represent the strength of lower and upper tail dependences, 

respectively. 

 

2.3.2. Parametric copulas 

Six parametric copulas are utilized in the following sections. Three of them are 

Archimedean copulas, which include the Gumbel, Clayton, and Frank copulas. The 

other three are implied copulas, which include the Gaussian, (Student’s) t, and 

mixed-Gaussian copula. 

Table 2 summarizes the expression and the tail dependence of the three Archimedean 

copulas. The three copulas have different tail dependence. While the Gumbel copula has 

upper-tail dependence and the Clayton copula has lower-tail dependence, the Frank 

copula has neither tail dependence nor symmetric dependence. 

Table 2. Bivariate Archimedean copulas and their tail dependence 

The Gumbel and Clayton copulas are defined for positively correlated data. For the 

bivariate case, they can be applied for negatively correlated data by rotating one axis 

around the other. For example, suppose that the data implies strong dependence 

between a fall in the first variable (stock price) and a rise in the second variable (interest 

rate). The Clayton copula with lower-tail dependence can be applied for the data by 

rotating the second axis around the first (rotating the interest rate axis; Rot. IR). The 

Copula Parameter Expression 
Tail dependence 

Upper U  Lower L

Gumbel  }))ln()ln((exp{ /1
21
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copula density is defined as )1,(),( 2121 uucuuc C   by using the Clayton copula 

density ),( 21 uucC . Similarly, the Gumbel copula with upper-tail dependence can be 

applied for the data by rotating the first axis around the second (rotating the stock price 

axis; Rot. SP). 

Although the Gumbel copula is upper-tail dependent, it can be applied for lower-tail 

dependent data with the rotated-Gumbel copula. Similarly, a Clayton copula with 

lower-tail dependence can be applied for upper-tail dependent data with the 

rotated-Clayton copula. The rotated copula density ),,( 1 duuc   for a copula density 

),,(ˆ 1 duuc   is defined as )1,,1(ˆ),,( 11 dd uucuuc   . A rotated copula is also 

referred to as a survival copula. 

Table 3 summarizes the expression and tail dependence of the three implied copulas; 

Gaussian, t, and mixed-Gaussian copula, each of which adopts a corresponding 

multivariate distribution as follows. The Gaussian copula is implied in a multivariate 

Gaussian distribution and the t copula is implied in a multivariate Student’s t 

distribution. The t copula has a parameter  which corresponds to the degree of 

freedom for the original multivariate t distribution. The range of the parameter  is 

),3[  . The t copula converges to the Gaussian copula as  . The parameter  in t 

copula is interpreted as a tail-dependence parameter.9 Likewise, a mixed-Gaussian 

copula is implied in mixed-Gaussian distribution. In the bivariate case, the 

mixed-Gaussian distribution is mixed with positively correlated Gaussian distribution 

and negatively correlated Gaussian distribution in the ratio of  : 1. The mixed 

Gaussian copula will extract negatively correlated Gaussian copula from positively 

linear correlated data. 

                                                 
9 This point is confirmed by the fact that ))1/()1)(1((1  t  is the largest in 3  and 

becomes smaller as  increases with a given . 
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Table 3. Bivariate implied copulas and their tail dependence 

Copula Parameter Expression Tail dependence U = L

Gaussian  )|)(),(( 2
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Notes: )|,( Φ  denotes bivariate standard Gaussian distribution function with correlation . 

)|,(  t  denotes bivariate t distribution function with degree of freedom  and correlation . 

)(1   denotes the inverse function of univariate standard Gaussian distribution function. )(t  

denotes univariate t distribution function and )(1 
t  denotes its inverse function. 

 

2.4. Risk measures and diversification effect 

We consider a sample portfolio that consists of 700 billion yen for the 5-year 

discount bond and 50 billion yen for the stock; this is representative of the average 

portfolio of Japanese regional banks. We adopt daily 99% VaR and 97.5% ES estimates 

for risk measures.10 

We calculate 99% VaR and 97.5% ES as follows. Let AS and AB be the amount of 

stocks and bonds, respectively. Suppose that the stock price changes as 

SSS tt  lnln  and the 5-year interest rate changes as rrr tt  . We calculate 

the change in the market portfolio value PV  as 

 

.)(

)(
)(

TrABSAS

ABAS
e

e
AB

S

eS
ASPV Tr

Trr

t

S
t

t

t



 



 (6) 

Sample data for ),( rS   obtained by converting the quantile function for each 

marginal distribution from simulated data by using the specified copula. We calculate 

99% VaR as lower than one percentile for the right-hand side of the equation (6) with an 

opposite sign. Similarly, 97.5% ES is calculated as the average up to lower 2.5 

percentile for the right-hand side of equation (6) with an opposite sign. 

The simple sum of 99% VaR for each risk category is given as follows. The 99% 

VaR for the equities is given by S  with the lower one-percent value. The 99% VaR 

                                                 
10 If the portfolio profit–loss distribution is Gaussian, 97.5% ES almost equals 99% VaR. 
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for the bonds is given by r  with the upper one-percent value. The 99 percentile 

points in Table 1 show the one-percent values. We denote the lower and upper 

one-percent values as %1S  and %99r , respectively. The simple sum of 99% VaR is 

given as 

 TrABSAS )()(VaR of sum Simple %99%1  . (7) 

With our data, the simple sum of 99% VaR is 5.08 billion yen as shown in Table 4. 

Based on the assumption that VaR satisfies subadditivity,11 the simple sum is the 

maximum value for the portfolio VaR. 

Similarly, the simple sum of 97.5% ES for each risk category is given by applying the 

lower 2.5% average %5.2S  for S  and the upper 2.5% average %5.97r  for r  to 

equation (6). This is expressed as follows: 

 TrABSAS )()(ES of sum Simple %5.97%5.2  . (8) 

With our data, the simple sum of each ES is 5.59 billion yen as shown in Table 4. Since 

ES satisfies subadditivity, the simple sum is the maximum value for the portfolio ES. 

Table 4. VaR and ES for stocks and bonds, and their simple sum 

Stocks Bonds Stocks Bonds
2.61 2.47 2.82 2.77

(billion yen)

VaR(99%) ES(97.5%)

simple sum
5.08

simple sum
5.59

 

We measure a diversification effect by the reduction rate of the aggregated VaR and 

ES from the simple sum of VaR and ES. 

 

3. Data Analysis 

This section analyzes diversification effects by using copulas. First, we analyze 

diversification effects by using the copulas estimated from the recent historical data in 

Japan. Second, we analyze the diversification effects by using the copulas estimated 

                                                 
11 If some risk measure )( 21 XX   for an aggregated portfolio 21 XX   of any sub-portfolio 1X  

and 2X  always satisfies )()()( 2121 XXXX   , then the risk measure is subadditive. 

Theoretically, VaR is not subadditive. However, Daníelsson et al. [2013] show that VaR is 
subadditive in most practical situations. 



11 
 

from the recent Euro crisis data and the post-Bubble period in Japan. 

 

3.1. Recent historical data in Japan 

3.1.1. Widely used methods of aggregation 

The VCV and historical simulation (HS) methods are widely used to aggregate VaR 

in financial institutions. Table 5 shows the aggregated 99% VaR and 97.5% ES 

calculated by the two methods. VCV uses a Gaussian copula and HS uses a 

nonparametric copula for the aggregation.  

Table 5. Diversification effects of widely used VaR and ES 

VaR(99%)
diversification

effect
ES(97.5%)

diversification
effect

simple sum 5.08 ― 5.59 ―
VCV 2.30 ▲55% 2.31 ▲59%
HS 3.02 ▲41% 3.27 ▲42%

Corr. Method 2.87 ▲44% 3.16 ▲44%  

We see a large diversification effect in the VCV method: 55% for VaR and 59% for 

ES. The diversification effect in HS is smaller than that in VCV: 41% for VaR and 42% 

for ES. 

To investigate such differences, we introduce the correlation method to calculate the 

aggregated VaR and ES. This method uses the same linear correlation matrix to 

aggregate each risk as the VCV method.12 It assumes skew-t distribution for the 

marginal distributions, which is different from the VCV method. By assuming that   

is the correlation matrix used in the VCV method, the aggregated VaR by the 

correlation method is given by 

 
T

%99%1%99%1 ))(,())(,(VaR method Corr. TrABSASTrABSAS  , (9) 

where %1S , %99r  are 99 percentile points in Table 1. Similarly, the aggregated ES 

by correlation method is given by 

 
T

%5.97%5.2%5.97%5.2 ))(,())(,(ES method Corr. TrABSASTrABSAS  , (10) 

where %5.2S  and %5.97r  are the lower 2.5% average for S  and upper 2.5% 

                                                 
12 The correlation method is widely used for firm-wide risk aggregation for market, credit, and 
operational risk categories. 
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average for r , respectively. Table 5 indicates the diversification effect in the 

correlation method, which at 44%, is close to that in the HS method (41–42%). 

On comparing the result in the VCV method with that in the correlation method, we 

see that the former, which assumes Gaussian distribution for the marginal distributions 

cannot capture fat-tail properties in real risk factors’ distributions. That may cause 

underestimation of the aggregate risk due to overestimation of the diversification effect. 

 

3.1.2. Estimated copula 

From here on, we use skew-t distribution for the marginal distributions estimated in 

Table 1. We adopt BIC (Schwarz’s Bayesian information criteria) to select the best 

parametric copula.13 

This subsection estimates copulas from the recent 5-year daily data in Japan. Figure 3 

depicts a nonparametric copula based on the pseudo sample during the period. In Figure 

3 (a), the front side with zero for both axes indicates the largest fall in the stock price 

and interest rate. The figure shows that the frequency is relatively high, which implies 

that the portfolio loss will be mitigated because bond values rise when stock prices fall. 

Figure 3 (b) plots the joint density contour after converting marginal cumulative 

probabilities to the quantiles of standard Gaussian distribution.14 That contour is 

diagonally up to the right with an elliptical shape, which implies this pseudo sample 

have a positive linear correlation. 

                                                 
13 Some information criteria such as AIC (Akaike information criteria) and BIC are used to select 
the best copula. Both criteria are calculated by log-likelihood with some penalty about the number of 
parameters. We adopt BIC for the criteria, which is more penalty about the number of parameters 
than AIC. BIC is calculated by Np ln)(ln2   , where )(  is the maximum log-likelihood, p 

is the number of parameters, and N is the sample size. The model with the lowest BIC is selected. 
14 Contour of the joint density with standard Gaussian margins is a visual representation of the 
various dependencies in the center and the tail area (see Joe [1997]). If the copula is Gaussian, the 
contour is elliptical (see Figure 4). 
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(a) Histogram (b) Contour of the joint density 

Figure 3. Joint histogram and contour plot for the recent Japanese pseudo sample 

Table 6 is the result of the maximum likelihood estimation.15 A mixed-Gaussian 

copula is selected by BIC. Within one-parameter copulas, both Frank and 

rotated-Gumbel have high likelihood (low BIC), while they have quite dissimilar tail 

dependency. This implies that the dependence structure of the data is too complex to be 

captured by the one-parameter copula. 

Table 6. MLE for the recent Japanese pseudo sample 

 

Est. Value Std. Err. BIC
Gumbel    
Rotated-Gumbel    
Clayton    
Rotated-Clayton    
Frank    
Gaussian    
t    

  
Mixed-Gaussian  1   

 2  
  

Parmeter

 

Figure 4 depicts a joint density contour for the estimated copula in Table 6 with 

standard Gaussian margins. To save space, as for the Gumbel copula, the 

rotated-Gumbel copula is illustrated. As for the Clayton copula, the original Clayton 

                                                 
15 We do not test the goodness-of-fit of the copulas. See Kojadinovic, Yan, and Holmes [2011] for 
those tests. 
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copula is illustrated. Each of them has a higher likelihood (lower BIC) than their rotated 

copula. 
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Figure 4. Contour plot of copula density for the recent historical pseudo sample in Japan 
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3.1.3. VaR and ES for each copula and diversification effect 

Table 7 summarizes VaR and ES for the sample portfolio.16 The joint distribution for 

risk factors is constructed by each estimated copula with the marginal distributions in 

Table 1. For the nonparametric copula, the pseudo sample is converted to a set of risk 

factors by taking quantiles for the marginal skew-t distributions. For each parametric 

copula, we generate 100,000 random bivariate vectors and calculate VaR and ES with 

the marginal skew-t distributions. Iterating the procedure 100 times, we obtain the 

average and standard deviation of VaR and ES. 

Table 7. VaR and ES using copula estimated from recent Japanese data 

Copula VaR(99%)
Std.
dev.

diversification
effect

ES(97.5%)
Std.
dev.

diversification
effect

Nonparametric 3.01  ▲41% 3.24  ▲42%
Gumbel 2.66 0.03 ▲48% 2.90 0.04 ▲48%
Rotated-Gumbel 2.58 0.03 ▲49% 2.84 0.04 ▲49%
Clayton 2.68 0.03 ▲47% 2.96 0.04 ▲47%
Rotated-Clayton 2.81 0.03 ▲45% 3.05 0.04 ▲45%
Frank 2.87 0.03 ▲43% 3.18 0.04 ▲43%
Gaussian 2.65 0.03 ▲48% 2.95 0.04 ▲47%
t 2.60 0.03 ▲49% 2.85 0.04 ▲49%
Mixed-Gaussian 4.21 0.04 ▲17% 4.55 0.05 ▲19%  

First, every diversification effect (17–49%) is smaller than that of VCV (55%) in 

Table 5, which confirms that the Gaussian assumption of VCV for margins causes 

underestimation of VaR and ES. The diversification effect of the nonparametric copula 

almost equals that of the HS method in Table 5.17 

Second, the diversification effect for the t copula is larger than that for the Gaussian 

copula, although the former is more tail dependent than the latter. This result is 

explained as follows: the lower-tail dependence of the t copula (low  value) increases 

                                                 
16 The quantiles for each marginal distribution (skew-t distribution) are evaluated by 500,000 
random numbers. Christoffersen et al. [2012] also evaluate quantiles for another skew-t distribution 
with 100,000 random numbers because closed-form (well-approximated) solutions for the quantiles 
are not known. 
17 Since the marginal distributions for separating the copula and that for combining into a joint 
distribution are the same for the recent Japanese data, the portfolio loss distribution for the 
nonparametric copula theoretically coincides with that for the HS method. However, in our analysis, 
the quantiles for each marginal distribution that is to be combined to a joint distribution are 
approximated by random numbers as in footnote 16, while the marginal probabilities to separate the 
copula are calculated more accurately. That difference causes a slight disparity in VaR and ES. 
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the occurrence of a fall in the stock price and a rise in bond value. That dependence 

mitigates portfolio loss and results in smaller VaR and ES for the t copula than those for 

the Gaussian copula. 

Third, the diversification effect for mixed-Gaussian copula (VaR:17%, ES:19%) 

selected by BIC is the smallest, and is much smaller than that for the other copulas. 

Unlike the other parametric copulas, a mixed-Gaussian copula can capture both positive 

and negative linear correlations so that it fits to the pseudo sample better than the other 

parametric copulas. The result indicates a negative linear correlation is captured with 

the frequency of = 14.5%; this correlation structure increases the estimate of the 

portfolio VaR and ES. 

 

3.2. Euro crisis data 

This subsection extracts copulas from the recent Euro crisis data in Spain and Italy.18 

Estimating the marginal distributions (stock price return and interest rate movement) by 

using the recent three years’ data from October 1, 2009 to October 1, 2012, we 

separately estimate the copulas by converting the marginal data to the pseudo sample. 

 

3.2.1. Spain 

Adopting IBEX35 as the stock price, Table 8 shows the estimated marginal 

distributions in separating the copulas. 

Table 8. Estimated parameter and the 99 percentile point for recent data from Spain  

location ( ) scale ( ) shape ( ) d.f. ( ) 99 percentile
Stock price     
Interest rate       

Figure 5 (a) depicts the histogram for the pseudo sample. Figure 5 (b) depicts the joint 

density contour with standard Gaussian margins. The pseudo sample is constructed 

from the returns data by applying each marginal distribution function estimated in Table 

8. Unlike Figure 3, the contour is diagonally down to the right with an elliptical shape, 

                                                 
18 Fukuda, Kan, and Sugihara [2013] analyze the optimal asset composition ratio of stocks and 
bonds for a bank taking into consideration the correlation between interest rate movements and stock 
price returns by using the mean-variance approach. They assume a bivariate Gaussian distribution 
for the risk factors. Our assumption differs regarding those for marginal distribution (skew-t 
distribution) and for various copula. 
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which implies this data will have a negative linear correlation. 
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(a) Histogram (b) Contour of the joint density 

Figure 5. Joint histogram and contour plot for the recent Spanish pseudo sample 

Table 9 shows the result for the maximum likelihood estimation of copulas; the t 

copula is selected as the best fit by BIC. Since the pseudo sample has a negative 

correlation, the copula with rotating one axis (Rot. IR or Rot. SP) is applied for the 

Gumbel and Clayton copulas as defined in Section 2.3.2.19 The Gumbel (Rot. SP) 

copula has lower BIC than the Gumbel (Rot. IR) copula. The Clayton (Rot. IR) copula 

has lower BIC than the Clayton (Rot. SP) copula. This result implies that the tail 

dependence of a fall in the stock price and a rise in the interest rate is stronger than that 

of a rise in the stock price and a fall in the interest rate. 

                                                 
19 Given some copula density ),(ˆ 21 uuc , the copula density with rotating interest rate axis (Rot. IR) 

is represented by )1,(ˆ),( 2121 uucuuc  , and the copula density with rotating stock price axis (Rot. 

SP) is represented by ),1(ˆ),( 2121 uucuuc  . 
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Table 9. MLE for the recent Spanish pseudo sample 
Est. Value Std. Err. BIC

Gumbel (Rot. IR)    
Gumbel (Rot. SP)    
Clayton (Rot. IR)    
Clayton (Rot. SP)    
Frank    
Gaussian    
t    

  
Mixed-Gaussian  1   

 2  
  

Parmeter

 

Table 10 summarizes VaR and ES for the sample portfolio with the estimated 

parametric copulas in Table 9 and the nonparametric copula in Figure 5. The joint 

distribution for the risk factors is constructed by combining each copula with the recent 

Japan marginal distributions in Table 1. The simulation procedure for each parametric 

copula is the same as in Section 3.1.3. 

Table 10. VaR and ES using copula estimated from the recent Spanish pseudo sample 

Copula VaR(99%)
Std.
dev.

diversification
effect

ES(97.5%)
Std.
dev.

diversification
effect

Nonparametric 4.01  ▲21% 3.92  ▲30%
Gumbel (Rot. IR) 3.91 0.04 ▲23% 4.22 0.04 ▲25%
Gumbel (Rot. SP) 4.44 0.05 ▲13% 4.89 0.06 ▲13%
Clayton (Rot. IR) 4.47 0.05 ▲12% 4.91 0.06 ▲12%
Clayton (Rot. SP) 3.68 0.04 ▲27% 3.99 0.05 ▲29%
Frank 3.90 0.04 ▲23% 4.20 0.05 ▲25%
Gaussian 4.14 0.04 ▲18% 4.48 0.04 ▲20%
t 4.19 0.04 ▲18% 4.59 0.05 ▲18%
Mixed-Gaussian 4.32 0.04 ▲15% 4.67 0.05 ▲17%  

The diversification effect (12–30%) is much smaller than that in the recent Japanese 

pseudo sample in Table 7. The largest diversification effect, 30%, is observed for ES by 

the nonparametric copula. That result comes from the problem that the nonparametric 

copula does not give any probability outside the empirical range of risk factors. The 

same problems applies to the HS method. Let us consider a bivariate pseudo sample 

with size N. The nonparametric copula does not capture events with probability less 

than 1/N; this causes underestimation of ES, which is obtained by the average loss over 
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VaR, especially for N that is not large. 

Unlike Table 7, the diversification effect gets smaller as tail dependence gets stronger. 

The diversification effect of the Gumbel (Rot. SP) copula or the Clayton (Rot. IR) 

copula is smaller than that of the Frank copula. The diversification effect of the 

Gaussian copula is smaller than that of the t copula. 

Unlike Table 7, the diversification effects in Gaussian, mixed-Gaussian, and t copulas 

are similar and small, 15–20%. 

 

3.2.2. Italy 

Adopting the FTSE MIB index as the stock price, Table 11 shows the estimated 

marginal distributions in separating the copulas. 

Table 11. Estimated parameters and the 99 percentile point for recent Italian data 

location ( ) scale ( ) shape ( ) d.f. ( ) 99 percentile
Stock price     
Interest rate       

Figure 6 (a) depicts the histogram for the pseudo sample. Figure 6 (b) depicts the joint 

density contour with standard Gaussian margins. 
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(a) Histogram (b) Contour of the joint density 

Figure 6. Joint histogram and contour plot for the recent Italian pseudo sample 

Table 12 shows the result for the maximum likelihood estimation of copulas; the t 

copula is selected by BIC. 
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Table 12. MLE for the recent Italian pseudo sample 
Est. Value Std. Err. BIC

Gumbel (Rot. IR)    
Gumbel (Rot. SP)    
Clayton (Rot. IR)    
Clayton (Rot. SP)    
Frank    
Gaussian    
t    

  
Mixed-Gaussian  1   

 2  
  

Parmeter

 

Table 13 summarizes VaR and ES for the sample portfolio with the estimated 

parametric copulas in Table 12 and the nonparametric copula in Figure 6. 

Table 13. VaR and ES using copula estimated from the recent Italian pseudo sample 

Copula VaR(99%)
Std.
dev.

diversification
effect

ES(97.5%)
Std.
dev.

diversification
effect

Nonparametric 3.82  ▲25% 3.91  ▲30%
Gumbel (Rot. IR) 3.97 0.04 ▲22% 4.28 0.05 ▲23%
Gumbel (Rot. SP) 4.53 0.06 ▲11% 4.99 0.07 ▲11%
Clayton (Rot. IR) 4.57 0.06 ▲10% 5.03 0.07 ▲10%
Clayton (Rot. SP) 3.71 0.04 ▲27% 4.02 0.05 ▲28%
Frank 3.96 0.04 ▲22% 4.25 0.04 ▲24%
Gaussian 4.22 0.04 ▲17% 4.57 0.04 ▲18%
t 4.27 0.05 ▲16% 4.68 0.05 ▲16%
Mixed-Gaussian 4.42 0.04 ▲13% 4.79 0.06 ▲14%  

The results in Table 13 are almost the same as those for the Spanish pseudo sample 

shown in Table 10. However, VaR by the nonparametric copula in Table 13 is slightly 

different from that in Table 10, which indicates that even the same amount of data with 

a similar situation have different k-th maximum loss value for a given k. VaR with a 

nonparametric copula is much more dependent on the given data than the VaR with a 

parametric copula. 

 

3.3. Post-Bubble data in Japan 

Table 14 shows the marginal distributions in separating the copulas estimated by 
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one-year daily data in FY1990 (from April 1, 1990 to March 31, 1991) in Japan.  

Table 14. Estimated parameters and the 99 percentile point for FY1990 Japanese data 

location ( ) scale ( ) shape ( ) d.f. ( ) 99 percentile
Stock price     
Interest rate       

Figure 7 (a) depicts the histogram for the pseudo sample. Figure 7 (b) depicts the joint 

density contour with standard Gaussian margins. We see a negative linear correlation 

between the stock price and the interest rate in FY1990, the post-Bubble period in 

Japan. 
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(a) Histogram (b) Contour of the joint density 

Figure 7. Joint histogram and contour plot for the FY1990 Japanese pseudo sample 

Table 15 is the result of the maximum likelihood estimation of copulas. Similar to the 

Spanish pseudo sample (Table 9) and the Italian pseudo sample (Table 12), the t copula 

is selected by BIC.  
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Table 15. MLE for the FY1990 Japanese pseudo sample 
Est. Value Std. Err. BIC

Gumbel (Rot. IR)    
Gumbel (Rot. SP)    
Clayton (Rot. IR)    
Clayton (Rot. SP)    
Frank    
Gaussian    
t    

  
Mixed-Gaussian  1   

 2  
  

Parmeter

 

Table 16 summarizes VaR and ES for the sample portfolio with the estimated 

parametric copulas in Table 15 and the nonparametric copula in Figure 7. 

Similar to the Spanish pseudo sample (Table 10) and the Italian pseudo sample 

(Table 13), the diversification effects for parametric copulas in Table 16 (10–29%) are 

much smaller than those in the recent Japanese pseudo sample (Table 7). The 

diversification effect for the nonparametric copula is larger than that for each parametric 

copula, which reflects the small size of the sample. 

Table 16. VaR and ES using copula estimated from the FY1990 Japanese pseudo sample 

Copula VaR(99%)
Std.
dev.

diversification
effect

ES(97.5%)
Std.
dev.

diversification
effect

Nonparametric 3.37  ▲34% 3.57  ▲36%
Gumbel (Rot. IR) 3.85 0.03 ▲24% 4.16 0.04 ▲26%
Gumbel (Rot. SP) 4.33 0.04 ▲15% 4.77 0.06 ▲15%
Clayton (Rot. IR) 4.29 0.05 ▲16% 4.72 0.06 ▲16%
Clayton (Rot. SP) 3.66 0.04 ▲28% 3.96 0.05 ▲29%
Frank 3.90 0.04 ▲23% 4.19 0.05 ▲25%
Gaussian 3.98 0.03 ▲22% 4.31 0.04 ▲23%
t 4.17 0.05 ▲18% 4.58 0.06 ▲18%
Mixed-Gaussian 4.58 0.05 ▲10% 4.98 0.06 ▲11%  

The diversification effect for the selected t copula for the Spanish pseudo sample 

(Table 10), the Italian pseudo sample (Table 13), and the post-Bubble Japan pseudo 

sample (Table 16) varies from 16% to 18%, much smaller than that for t copula for the 

recent Japanese data (Table 7), 49%. 
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3.4. Implications 

The results of the data analysis in this section are summarized as follows. 

First, the VCV method tends to underestimate portfolio risk because it adopts 

Gaussian distribution that cannot capture the fat-tail properties of profit–loss 

distributions. 

Second, a copula extracts the dependence structure from stressed markets. Combining 

the copula with the marginal distributions estimated from the recent data can simulate a 

stressed dependence situation that has not been observed in the recent data. 

Third, a nonparametric copula has problems in estimating ES and VaR: 

underestimation of ES and strong data dependency of VaR. 

Fourth, the t copula or the mixed-Gaussian copula tends to be selected by BIC, which 

implies that the dependency between the stock price and the interest rate cannot be 

captured by a linear correlation. 

Fifth, strong tail dependence is not necessarily conservative. It sometimes increases 

the risk reduction of the portfolio. 

 

4. Conclusions and Open Problems 

We have discussed how to incorporate a stressed situation into risk measurement by 

using a copula. This section addresses the applicability of a copula in financial practice 

and states the open problems. 

First, a bivariate or small-number-of-risk-factors approach has been utilized in 

financial practice. As shown in this paper, some financial institutions aggregate risks of 

stocks and bonds represented by the key interest rate and the stock index even if they 

measure the sub-portfolio risks by using more risk factors. Some major financial 

institutions aggregate the firm-wide risks of market, credit, and operational risk 

categories by representing each risk category with some profit–loss time series (see 

Brockmann and Kalkbrener [2010], for example). They sometimes calibrate Gaussian or 

t copula parameters (including  for t copula) by using one time series each for market 

and credit profit–loss, and determine the correlation with other risk categories a priori 

without statistical estimation. 
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Second, the bivariate approach in this paper can be extended to more than two risk 

factors. For Gaussian, t, and mixed-Gaussian copulas, multivariate extension can be 

done by replacing a correlation parameter  with a correlation matrix . In practice, 

various simplifications are done in estimation of parameters. For example, a correlation 

matrix  for Gaussian or t copula is sometimes estimated from the sample rank 

correlation.20 Parameter  for t copula is sometimes estimated from the joint tail 

frequency.21 One parameter, Archimedean copula including a Gumbel, Clayton, or 

Frank copula can be easily extended to more than two variables if homogenous 

pair-wise dependency can be assumed. To incorporate various pair-wise dependency, 

HAC (hierarchal Archimedean copula)22 or vine copula23 may be needed. Skew-t 

copula is another way to incorporate asymmetric dependency.24 Simplifications of 

estimation for HAC, vine, and skew-t copula are open problems in practice. 

Third, selecting a suitable copula for risk factors may strongly depend on the choice 

of approach: either “unconditional” or “conditional.” We adopt an unconditional 

approach because most financial institutions calculate daily VaR to estimate the 

necessary capital to cover the potential loss for one day under an unconditional 

approach. The loss will not be suffered the next day, but on some day during the capital 

planning year with a small probability. On the other hand, most academic research 

focuses on a conditional approach to estimate daily VaR by using all available 

information at evaluation.25 A conditional approach applies a copula to unpredictable 

parts in returns by some time-series model such as GARCH. Although an unconditional 

approach may need a flexible and complicated copula, a conditional approach may only 

need a simple copula. 

                                                 
20 Pairwise rank correlation including Spearman rho and Kendall tau has one-to-one correspondence 
to pairwise correlation 

ij  in Gaussian or t copula. See McNeil, Frey, and Embrechts [2005]. For 

mixed-Gaussian copula with more than two states or variables, EM algorithm can be applied for 
maximum likelihood estimation. However, more efficient or robust estimation is an open problem. 
21 For any pair of variables (i, j) with t copula, the conditional probability j-th variable is less than u, 
given that the i-th variable is less than u and converges to ))1/()1)(1((2 1 ijijt   . Since 

ij  is already fixed as footnote 20, equating that probability to the joint tail frequency divided by 

some small threshold u estimates the parameter  . 
22 For HAC, see Savu and Trede [2010], for example. 
23 For vine copula, see the handbook of Kurowicka and Joe [2010]. 
24 Demarta and McNeil [2005] and Smith, Gan, and Kohn [2012] propose various types of skew-t 
copula. 
25 See Christoffersen et al. [2012] and Smith, Gan, and Kohn [2012], for example. 
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Finally, adjustment of the holding period is a significant open problem that has not 

been discussed in this paper. If the holding period is longer than the data frequency, 

then we have to calculate the cumulative profit–loss distribution. The calculation has 

two issues even if the observed sample has no serial correlation under an unconditional 

approach. The first theoretical issue is the conversion speed of the tail in the cumulative 

profit–loss distribution. Fushiya and Kusuoka [2010] indicate that the conversion speed 

to the Gaussian tail is slow if the unit profit–loss distribution is fat even with a finite 

variance. The second practical issue lies in choosing a method to determine the 

reduction rate of the position by considering market liquidity (see Brockmann and 

Kalkbrener [2010], for example). 
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