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Abstract

Focusing on the recent secular stagnation debate, this paper examines the role

of large �rm dynamics as determinants of productivity �uctuations. We �rst show

that idiosyncratic shocks to large �rms as well as entry, exit, and reallocation

e¤ects account for 30 to 40 percent of productivity �uctuations in Japan and the

U.S. Second, since the mid-2000s, the slowdown in large foreign �rm entry into

the U.S. has led to a decline in business dynamics and downward pressures on

productivity growth. Third, we identify demand and supply shocks by matching

idiosyncratic large-�rm shocks in the granular residual (Gabaix, 2011) and changes

in sectoral in�ation rates and show that the prolonged slowdown in productivity

growth in Japan and the U.S. was mostly driven by supply shocks. Overall, our

results support the supply-side views of Gordon (2012, 2015, 2016) in the secular

stagnation debate.
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1 Introduction

Since the 2008 global �nancial crisis, there is an ongoing debate on why economic growth

� especially productivity growth � in industrialized countries has remained so low

for such a prolonged period. The recent debate has focused mainly on slowdowns of

productivity growth in the U.S. and Europe since the global �nancial crisis, but within

industrialized economies, Japan is a well-known example where productivity growth has

declined since the 1980s.1

One of the fundamental questions of the recent debate is whether this persistent slow

growth is driven by demand or supply factors. Summers (2014, 2015, 2016) has focused

on the demand side to explain secular stagnation � a concept originally introduced by

Hansen (1939) � , arguing that a prolonged shortage of investment demand has led to

hysteresis e¤ects2 and has ultimately resulted in what is called an inverse Say�s Law:

"A lack of demand creates a lack of supply potential." While this has not been the

conventional view in mainstream macroeconomics, the idea kicked o¤ an active debate

in the search for explanations for the observed slow growth since the global �nancial

crisis.3 A rather traditional macroeconomic approach to the secular stagnation debate is

the supply-side view expressed by Gordon (2012, 2015). The supply-side view argues that

the fruits of the information-technology revolution had already materialized by the mid-

2000s (Fernald 2015, Byrne, Fernald, and Reinsdorf 2016) and that a decline in business

dynamism may also be a source of today�s secular stagnation.4 Although both views are

1Hayashi and Prescott (2002) kicked o¤ the discussion of the "lost decade" of the 1990s in Japan,
where they showed using growth accounting frameworks that most of the decline in economic growth
was due to a slowdown in TFP growth. Many studies have followed since then, for example, Fukao et
al. (2004), Jorgenson and Motohashi (2005), Jorgenson and Nomura (2007), Kawamoto (2005), among
others.

2The possible role of hysteresis e¤ects was �rst discussed by Blanchard and Summers (1986) in
relation to unemployment in Europe. In their study, they argued that recessions have lasting e¤ects and
are the root cause of lower output in later periods.

3See Teulings and Baldwin (2014) for a comprehensive discussion on this topic.
4Other possible explanations for secular stagnation include a debt overhang (Lo and Rogo¤, 2015),

a savings glut (Bernanke, 2015), or a liquidity trap (Krugman, 2013).
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not mutually exclusive, further empirical evidence on the origins of productivity growth

is needed to assess whether demand or supply is the dominant factor in explaining the

secular stagnation phenomenon.

Against this background, the aim of this paper is to examine the secular stagnation

phenomenon by focusing on the role of large �rm dynamics as a determinant of pro-

ductivity �uctuations. Large �rm dynamics are indeed important pro�les of economic

�uctuations, as documented in, for example, Canals et al. (2007) where they show that

the top 10 exporters account for about 30 percent of Japan�s total exports. We will use

�rm-level data from Japan and the U.S. and proceed in several steps. First, we calibrate

the Carvalho and Grassi (2016) model to Japanese data to demonstrate that idiosyn-

cratic shocks to large �rms have a non-negligible impact on the macroeconomy. Second,

we empirically investigate how various aspects of large �rm dynamics � idiosyncratic

shocks to large �rms, the entry and exit of �rms, and the reallocation of resources across

�rms � have contributed to productivity growth in both countries. Third, we identify

demand and supply shocks by matching idiosyncratic large �rm shocks in the granular

residual with changes in sectoral in�ation rates, and examine their impact on produc-

tivity. Overall, our results support the supply-side view of Gordon (2012, 2015, 2016) in

the secular stagnation debate.

One of the most in�uential ideas from the recent literature on �rm dynamics is the

granular hypothesis introduced by Gabaix (2011).5 The granular hypothesis holds that

idiosyncratic shocks to large �rms have macroeconomic e¤ects. More speci�cally, when

the �rm size distribution is fat-tailed, the central limit theorem breaks down, and idio-

syncratic shocks to large �rms propagate to the aggregate level. Gabaix (2011) provides

the foundations for this hypothesis and shows that idiosyncratic shocks to large �rms are

indeed the underlying sources of productivity �uctuations. The granular hypothesis has

5Other studies that worked on the granular hypothesis include Acemoglu et al. (2012), di Giovanni
and Levchenko (2012), Carvalho and Gabaix (2013) and di Giovanni, Levchenko, and Mejean (2014),
among others.
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sparked further theoretical developments such as the model proposed by Carvalho and

Grassi (2016), in which they examine the role of �rm size distributions in the neo-classical

�rm sector model of Hopenhayn (1992) to analyze the impact of large �rm shocks on

aggregate �uctuation. Their calibration exercise shows that the model performs well

in replicating the business cycle moments of the U.S. economy. In this paper, we will

�rst calibrate this Carvalho�Grassi model to Japanese data and show that the model

performs well for Japan as well. These theoretical results support the view that idiosyn-

cratic shocks to large �rms are indeed an important source of productivity �uctuations.

Gabaix (2011) also shows empirically that idiosyncratic shocks to the top 100 �rms �

measured by the granular residual � account for 30 to 40 percent of overall productivity

�uctuation in the U.S. Given the good �t of granular regressions, we use this approach

to pin down the origins of productivity growth using �rm-level data for Japan and the

U.S.

Other aspects of large �rm dynamics include the entry and exit of �rms and allocative

e¢ ciency across existing �rms � which we will call reallocation � . Entry, exit, and

reallocation e¤ects can be regarded as proxies for the degree of business dynamism. Based

on a thorough review of the literature, Foster, Haltiwanger, and Krizan (2001) reach the

conclusion that increases in net entry has a positive e¤ect on aggregate productivity

growth. More recently, Clementi and Palazzo (2016), building on Hopenhayn (1992),

have also shown that positive aggregate productivity shocks induce entry and that such

entry propagates the e¤ects of productivity shocks. Their calibration exercise shows

that, conditional on survival, entrants grow faster than exiters, so that net entry has

a positive e¤ect on productivity growth. They further conclude that the drop in the

number of establishments was partly responsible for the low growth following the Great

Recession. In light of these �ndings, we employ the dynamic Olley�Pakes productivity

decomposition recently proposed by Melitz and Polanec (2015) using �rm-level data

for Japan and the U.S. to examine how the business dynamics of large �rms a¤ected
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productivity growth.

We examine the secular stagnation phenomenon by identifying demand and sup-

ply shocks using the granular residual. More speci�cally, we match the idiosyncratic

�rm-level shocks in the granular residual with changes in sectoral in�ation rates for

identi�cation:6 when output and in�ation simultaneously move in the same direction,

this is considered as a demand shock, and when output and in�ation move in opposite

directions, this is considered as a supply shock.7 After identifying these shocks from the

granular residual, we conduct granular regressions and examine the impulse responses

from local projections to see how these shocks a¤ect productivity.

Our empirical �ndings can be summarized as follows. First, idiosyncratic shocks

to large �rms, �rm entry and exit, and reallocation account for 30 to 40 percent of

productivity �uctuations in Japan and the U.S. Second, in contrast with the U.S., the

contribution of �rm net entry in Japan is small. The IT revolution led many large

foreign �rms to enter the U.S. during the late 1990s to the mid-2000s � especially �rms

in the telecommunications sector � and this had a positive e¤ect on productivity growth.

However, since the Great Recession, the entry of foreign �rms into the U.S. has slowed,

reducing the degree of business dynamism and ultimately exerting downward pressure

on productivity growth. Third, in Japan, total factor productivity (TFP) growth is

mainly driven by large �rms in the transport equipment, electronic components and

devices, and information technology industries. For the U.S., the main drivers are large

�rms belonging to the durables and the information technology industries. Fourth, our

identi�ed demand and supply shocks show that the prolonged productivity slowdown

both in Japan and the U.S. was mostly due to supply shocks, which supports the supply-

side view of Gordon (2012, 2015, 2016) in the secular stagnation debate.

6Identi�cation using in�ation data is common in the literature. See, e.g., Summers (2015, 2016), and
Blanchard, Cerutti, and Summers (2015).

7In a broad class of models, technology shocks lead to a reduction in in�ation, as shown by Gali
(1999) and Gali and Rabanal (2004), among others.
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The organization of the paper is as follows. Section 2 describes the Carvalho�Grassi

model (Carvalho and Grassi, 2016). Section 3 calibrates the Carvalho�Grassi model to

Japanese data and runs business cycle simulations. Section 4 performs the dynamic

Olley�Pakes decomposition of aggregate labor productivity and granular regressions.

Section 5 identi�es demand and supply shocks using the granular residual and investigates

their impact on productivity growth. Section 6 concludes.

2 The Carvalho�Grassi Model

In order to examine how idiosyncratic shocks to large �rms, �rm entry and exit, and

reallocation a¤ect aggregate �uctuations, we employ Carvalho and Grassi�s (2016) model,

referred to as the CG model hereafter. The CG model builds on Hopenhayn�s (1992)

model and incorporates �rm size distributions into a standard neo-classical �rm sector

model with optimal entry and exit decisions. As documented in Axtell (2001), �rm

size distributions are indeed fat-tailed and well described by a power-law distribution.

Incorporating �rm size distributions into a neo-classical model entails complexity, but

the novel feature of the CG model is its tractability. The model also generates rich �rm

dynamics, which makes it suitable for analyzing large �rm dynamics. In this section, we

describe the basic setup of the CG model.

There are two broad types of �rms: incumbents and potential entrants. The CG

model incorporates �rm size distributions � by assuming that �rms are distributed over

an exponentially constructed productivity space � = f'1; :::; 'Sg, where ' is the incre-

ment of this space.

2.1 Incumbents�Problem

In each period, incumbents face the choice whether to continue their business or not.

They �rst observe the aggregate real wage w(�), which is taken to be the state variable
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mapped from the �rm distribution,8 and draw their idiosyncratic productivity level �s

from the productivity space �. For example, if the real wage is high and the idiosyncratic

productivity draw is low, it will not be pro�table for that �rm to continue, so it will shut

down its business and exit from the economy. More formally, the instantaneous payo¤

of an incumbent �rm is given by

��
�
w(�); 's

�
= max

n
f'sn� � w(�)n� cfg;

where n is labor input for production and cf is the �xed cost for production. In this

setting, the value function for the incumbent V
�
w(�); 's

�
is given by the following

Bellman equation:

V
�
w(�); 's

�
= ��

�
w(�); 's

�
+ max
fExit;Stayg

n
0; �

Z
�02�

X
's

02�

V
�
w0(�0); 's

0
�
F ('s

0j's)�(d�0j�)
o
;

where � is the discount factor, and �(:j�) and F (:j's) are the conditional distribution of

�0 and the idiosyncratic productivity draw in the next period, '0, respectively.

2.2 Entrants�Problem

There are M potential entrants, which are distributed over the productivity space �,

where the cumulative distribution function is given by GS. We assume that this distri-

bution is exogenous and is Pareto. Firms enter the economy i¤:

V e
�
w(�); 'e

�
= �

Z
�02�

X
'e

02�

V
�
w(�0); 'e

0
�
F ('e

0j'e)�(d�0j�) > ce;

where ce is the entry cost. As we will see later, in equilibrium, �rms beyond a certain

productivity threshold will enter.

8Carvalho and Grassi (2016) take the �rm distribution as the state variable, but the distribution can
be mapped to real wages to reduce the computational burden.
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2.3 Aggregation and the Labor Market

Since all �rms are distributed over the productivity space �, the aggregate productivity

level can be expressed as the weighted average over the �rm distribution �t. That is,

aggregate productivity At will be given by

At =
� SX
s=1

�s;t('
s)

1
1��

�1��
= (B0�t)

1��;

where �s;t is the mass of �rms in grid s at time t, and B
0
= f('1)

1
1�� ; :::; ('S)

1
1��g is

a vector of productivity levels. We de�ne T = B0� as a monotone transformation of

productivity for computational convenience. In this setting, the aggregate production

function will be Yt = At(LDt )
�, where LDt denotes aggregate labor demand.

Labor supply is given exogenously as LS(wt) = Nwt ; where N denotes the total

number of �rms. From �rms� optimization, labor demand will satisfy the �rst order

condition of the instantaneous payo¤ function of incumbent �rms, so the aggregate labor

demand will be

LD(wt) =
��At
wt

� 1
1��
:

2.4 Equilibrium

We focus on a competitive equilibrium where incumbents and potential entrants follow an

entry-exit cuto¤ rule, s�(��; �). That is, incumbent �rms continue their business if their

idiosyncratic productivity draw 's exceeds the cuto¤ threshold 's
�
. Likewise, potential

entrants enter if their productivity draw exceeds this threshold. We solve incumbent

�rms�optimization problem using value function iteration.

Equilibrium will consist of the optimal entry-exit rule s�(��; �) for incumbents and

entrants, a stationary distribution �� with positive entry satisfying entrants�incentive

constraints, aggregate quantities A�; Y �; L�, and wages w� clearing the labor market.
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2.5 Transition Probabilities

We add more structure to the CG model to apply the main theoretical results from

Carvalho and Grassi (2016). We assume that the idiosyncratic productivity draws of

incumbents follow a Markov process of the form

P =

266666666664

a+ b c 0 : : : : : : 0 0

a b c : : : : : : 0 0

: : : : : : : : : : : : : : : 0 0

0 0 0 : : : a b c

0 0 0 : : : 0 a b+ c

377777777775
(S�S)

:

Rows of this matrix represent �rms entering in period t with idiosyncratic productivity

draw �s, columns represent the next period�s productivity draw �s
0
, and a, b, and c

represent transition probabilities. Theorem 2 in Carvalho and Grassi (2016) shows that

when the productivity process takes the above form and entrants�distribution is assumed

to be Pareto (Gs = Ke(�
s)��e), the productivity process Tt = B0�t will follow an AR(1)

process:

Tt+1 = �Tt + �Et(') +O
T
t + �t"t+1; (1)

�2t = %Dt + %Et('
2) +O�t ;

where E["t+1] = 0 and V ["t+1] = 1. Et(') represents the contribution of net entry, Dt

represents the quadratic expectations with respect to idiosyncratic productivity, and OTt

and O�t are correction terms.
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3 Simulation Analysis

In this section, we calibrate the CGmodel to the Japanese economy to simulate how large

�rm shocks propagate to the macroeconomy. The calibrated parameters are summarized

in Table 1. We use standard parameter values for the discount rate and labor elasticity,

while the labor share matches the data from the national accounts. Parameters for

the �rm distribution and the productivity space were estimated following Axtell (2001).

Using the calculated distribution, transition probabilities are calibrated so that the �rm

distribution in equilibrium matches the �rm distribution from the data averaged over

time. The number of total �rms is set to the size of Japan�s publicly listed �rms.9

Table 1: Calibrated Parameters

Parameter Value Description
S 40 Size of the productivity space
� 1.085 Grids of the productivity space
a 0.613 Markov transition probability
c 0.387 Markov transition probability
� 0.95 Discount rate
 2 Elasticity of labor
� 0.613 Labor share
M 500 Number of potential entrants
N 3000 Number of total �rms
�e 1.84 Pareto tail parameter of potential entrants
� 1.50 Pareto tail parameter of all �rms

Figure 1 compares the steady state �rm distribution �� � i.e., the counter cumulative

distribution (CCD) � from the model and the Japanese data, and we can see that the

two are very similar. A detailed description of the data is provided in Section 4.1.

9Since there is no available data on the potential number of entrants, we have assumed that the
number is 500, but this assumption does a¤ect our main results.
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3.1 Business Cycle Characteristics

We run stochastic simulations around the steady state to calculate the business cycle

statistics from the CG model. In the current set up, the �rm distribution follows

�t+1 = m(�t) + �t+1; (2)

wherem(�t) = (P�t )
0(�t+MGS) is the resulting �rm distribution after endogenous entry-

exit decisions. P�t is a transition matrix which summarizes the endogenous entry-exit

results. The rows of this matrix are zeros up to a certain cuto¤ threshold S�(wt(�t)).

This can be viewed as the deterministic component resulting from optimal entry-exit

decisions.

There are also shocks to the �rm distribution, �t+1, with E[�t+1] = 0, and a variance-

covariance matrix �(�t) =
PS

s=s�(�t)
(MGS + �s;t)(diag(Ps;) � P 0s;Ps;), where Ps; is the

transition matrix with rows of zeroes for productivity levels below the cuto¤ threshold.

We generate 5,000 independent draws of �rm distribution shocks, discard the �rst 1,000

draws, and calculate standard deviations of the growth rates of the aggregates quantities

and real wages. Table 2 summarizes the simulated results and compares them with the

data.

Table 2: Business Cycle Characteristics

Japan U.S. (CG (2016))
Model Data Model Data

Real output (Y) 1.502 1.640 0.47 1.83
Labor supply (L) 1.002 0.918 0.31 1.78

TFP (A) 0.888 0.809 0.21 1.04
Real wage (w) 0.501 0.803 � �

Note: Numbers for Japan represent standard deviations of detrended annual growth
rates in percent. The observation period for Japan is from 1976 to 2014.
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The business cycle statistics of the calibrated model for Japan are close to those of

the data. Real output is the most volatile among the aggregate quantities, followed by

labor supply, TFP, and real wages. The U.S. results from Carvalho and Grassi (2016)

are also shown for reference. These results are consistent with the insights from Canals

et al. (2007) and di Giovanni and Levchenko (2012), who point out that in granular

economies, where large �rms make up a major proportion of, for example, exports, shocks

to the upper tail of the �rm distribution play an important role in driving aggregate

�uctuations. Not only is the CG model simple and tractable, we believe it also provides

a good description of the Japanese economy, replicating the business cycle well.

3.2 Large Firm Shocks and Net Entry

We demonstrate the quantitative impact of an idiosyncratic shock to the largest �rm

using our calibrated model for Japan. Speci�cally, we will refer to large-�rm shocks

as shocks to the upper tail of the �rm size distribution. Figure 2 shows the impulse

response of aggregate output to a negative 15 percent technology shock to the largest

�rm. For comparison, the same shock to an average-sized �rm is also considered. When

the largest �rm is hit by the negative shock, this has a substantial macroeconomic impact,

whereas the macroeconomic impact of the same negative shock to an average-sized �rm is

negligible. The mechanism works as follows: the negative shock to the largest �rm drives

down real wages and results in excess pro�ts for other �rms. This induces other �rms

to ramp up their production; however, due to decreasing returns to scale, they cannot

su¢ ciently increase production to compensate for the negative shock. As a result, shocks

to large �rms have a macroeconomic impact.

From equations (1) and (2), we can see that the evolution of aggregate productivity

will depend not only on shocks to the �rm distribution but also on the net-entry term.

In the CG model, potential entrants follow an exogenous Pareto distribution, but when

we think of the exogenous entry of a highly productive �rm of a massive size, this will
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also have a macroeconomic impact, as in the above exercise.

Overall, these results and insights from Carvalho and Grassi (2016) indicate that idio-

syncratic shocks to large �rms as well as net entry are important sources of productivity

�uctuations in Japan and the U.S.

3.3 Thicker Tails in the Firm Distribution

What does the model imply when the distribution of potential entrants gets thicker in

the tails? Figure 3 compares impulse responses with di¤erent tail parameters (�e, and

�) for the �rm distribution. When the tails of the distribution get thicker, the impact of

large �rm shocks becomes larger. This is intuitive, since thicker tails imply larger �rms

in the tails.

Further, Figure 4 shows the entry rates with di¤erent tail parameters. We de�ne the

entry rate in terms of the ratio of entering �rms�output to total output. Our results

shows that as the tail of the distribution gets thicker, the entry rate declines.10 This

is a natural outcome since when � is larger than one, the expectation of the pareto

distribution (E(x) = �
��1) is a decreasing function with respect to �. Hence, when the

�rm distribution becomes more fat tailed, the value of entry will be lower and this could

depress entry motives of potential entrants and lead to declines in the entry rate.

4 Empirical Analysis

The previous section utilized the CG model to show that idiosyncratic shocks to large

�rms and net entry have a macroeconomic impact and are key sources of business cycle

�uctuations. In this section, we empirically investigate how the various aspects of large

�rm dynamics, i.e., idiosyncratic shocks to large �rms, �rm entry and exit, and realloca-

10The �gure shows that the entry rate declines in a stepwise fashion. This is due to the discretization
of the productivity space, and when the entry threshold rises with lower tail parameters, there is a
discrete jump in the entry rate.
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tion have contributed to productivity growth in Japan and the U.S. We proceed by �rst

analyzing the role of entry, exit, and reallocation using the dynamic Olley�Pakes method

proposed by Melitz and Polanec (2015) to see how the business dynamics of large �rms

a¤ected productivity growth. Second, we will run granular regressions following Gabaix

(2011) to see how idiosyncratic shocks to large �rms lead to aggregate productivity �uc-

tuations. Third, we decompose the granular residual into the contribution of individual

�rms and aggregate them into sectors to examine which sectors played a major role in

determining productivity trends.

4.1 Data

Firm-level data for Japan are obtained from the Nikkei NEEDS-Financial Quest data-

base, which covers publicly listed companies. First, we obtain the nominal annual sales

series for each �rm and convert these series into real terms using sectoral output de�ators

from the SNA.11 We map the 132 industry classi�cations in the database to the 23 sector

classi�cation of the SNA. The number of employees for each �rm is also obtained from

the Nikkei NEEDS database, and we use this to calculate �rm-level labor productivity

by dividing real sales by the number of employees.12 The main advantage of using the

Nikkei database is that we are able to obtain not only data for existing �rms � as of

today � but also data for exiters as well. This enables us to analyze the quantitative

impact of entry, exit, and reallocation e¤ects. The database covers �rms listed on the

�rst and second sections of the Tokyo Stock Exchange, on JASDAQ and Mothers, as well

11For some �rms, observations for some data points are missing, so that we use linear interpolation
in the sales and employees series to calculate �rm-level labor productivity. Note also that the sales
and employees data for each �rm are based on consolidated accounts which includes overseas sales for
multinationals.
12Labor productivity of �rm i is de�ned as Ai;t = (Pi;tXi;t)=(PSi;tLi;t), where the total nominal sales

of �rm i, Pi;tXi;t, are divided by �rm i�s sector�s output de�ator, PSi;t, and the number of employees,
Li;t. Individual prices Pi;t and quantities Xi;t are unobservable, but since we have greatly disaggregated
output de�ators, we proceed by assuming that the di¤erence between in�ation in individual prices and
the sector prcie are small, so that labor productivity growth rates gi;t = g

X=L
i;t + (�i;t � �Si;t) can be

treated as real terms.
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as the Nagoya and Osaka stock exchanges. The total number of �rms amounts to 5,378

in total. When aggregating �rm-level data into sector groups, we use Nikkei�s industry

classi�cation, which is more detailed than other industry-level data. Following Gabaix

(2011), we exclude energy companies; in addition, we also exclude trading companies,

since their sales, productivity, etc., are greatly in�uenced by �uctuations in commodity

prices. The observation period for Japan is from 1965 to 2014. Labor productivity at the

macro level is calculated using real GDP from the SNA and number of employees data

from the Ministry of Health, Labour and Welfare. The data for TFP are based on Bank

of Japan estimates. The construction of data for the U.S. is similar to the construction

of data for Japan and the procedures in Gabaix (2011). Firm-level data for the U.S. are

obtained from Compustat, while other macroeconomic variables are obtained from the

Bureau of Economic Analysis. TFP series are multifactor productivity series for private

business obtained from the Bureau of Labor Statistics.

4.2 Dynamic Olley�Pakes Decomposition

Recall from equation (1) that net entry was a determinant of aggregate productivity. Gor-

don (2012, 2015) has expressed concern from the supply-side perspective that a decline

in business dynamism has put negative pressure on productivity growth. The goal of this

section is to see how the business dynamics of large �rms � entry, exit, and reallocation

� have contributed to productivity growth. As documented in Foster, Haltiwanger, and

Krizan (2001), net entry spurs productivity growth. We analyze the contributions from

entry and exit as proxies for business dynamics, using the dynamic Olley�Pakes produc-

tivity decomposition � hereafter, DOP decomposition � recently proposed by Melitz

and Polanec (2015).13 The main feature of this method is that the decomposition is con-

ducted based on the moments of the productivity and market share distributions. There

13A recent paper by Decker et al. (2017) also uses DOP decomposition on �rm-level data in the U.S.
and shows that a decline in allocative e¢ ciency accounted for the bulk of the productivity slowdown
from the late 1990s to the mid-2000s.
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are other decomposition methods of aggregate labor productivity at the �rm level, such

as those proposed by Griliches and Regev (1995) and Foster, Haltiwanger, and Krizan

(2001). However, Melitz and Polanec (2015) report that DOP decomposition is e¤ective

for eliminating biases in the measurement of the contribution of entry and exit found in

other decompositions. For this reason, we use DOP decomposition.

The outline of the DOP decomposition is as follows. We �rst decompose �rms in a

certain time period � say time t � into three groups: entrants, exiters, and surviving

�rms. Entrants are de�ned as �rms that were not present in the previous period and

entered the economy at time t.14 Likewise, exiters are �rms that were present until

the previous period but left the economy in period t. Surviving �rms are �rms that

were present in both periods. Second, we merge these groups to calculate aggregate

productivity. Denoting the weighted average labor productivity in a certain group G as

�Gt =
P

i2G si;t'i;t, the aggregate productivity level � in log levels � in period t and

t� 1 can be written as

�t = S
S
t �

S
t + S

E
t �

E
t = �

S
t + S

E
t (�

E
t � �St );

�t�1 = S
S
t�1�

S
t�1 + S

X
t�1�

X
t�1 = �

S
t�1 + S

X
t�1(�

X
t�1 � �St�1);

where SGt denotes the share of group G in total sales. Taking the di¤erence of these two

expressions corresponds to the growth rate of aggregate labor productivity. After some

rearrangement, this can be expressed as

��t = �~'
S
t +�cov(s; ') + S

E
t (�

E
t � �St ) + SXt�1(�St�1 � �Xt�1):

Therefore, the growth rate of aggregate labor productivity is decomposed into four com-

14As documented in many empirical studies � such as Foster, Haltiwanger, and Krizan (2001) � ,
entrants tend to grow faster than other �rms. To capture this pro�le, we treat �rms as entrants up to
three years after their entry.
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ponents: the average growth of surviving �rms, �~'St , the change in the covariance of the

shares and productivity of surviving �rms, �cov(s; ') � which we call the reallocation

e¤ect � , and the contribution of �rm entry and exit. In other words, the reallocation

e¤ect relates individual �rms�productivity and their market share. When the share of

a highly productive �rm increases, the aggregate productivity level increases, and vice

versa.

Figures 5 and 6 show the DOP decomposition of labor productivity for Japan and

the U.S. The result for Japan is presented in Figure 5 and shows some notable features.

First, even though they are based on di¤erent statistical sources, developments in labor

productivity constructed from �rm-level data closely resemble those calculated from ag-

gregate data. Second, although �rm entry made a positive contribution to productivity

growth from the early 2000s until the mid-2000s, the contribution of net entry is rather

small in Japan compared to the U.S. In fact, most of the contribution of �rm entry

comes from the top 20 entrants ordered by size.15 Further, this �nding supports the

granular hypothesis that large �rms matter for net entry as well. Third, following the

Great Recession, the positive contribution of entry has dissipated and sales weights have

shifted towards �rms with lower productivity, indicating that reallocation e¤ects have

put downward pressure on labor productivity growth.

The results for the U.S. in Figure 6 paint a picture of more active �rm dynamics

than in Japan. First, as in Japan, developments in �rm-level labor productivity that

we constructed closely resemble those calculated from aggregate data. One of the ma-

jor factors driving the productivity slowdown from the 1990s is the reallocation e¤ect.

The contribution of the entry e¤ect was positive throughout most of the period but has

declined since the mid-2000s. This is in line with Gordon�s (2012, 2015) �ndings, which

suggest that a cause of the secular stagnation was a decline in business dynamism that

15The correlation between the contribution of the top 20 entrants and total entrants is 0.96 for Japan
and 0.91 for the U.S. The top 20 entrants on average correspond to the top 6 percentile of overall
entrants in Japan and the top 1.8 percentile in the U.S.
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contributed to slower productivity growth. To see this in more detail, Figure 7(a) de-

composes the contribution of �rm entry into the contributions of two groups of �rms:

U.S. �rms and foreign �rms entering the U.S.16 The �gure allows a number of observa-

tions. First, we can see that the 1960s to the mid-1970s were a golden age for U.S. �rms,

where new entry of domestic �rms made a positive contribution to aggregate productiv-

ity growth. These �rms were the foundation for high growth in later periods. Second,

most of the positive contribution from the 1990s to the mid-2000s was made by foreign

�rms entering the U.S. A detailed breakdown of foreign �rms entering the U.S. by sector

is shown in �gure 7(b), where we see that the high contribution of �rm entry during

this period was mainly driven by entries in the broadcasting and telecommunications

sector. As shown by Fernald (2015), this can be viewed as the fruits of the IT revolution

re�ecting the high degree of business dynamism, since many foreign �rms entered the

U.S. during this period to improve their communication networks. Recent developments

since the Great Depression show some signs of a pick up as more entries of domestic �rms

into the stock market � for example of social network �rms such as Facebook in 2012 �

can be observed, but the contribution of foreign �rms has dissipated, which has reduced

economic metabolism. Between the late 1990s and the mid-2000s, the contribution of

exiters was negative, but this was mainly due to the e¤ects of large mergers and acqui-

sitions (M&As), in which exiters merged with or were acquired by existing �rms or new

entrants. In sum, our DOP decomposition is consistent with the supply-side view that a

decline in business dynamics since the mid-2000s has depressed productivity growth in

the U.S.

4.3 Granular Regressions with Entry, Exit, and Reallocation

In the previous section, we examined how business dynamics � i.e., entry, exit, and real-

location � contribute to aggregate productivity growth. In this section we quantitatively

16We use FIC and LOC codes to classify U.S. �rms and foreign �rms based in the U.S.
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assess the impact of idiosyncratic shocks to large �rms, following Gabaix (2011).

We work with granular regressions, in which we regress �uctuations in productiv-

ity growth on proxies of idiosyncratic large-�rm shocks such as the granular residuals.

Gabaix (2011) shows that the granular residual performs well in explaining aggregate

�uctuations and TFP growth in the U.S. This seminal �nding provides evidence that

idiosyncratic shocks to large �rms are key origins of aggregate �uctuations. This is

consistent with the theoretical predictions in Sections 2 and 3, where we showed that

large-�rm shocks result in aggregate �uctuations.

In this section, we perform granular regressions in the spirit of Gabaix (2011), adding

the contributions of entry, exit, and reallocation from the DOP decomposition to the

explanatory variables. To start with, using the top 100 �rms in terms of size, we de�ne

the granular residual �t as

�t =
100X
i=1

Si;t�1
Yt�1

(gi;t � �gt);

where Si;t�1, Yt�1, gi;t, and �gt denote the real sales of �rm i, real GDP, the growth of

labor productivity of �rm i, and the average productivity growth of all �rms, respec-

tively. Recall that all variables are in real terms, and weights of the idiosyncratic shock

Si;t�1=Yt�1 are �xed in the previous period, so there are no reallocation e¤ects. We use

this measure as a proxy for idiosyncratic shocks to large �rms.

Combining equation (1) and (2), we can express productivity �uctuations with idio-

syncratic shocks to large �rms, as well as net entry terms. We use the above granular

residual along with the contributions of entry, exit, and reallocation from the previous

section � denoted by Zt � and perform granular regressions of the following form:

gprodt = c+ �(L)�t(L) + Zt + �t; (3)

where gprodt is the productivity growth rate, �t(L) includes contemporaneous and lagged

granular residuals, and �t are error terms. We will use labor productivity growth and
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TFP growth for gprodt . The results of these regressions are summarized in Table 3. The

overall �t for Japan and the U.S. is quite good and the model explains about 30 to 40

percent of the overall �uctuations in aggregate labor productivity and TFP. The granular

residual is signi�cant in all speci�cations. In terms of the proxies of business dynamics

� i.e., entry, exit, and reallocation � net entry is signi�cant for the U.S. but not for

Japan. This is in line with the observations from the previous section that the entry and

exit of large �rms makes a substantial contribution to productivity growth in the U.S.

but not in Japan. Meanwhile, reallocation e¤ects are signi�cant for both countries.

4.4 Estimating Sectoral Contributions to Productivity Growth

Using Granular Regressions

We can use the granular regression approach to investigate in a bottom-up manner which

sectors, or �rms play a dominant role in determining aggregate productivity �uctuations.

In other words, granular regression can be used as a way to identify the determinants of

productivity growth. This enables us to examine questions such as which �rms or sectors

contributed to the high productivity growth observed in Japan during the 1980s or were

responsible for the recent productivity slowdown in the U.S. In our analysis, we will

aggregate �rm-level contributions into sectors based on the Nikkei sector classi�cation

for Japan and the SIC sector classi�cation for the U.S.

Recall that the granular residual is constructed as the weighted average of the excess

productivity growth of the top 100 �rms in terms of size. We trace individual �rm�s

contribution to aggregate productivity ĉi;t using the estimated parameters from equation

(1). ĉi;t is calculated as follows:

ĉi;t = �̂(L)
Si;t�1(L)

Yt�1(L)
(gi;t(L)� �gt(L)):

We aggregate these contributions into individual sectors to see which sectors play a
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major role in determining aggregate TFP �uctuations. Figure 8 shows the historical

contribution of each sector to aggregate TFP growth in Japan and Table 4 shows the top

and bottom 5 �rms which had contributed to TFP growth. The �gure indicates, �rst,

that throughout the observation period, a limited range of sectors were the main drivers

of TFP growth, namely, transport equipment, electronic components and devices, and

information technology sectors. Second, the high growth in the 1980s was driven largely

by �rms in transport equipment � mainly consisting of �rms such as Toyota, Nissan,

and Honda � and electronic components and devices sectors � mainly consisting of

Hitachi, Toshiba and Panasonic � . Third, however, in recent years, the contribution of

the electronics components and devices sector has registered a sharp decline. This decline

can be pinned down to more detailed segments within the sector, as shown in Figure

9. The �gure and Table 4 indicates that the recent decline is mainly driven by �rms

in the general electronics and household electronics segments � �rms such as Toshiba,

Hitachi, Sharp and NEC etc � . For example, the sharp decline in the contribution to

overall TFP growth of general electronic companies since 2011 can be interpreted as

adverse shocks at the time of the Great Eastern Japan Earthquake in 2011, where some

�rms may have revised their long-term business plans related to the building of nuclear

power plants, which will have an e¤ect on the long-run trend of sales. The recent decline

in the TFP growth contribution of the household electronics sector potentially re�ects

greater competition from rival �rms abroad, whose technology has started to catch up

with Japanese �rms in this segment.

Overall, our results are consistent with those obtained by Fukao et al. (2004), who

show that manufacturing sectors were the primary sources of the decline in productivity

growth from the 1980s to the 1990s. However, we did not detect any evidence of high

productivity growth in the non-manufacturing sector in the 1990s, which was one of the

main �ndings of Fukao et al. (2004). This di¤erence may be due to the fact that we ex-

cluded trading companies, whose sales are greatly a¤ected by �uctuations in commodity
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prices, and small �rms.

Figure 10 shows the contribution of individual sectors to overall TFP growth in the

U.S. As can be seen, the sectors that historically have made the greatest contribution

are the durable goods and information technology sectors. Table 5 shows the the top

and bottom 5 �rms which had contributed to TFP growth, and we can see that among

these sectors, �rms such as General Motors and AT&T were most in�uential. Weak

developments since the Great Recession have been a rather wide-spread phenomenon:

although growth in the information technology sector � which consists of domestic IT

�rms � and retail trade has regained the pace of the late 1990s, weakness is observed

not only in the durable goods sector, especially in �rms such as General Motors, Ford

etc., but also in the nondurable goods and wholesale trade sectors. We can con�rm

this observation from from Table 5, where we see weakness in for example Walmart,

and Amazon re�ecting weak domestic demand following the �nancial crisis. To examine

developments in the durable goods sector in more detail, Figure 11 provides a breakdown

into segments. The �gure indicates that historical developments are driven mostly by

the motor vehicles, bodies and trailers, and parts industry, which includes �rms such as

General Motors, Ford, Chrysler etc.

5 Identi�cation of Demand and Supply Shocks and

Their E¤ects on Productivity Fluctuations

The aim of this section is to derive implications for the secular stagnation debate by

identifying demand and supply shocks using the granular residual and sectoral in�ation

rates to examine their e¤ects on productivity.

21



5.1 Identi�cation Using the Granular Residual

We identify demand and supply shocks by matching idiosyncratic �rm-level shocks with

changes in sectoral in�ation rates. Using changes in sectoral in�ation rates will eliminate

intrasectoral di¤erences in the level of in�ation rates. For example, an idiosyncratic shock

to Toyota is matched with the change in the in�ation rate of the automobile sector of that

year. When identifying demand and supply shocks, most of the existing literature on

secular stagnation uses aggregate in�ation for identi�cation, but we prefer using micro-

level data for identi�cation on several grounds. Summers (2015, 2016) refers to the

decline in aggregate in�ation and concludes that demand shocks were the major source

of the Great Recession and low growth. However, following the Great Recession, it is also

true that in�ation rates did not decline as anticipated, which has been referred to as "the

missing disin�ation" phenomenon (Hall, 2011). This suggests that de�ationary pressures

due to negative demand shocks were o¤set by negative supply shocks. Furthermore, the

propagation of shocks could di¤er depending on the underlying type of shock; that is,

there could be di¤erences in the way demand and supply shocks a¤ect productivity.

Overall, we believe identi�cation based on aggregate in�ation is not su¢ cient and a

more detailed analysis at the disaggregated level is necessary to determine how demand

and supply shocks a¤ect productivity.

The basic idea underlying our identi�cation strategy is straightforward: when quan-

tity and in�ation move in the same direction simultaneously, this is considered as a

demand shock, and when quantity and in�ation move in opposite directions, this is con-

sidered as a supply shock. Since we are measuring labor productivity using �rms�sales

data, �uctuations could be in�uenced by both demand and supply factors. Demand

shocks to large �rms may include, for example, exogenous shocks stemming from devel-

opments in overseas economies. When there is a positive shock to overseas economies,

large exporters will experience a surge in demand, and if increases in input � such as

labor � are slower than increases in output, this will result in productivity gains. Ul-
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timately, excess demand will drive up prices, so that productivity and prices will move

in the same direction. On the other hand, supply shocks can be viewed as, for exam-

ple, innovations within �rms or e¢ ciency gains from overseas production of large �rms.

These innovations lower the marginal cost of production, which puts downward pressure

on sales prices. In this case, productivity and prices move in opposite directions. In or-

der to examine the relation between idiosyncratic large �rm shocks and in�ation across

sectors, we use changes in sectoral in�ation rates to eliminate intrasectoral di¤erences

in the level of in�ation rates. We therefore divide the 100 �rms that are included in

the granular residual into two groups i 2 f1; 2; :::; Ng, namely, those that experienced a

demand shock and those that experienced a supply shock:

Dt = f(~gi;t;��i;t)jf~gi;t > 0 ^��i;t > 0g [ f~gi;t < 0 ^��i;t < 0gg;

St = f(~gi;t;��i;t)jf~gi;t > 0 ^��i;t < 0g [ f~gi;t < 0 ^��i;t > 0gg;

where ~gi;t � gi;t � �gt is the idiosyncratic shock to the large �rm, and ��i;t is the change

in the matched sectoral in�ation rates. We sum the contributions of individual �rms in

the granular residual over these sets to form granular demand and supply shocks, i.e.:

�Xt =
X
i2X

Si;t�1
Yt�1

(~gi;t); X 2 fD;Sg:

To illustrate our approach, Figure 12 shows the identi�cation of supply shocks for Japan

in 2008. The horizontal axis represents the contribution to aggregate TFP growth ob-

tained from the regression using equation (3), which measures the impact of idiosyncratic

shocks to large �rms and the vertical axis represents changes in the matched sectoral

in�ation rates. A granular demand shock at a certain point in time corresponds to the

sum of each granular contribution in the �rst and third quadrants of this plane; likewise,

a granular supply shock correspond to the sum of all points in the second and fourth
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quadrants. As mentioned in Section 4.1, we transformed the sales of �rm i into real

terms by dividing nominal sales by �rm i�s sector�s output de�ator. Since sectors are

greatly disaggregated, we assume that the in�ation di¤erentials between individual prices

and sectoral prices are su¢ ciently small to ignore them, so there will be no systematic

correlation between the change in the sector�s in�ation rate and idiosyncratic shocks

to large �rms. Note also that the identi�cation scheme would not work if �rms were

concentrated in one of the two regions, or displayed some systematic patterns associated

with business cycles. To check this point, Figure 13 presents the share of �rms for Japan

and the U.S. that experienced demand shocks and we can see that this share is fairly

stable around 50 percent throughout the observation period, which indicates that �rms

are evenly distributed over this plane and do not follow systematic patterns.

5.2 Granular Regressions with Demand and Supply Shocks

As in Section 4.3, we regress productivity growth on identi�ed granular demand (�Dt )

and supply (�St ) shocks, controlling for entry, exit, and reallocation (Zt). The regression

takes the following form:

gprodt = c+ �D(L)�Dt (L) + �
S(L)�St (L) + Zt + �t: (4)

Figures 14 and 15 show the contributions of demand and supply shocks to TFP growth

in Japan and the U.S. The dotted line in each �gure shows the �ve-year moving average.

A closer look at the developments in Japan shows that the high productivity growth in

the 1980s was mostly driven by supply shocks rather than demand shocks. This observa-

tion supplements the sectoral analysis using granular regressions in the previous section,

where we highlighted that transport equipment, electronic components and devices, and

information technology industries were the primary sources of high productivity growth

in the 1980s. These �ndings suggest that the TFP growth of �rms in these sectors was
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driven mainly by supply shocks. Developments in the U.S. show that supply shocks had

positive e¤ects in the early 2000s, but these e¤ects have declined since the mid-2000s.

This result is in line with Fernald�s (2015) �ndings, who documented that the fruits of

the information technology revolution had already reaped by the mid-2000s and their

role has declined since then. Meanwhile, demand shocks were the major source of the

Great Recession, which is in line with Summers�(2015, 2016) argument, but these shocks

were o¤set by positive demand shocks in subsequent years. These observations suggest

that the declining trend in productivity growth in both countries has been driven by

mostly supply shocks rather than demand shocks.

5.3 Local Projections

In order to examine if there are di¤erences in how productivity responds to demand and

supply shocks, we use the local projection method (LPM) developed by Jordà (2005)

for equations (3) and (4). Figure 16 shows the LPM cumulative impulse responses of

TFP to granular residual shocks for Japan and the U.S. The left panel for each country

depicts the LPM results using equation (3), while the middle and right panels depict the

results from equation (4). The lag in the local projections is set to 1 based on the Schwarz

information criterion. For comparison, impulse responses based on vector autoregressions

(VARs) are also shown in each �gure. As can been seen, the results from the VARs are

similar to those obtained based on the LPM. The results for both countries share similar

characteristics in that granular residual shocks have a positive e¤ect on productivity, and

while the e¤ect of demand shocks (�Dt (L)) is short lived, supply shocks (�
S
t (L)) have a

permanent e¤ect on productivity. This result closely resembles the long-run identi�cation

scheme of Blanchard and Quah (1989), who assumed that supply shocks have long-run

e¤ects on output, whereas demand shocks only have short-run e¤ects.

Overall, our empirical results support the view expressed by Gordon (2012, 2015,

2016) and Fernald (2015), who suggest that the productivity slowdown � i.e., the secular
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stagnation phenomenon � is mainly driven by supply shocks rather than demand shocks.

6 Conclusion

To examine the recently discussed secular stagnation phenomenon, we focused on the

role of large �rm dynamics as determinants of productivity growth. Our simulation ex-

ercise using the Carvalho and Grassi (2016) model supports Gabaix�s (2011) granular

hypothesis that idiosyncratic shocks to large �rms have an impact on the macroeconomy.

Using �rm-level data for Japan and the U.S., we empirically showed that idiosyncratic

shocks to large �rms as well as entry, exit, and reallocation e¤ects account for 30 to

40 percent of productivity �uctuations in both countries. This is also in line with the

granular hypothesis and shows that large �rm dynamics are a key source of aggregate

�uctuations. In terms of the e¤ects of business dynamics, we �nd that in Japan net entry

makes a small contribution to productivity growth, which contrasts with the situation

in the U.S. We also �nd that the IT revolution led many foreign �rms to enter the U.S.

during the late 1990s to the mid-2000s, which made a positive contribution to produc-

tivity growth. However, since the Great Recession, slower entry of foreign �rms has led

to a decline in business dynamism and to downward pressure on productivity growth. In

order to identify demand and supply shocks, we utilized individual contributions from

the granular residual and changes in the matched sectoral in�ation rates. Our granular

regressions showed that the prolonged productivity slowdown in Japan and the U.S. was

mostly driven by supply shocks, while impulse responses from local projections show

that supply shocks have permanent e¤ects on productivity, whereas demand shocks only

have short run e¤ects. Overall, these �ndings support the supply-side views of Gordon

(2012, 2015, 2016) in the secular stagnation debate.

Our analyses rely heavily on the granular hypothesis and do not consider the role of

small �rms. The reason for this omission is the prediction that idiosyncratic shocks to
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small �rms are likely to be compensated for by other �rms of the same size and therefore

have no impact on aggregate �uctuations. Furthermore, small �rms form part of the

production chains of large �rms and may also be a¤ected by idiosyncratic shocks to large

�rms, which are located at the end of the production chains. That being said, the sales

share of small �rms amounts to a non-negligible fraction of the whole economy, so that

it would be interesting to see how small-�rm business dynamics as well as production

chains have a¤ected productivity growth. Another line of potential research related

to our �ndings concerns the impact of large M&As on productivity growth. Our DOP

decompositions showed that exiters made a negative contribution to productivity growth.

The reason for this negative exit e¤ect likely is that exiters were high-productivity �rms

that were merged with or acquired by new entrants or existing �rms. Building economic

models that incorporate M&As as well as more in-depth analyses on the role of M&As

provide an avenue for future research to shed more light on the link between business

dynamics and secular stagnation.
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Figure 1: Steady State Firm Distribution

     Figure 2: Impulse Response of Aggregate Output to a Negative 15% 
                    Productivity Shock to Idiosyncratic Productivity
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          Figure 3: Comparison of Impulse Responses of Aggregate Output
                         to a Negative 15% Productivity Shock to the Largest
                         Firm with Different Tail Parameters

Figure 4: Entry Rate with Different Tail Parameters
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Figure 5: Dynamic Olley-Pakes Decomposition for Japan

Figure 6: Dynamic Olley-Pakes Decomposition for the U.S.
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Figure 7(a): Decomposition of Entry Contributions (U.S.)

Figure 7(b): Entry Contributions of Foreign Firms (U.S.)
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Intercept 0.485 * 0.286 -0.051 0.775 *** 0.639 *** 0.712 *** 1.326 *** 1.457 *** 1.478 *** 0.663 *** 0.775 *** 0.775 ***
(0.271) (0.329) (0.551) (0.130) (0.182) (0.195) (0.027) (0.159) (0.148) (0.084) (0.063) (0.067)

Granular residual 1.695 *** 1.696 *** 1.880 *** 0.763 ** 0.763 ** 0.740 ** 1.641 *** 1.725 *** 1.817 *** 1.944 *** 2.016 *** 2.021 ***
        (GR) (0.542) (0.495) (0.480) (0.318) (0.281) (0.276) (0.547) (0.661) (0.604) (0.524) (0.616) (0.613)

GR(-1)*D 2.947 * 3.050 ** 3.307 ** 1.324 ** 1.394 ** 1.319 *** 1.065 ** 1.101 ** 1.112 *** 1.423 *** 1.453 *** 1.452 ***
(1.531) (1.459) (1.299) (0.583) (0.611) (0.151) (0.168) (0.209) (0.202) (0.190) (0.225) (0.214)

GR(-2)*D 1.188 * 1.177 1.549 0.965 ** 0.958 ** 0.879 *** 0.728 ** 0.680 ** 0.679 ** 0.954 ** 0.914 ** 0.914 **
(0.636) (0.805) (0.884) (0.415) (0.437) (0.281) (0.346) (0.295) (0.281) (0.441) (0.405) (0.384)

GR(-1)*(1-D) 1.733 * -0.112 0.801 *** 0.188
(0.924) (0.313) (0.156) (0.213)

GR(-2)*(1-D) -0.430 -0.238 0.384 -0.064
(0.429) (0.594) (0.270) (0.310)

Net entry -0.043 -0.048 0.147 * 0.312 ***
(0.091) (0.058) (0.080) (0.050)

Entry 1.824 2.527 * 1.235 1.275 0.098 0.075 0.270 *** 0.269 ***
(1.293) (0.916) (0.826) (0.915) (0.113) (0.087) (0.065) (0.061)

Exit -0.142 -0.190 * -0.116 *** -0.113 *** 0.367 0.385 0.499 * 0.495 *
(0.086) (0.097) (0.030) (0.025) (0.351) (0.352) (0.291) (0.292)

Reallocation 0.315 * 0.281 ** 0.331 ** 0.139 ** 0.116 * 0.112 ** 0.051 * 0.051 ** 0.049 ** 0.069 *** 0.068 *** 0.068 ***
(0.128) (0.135) (0.126) (0.064) (0.065) (0.048) (0.026) (0.024) (0.022) (0.019) (0.017) (0.015)

Sample period 1979 - 2014 1979 - 2014 1979 - 2014 1979 - 2014 1979 - 2014 1979 - 2014 1952 - 2014 1952 - 2014 1952 - 2014 1952 - 2014 1952 - 2014 1952 - 2014

R2 0.380 0.411 0.460 0.383 0.444 0.450 0.312 0.319 0.330 0.385 0.389 0.389
Adjusted R2 0.276 0.289 0.300 0.280 0.329 0.288 0.252 0.246 0.230 0.331 0.323 0.299
SE of regression 1.695 1.680 1.667 0.826 0.797 0.822 1.209 1.214 1.226 1.342 1.350 1.374

(5) (7) (8)

U.S.

(3) (6)

Table 3: Granular Regressions

Japan

(12)(9)

Labor Productivity TFP Labor Productivity TFP

(10) (11)(1) (2) (4)

Note: Estimation is done by OLS. ***, **, * indicate significant levels of 1%, 5%, 10% respectively. Numbers in parenthesis are Heteroskedasticity and Autocorelattion Consistent standard errors. 
          D is a dummy variable 1979 - 1993 for Japan and 1952 - 1989 for the U.S. 



  Note: Dotted lines indicate HP filtered trends. 

Figure 8: Sectoral Contributions From the Granular Regression
(Japan<1>)
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  Note: Dotted lines indicate HP filtered trends. 

Figure 9: Sectoral Contributions From the Granular Regression
(Japan<2>)
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Table 4: Contributions to TFP Growth by Firms (Japan)
Lowest Highest

1 2 3 4 5 5 4 3 2 1

1980 SHIMIZU CORP JFE SHOJI TRADE BRIDGESTONE OOBAYASHI CORP MITSUBISHI HEAVY CO. MARUHA NICHIRO TOYOTA TSUSHO N. STEEL & S. METAL MAZDA NISSAN

1981 BRIDGESTONE TOYOTA TOYOTA CAR SALES ISUZU SEKISUI HOUSE HONDA NIPPON YUSEN TOYOTA TSUSHO MAZDA NISSAN

1982 BRIDGESTONE N. STEEL & S. METAL TOYOTA CAR SALES NISSAN MITSUBISHI CHEMICAL MATSUSHITA ELEC. TRA MAZDA HITACHI CARGILL JAPAN MITSUBISHI HEAVY CO.

1983 N. STEEL & S. METAL JFE ENGINEERING JAPAN ENERGY SUMITOMO METAL FURUKAWA ELECTRIC HITACHI KIRIN HOLDINGS CARGILL JAPAN SHIMIZU CORP TOYOTA

1984 JFE ENGINEERING SUMITOMO METAL JAPAN ENERGY IHI MITSUI O.S.K. LINES PANASONIC HITACHI NISSAN MITSUBISHI HEAVY CO. TOYOTA

1985 JAPAN ENERGY IHI JFE ENGINEERING MITSUI O.S.K. LINES ITOMAN MITSUBISHI MOTORS HONDA PANASONIC MITSUBISHI HEAVY CO. NISSAN

1986 TOYOTA JAPAN ENERGY MITSUBISHI CHEMICAL SEIYU GK DIC JAPAN TOBACCO MAZDA MITSUBISHI MOTORS HONDA NISSAN

1987 JAPAN ENERGY HITACHI HOME APP. MITSUBISHI CHEMICAL MITSUBISHI HEAVY CO. ARABIAN OIL MITSUBISHI MOTORS KIRIN HOLDINGS BRIDGESTONE JAPAN TOBACCO TOYOTA

1988 NIPPON YUSEN SEIYU GK MITSUBISHI HEAVY CO. MITSUBISHI CHEMICAL AC REAL ESTATE NIPPON EXPRESS KOBE STEEL TOSHIBA HITACHI TOYOTA

1989 MITSUBISHI MOTORS MAZDA ASAHI GLASS HONDA KUMAGAYA CORP JFE STEEL HITACHI SUMITOMO METAL N. STEEL & S. METAL TOYOTA

1990 MITSUBISHI MOTORS NISSAN JAPAN TOBACCO HONDA FUJITSU JFE STEEL SHIMIZU CORP NEC HITACHI N. STEEL & S. METAL

1991 JFE ENGINEERING JFE SHOJI TRADE ASAHI GLASS TOYOTA FUJITSU NEC HITACHI KASHIMA CORP SHIMIZU CORP N. STEEL & S. METAL

1992 JFE SHOJI TRADE JFE ENGINEERING CARGILL JAPAN HANWA JAPAN AIRLINES MITSUBISHI MOTORS KASHIMA CORP HITACHI SHIMIZU CORP N. STEEL & S. METAL

1993 TOYOTA MAZDA SUMITOMO METAL TOYOTA TSUSHO MITSUBISHI MOTORS PANASONIC NEC TOSHIBA N. STEEL & S. METAL HITACHI

1994 TOYOTA TAISEI CORP SHIMIZU CORP OOBAYASHI CORP TOYOTA TSUSHO MITSUBISHI HEAVY CO. JAPAN TOBACCO BRIDGESTONE N. STEEL & S. METAL NISSAN

1995 JAPAN TOBACCO KASHIMA CORP SHIMIZU CORP MAZDA KIRIN HOLDINGS TOSHIBA HITACHI THE DAIEI NISSAN TOYOTA

1996 JAPAN TOBACCO MITSUBISHI MOTORS SHIMIZU CORP KIRIN HOLDINGS TOYOTA TSUSHO HONDA FUJITSU PANASONIC NISSAN TOYOTA

1997 TOYOTA JAPAN TOBACCO KASHIMA CORP TAISEI CORP NISSAN MAZDA NEC HONDA PANASONIC FUJITSU

1998 TOYOTA MITSUBISHI CHEMICAL TOYOTA TSUSHO KOBE STEEL KASHIMA CORP HITACHI JAPAN TOBACCO FUJITSU BRIDGESTONE NISSAN

1999 TOYOTA NISSAN BRIDGESTONE MAZDA TOYOTA TSUSHO TOSHIBA NEC HITACHI FUJITSU JAPAN TOBACCO

2000 BRIDGESTONE THE DAIEI KIRIN HOLDINGS KDDI SEKISUI HOUSE PANASONIC TOSHIBA HITACHI NEC NISSAN

2001 TOYOTA PANASONIC MITSUBISHI ELECTRIC MITSUBISHI CHEMICAL MITSUBISHI HEAVY CO. SUMITOMO METAL KDDI FUJITSU AEON NISSAN

2002 TOYOTA ITO-YOKADO BRIDGESTONE MITSUBISHI HEAVY CO. KASHIMA CORP MAZDA TOSHIBA MITSUBISHI MOTORS NISSAN NTT DOCOMO

2003 MITSUBISHI MOTORS ITO-YOKADO BRIDGESTONE AEON MITSUBISHI HEAVY CO. MAZDA TOSHIBA FUJITSU NISSAN TOYOTA

2004 NISSAN BRIDGESTONE MAZDA NTT DOCOMO JFE HOLDINGS SONY FUJITSU AEON PANASONIC JAPAN TOBACCO

2005 BRIDGESTONE KDDI AEON JFE HOLDINGS NEC SONY ITO-YOKADO PANASONIC TOYOTA NISSAN

2006 NEC JAPAN TOBACCO AEON JFE HOLDINGS N. STEEL & S. METAL JX NIPPON MINING SONY PANASONIC SEVEN &I HOLDINGS TOYOTA

2007 JAPAN TOBACCO AEON MITSUBISHI CHEM. HD SUMITOMO ELECTRIC TOYOTA TSUSHO JX NIPPON MINING DENSO SONY PANASONIC NISSAN

2008 TOYOTA NISSAN TOYOTA TSUSHO DENSO N. STEEL & S. METAL MITSUBISHI HEAVY CO. FUJITSU NEC SEVEN &I HOLDINGS JAPAN TOBACCO

2009 TOYOTA TSUSHO JX NIPPON MINING N. STEEL & S. METAL HONDA CANON NTT DOCOMO PANASONIC AEON SEVEN &I HOLDINGS FUJITSU

2010 JAPAN TOBACCO BRIDGESTONE HITACHI KASHIMA CORP SHIMIZU CORP DENSO TOSHIBA NEC PANASONIC NISSAN

2011 PANASONIC TOSHIBA SONY SHARP SEVEN &I HOLDINGS DENSO NEC TOYOTA FUJITSU NISSAN

2012 TOYOTA TSUSHO PANASONIC TOSHIBA SONY N. STEEL & S. METAL SHARP NEC DENSO TOYOTA NISSAN

2013 AEON KDDI SOFT BANK GROUP NTT DOCOMO NEC TOSHIBA SEVEN &I HOLDINGS FUJITSU TOYOTA TSUSHO TOYOTA

2014 TOYOTA AEON NISSAN SHARP N. STEEL & S. METAL SUBARU SONY MITSUBISHI HEAVY CO. NTT DOCOMO SOFT BANK GROUP



  Note: Dotted lines indicate HP filtered trends. 

Figure 10: Sectoral Contributions From the Granular Regression
(U.S.<1>)



  Note: Dotted lines indicate HP filtered trends. 

Figure 11: Sectoral Contributions From the Granular Regression
(U.S.<2>)



Table 5: Contributions to TFP growth by Firms (U.S.)

Lowest Highest
Year 1 2 3 4 5 5 4 3 2 1

1955 G.E. ESMARK SAFEWAY CBS BOEING FORD BETHLEHEM STEEL AT&T US STEEL G.M.
1956 FORD G.M. G.E. CHRYSLER ESMARK NAVISTAR ANACONDA BETHLEHEM STEEL AT&T US STEEL
1957 G.M. SEARS G.E. FORD SAFEWAY ROCKWELL AUTOMATION' UNITED TECHNOLOGIES GENERAL DYNAMICS AT&T CHRYSLER
1958 G.M. FORD US STEEL SEARS BETHLEHEM STEEL BOEING CBS G.E. ESMARK AT&T
1959 JC PENNY ROCKWELL AUTO NAVISTAR REPUBLIC STEEL SAFEWAY ESMARK PACIFIC BELL G.E. LOCKHEED MARTIN AT&T
1960 FORD ROCKWELL AUTO US STEEL UNITED TECHNOLOGIES G.E. CHRYSLER FOOT LOCKER PACIFIC BELL G.M. AT&T
1961 DU PONT SEARS GREAT ATLANTIC & PAC TE GENERAL FOODS CHRYSLER BICOASTAL PACIFIC BELL JC PENNY FORD AT&T
1962 BOEING GENERAL FOODS SAFEWAY BEAM PHARMACIA GENERAL DYNAMICS JC PENNY FORD AT&T G.M.
1963 GENERAL DYNAMICS RALSTON PURINA-CONSOLIDATEDRALSTON PURINA BOEING ANDERSON CLAYTON US STEEL JC PENNY FORD AT&T G.M.
1964 IBM SANTA FE PACIFIC GREAT ATLANTIC & PAC TE LOCKHEED MARTIN SAFEWAY DU PONT JC PENNY G.M. AT&T ROCKWELL AUTO
1965 IBM SANTA FE PACIFIC GREAT ATLANTIC & PAC TE TENNECO GENERAL DYNAMICS KROGER GOODYEAR FORD G.M. G.E.
1966 G.M. JC PENNY BOEING SANTA FE PACIFIC UNION CARBIDE GOODYEAR ANACONDA ITT ESMARK G.E.
1967 FORD CHRYSLER G.M. JC PENNY US STEEL GRACE (W R) UNITED TECHNOLOGIES ITT AT&T G.E.
1968 LTV GENERAL FOODS HILLSHIRE BRANDS SAFEWAY LOCKHEED MARTIN UNITED TECHNOLOGIES MCDONNELL DOUGLAS GENERAL DYNAMICS ITT IBM
1969 CHRYSLER G.E. LOCKHEED MARTIN AVCO SAFEWAY LTV ESMARK FOOT LOCKER SEARS HOLDINGS ITT
1970 G.M. G.E. JC PENNY CHRYSLER AT&T FIRESTONE ESMARK ROCKWELL AUTO BOEING LTV
1971 MCDONNELL DOUGLAS JC PENNY G.E. BEAM RALSTON PURINA-C G.M. ITT LOCKHEED MARTIN BOEING LTV
1972 SEARS MCCRORY JC PENNY KROGER RALSTON PURINA-C IBM AT&T CHRYSLER G.M. FORD
1973 SEARS JC PENNY SAFEWAY GENERAL DYNAMICS COLGATE-PALMOLIVE ITT FORD LTV US STEEL G.M.
1974 G.M. FORD CHRYSLER SEARS CBS ARMCO UNION CARBIDE BETHLEHEM STEEL DOW CHEMICAL US STEEL
1975 FORD UNITED TECHNOLOGIES SEARS G.M. G.E. INTL STANDARD ELECTRIC AT&T GRACE (W R) TENNECO FOOT LOCKER
1976 ESMARK SEARS RALSTON PURINA-C RALSTON PURINA FOOT LOCKER TENNECO FORD CHRYSLER AT&T G.M.
1977 ESMARK SEARS HOLDINGS SAFEWAY RALSTON PURINA-C RALSTON PURINA CHRYSLER ITT AT&T FORD G.M.
1978 KROGER JONES & LAUGHLIN INDS SEARS LTV PEPSICO AT&T ITT FORD G.M. CHRYSLER
1979 G.M. SEARS HOLDINGS KROGER AT&T FORD DU PONT ASHLAND DOW CHEMICAL CHRYSLER ITT
1980 G.M. FORD AT&T SEARS HOLDINGS KRAFT GENERAL FOODS ITT TENNECO UNITED TECHNOLOGIE ASHLAND SEARS
1981 G.M. FORD ITT KRAFT GENERAL FOODS SAFEWAY TENNECO FOOT LOCKER DU PONT UNITED TECHNOLOGIES SEARS
1982 FORD KROGER ITT G.M. IBP PACIFIC BELL SEARS IBM DU PONT AT&T
1983 ITT CATERPILLAR TRANSWORLD L. TRUST FLAGSTAR ASHLAND FORD IBM DU PONT G.M. AT&T
1984 ITT NABISCO GROUP HOLDINGS ASHLAND TENNECO AMERICAN STORES CHRYSLER IBM G.M. FORD AT&T
1985 DU PONT SEARS HOLDINGS TENNECO HONEYWELL INTERNATIONANABISCO GROUP HOLDINGS G.E. IBM G.M. FORD AT&T
1986 DU PONT G.M. ASHLAND BURLINGTON N. SANTA FE TENNECO UNION CARBIDE DIRECTV COCA-COLA AT&T FORD
1987 G.M. AT&T BOEING DU PONT CHRYSLER UNION CARBIDE KRAFT GENERAL FOODS COCA-COLA G.E. FORD
1988 AT&T SEARS ALTRIA GROUP BOEING JC PENNY ITT CHRYSLER G.E. G.M. FORD
1989 G.M. FORD KROGER MCDONNELL DOUGLAS DOW CHEMICAL G.E. KRAFT GENERAL FOODS SEARS NABISCO GROUP HOLDING ALTRIA GROUP
1990 CHRYSLER G.M. FORD GEORGIA-PACIFIC GEORGIA-PACIFIC CP - C DU PONT SEARS BOEING AT&T IBM
1991 G.M. AT&T FORD CHRYSLER DOW CHEMICAL ALTRIA GROUP SUPERVALU MCDONNELL DOUGLASSEARS HOLDINGS WAL-MART STORES
1992 KROGER CBS PROCTER & GAMBLE SUPERVALU NABISCO GROUP HOLDINGS G.M. CHRYSLER IBM G.E. FORD
1993 ALTRIA GROUP DU PONT WAL-MART STORES 'TIME WARNER INC-OLD' NABISCO GROUP HOLDINGS G.E. FORD CHRYSLER IBM G.M.
1994 SEARS HOLDINGS ITT BOEING G.E. WAL-MART STORES AT&T FORD IBM CHRYSLER G.M.
1995 SEARS G.M. LOCKHEED MARTIN CHRYSLER MCKESSON SEARS HOLDINGS HP DOW CHEMICAL ALTRIA GROUP G.E.
1996 LUCENT TECHNOLOGIES FORD BOEING JC PENNY IBM DU PONT COCA-COLA CHRYSLER G.M. AT&T
1997 IBM G.E. WAL-MART STORES COMPAQ COMPUTER COCA-COLA BOEING FORD JC PENNY PEPSICO G.M.
1998 G.M. DU PONT COMPAQ COMPUTER FORD IBM G.E. ALTRIA GROUP WAL-MART STORES BOEING AT&T
1999 WAL-MART STORES AT&T G.E. COCA-COLA AMERICAN AIRLINES GROUP MCKESSON COMPAQ COMPUTER BOEING HP G.M.
2000 ALTRIA GROUP BOEING MCI WORLDCOM-C AT&T BERGEN BRUNSWIG WAL-MART STORES TARGET FORD G.E.
2001 FORD WORLDCOM-C COMPAQ COMPUTER INTEL IBM AT&T MONDELEZ INTERNATIONA CARDINAL HEALTH BOEING ALTRIA GROUP
2002 ALTRIA GROUP HP BERKSHIRE HATHAWA IBM 'LOWE''S COMPANIES INC' MCI MCKESSON AT&T G.M. WAL-MART STORES
2003 WAL-MART STORES 'MERCK & CO' JC PENNY UNITED TECHNOLOGIES SAFEWAY VERIZON COMMUNICATIONS DOW CHEMICAL MCKESSON BERKSHIRE HATHAWA HP
2004 WAL-MART STORES SEARS CVS HEALTH G.M. FORD MOTOROLA SOLUTIONS DU PONT G.E. PFIZER DOW CHEMICAL
2005 G.M. G.E. ALTRIA GROUP IBM AT&T HP AT&T MOBILITY CVS HEALTH DOW CHEMICAL FORD
2006 MCKESSON FORD DELL IBM AT&T G.E. MOTOROLA SOLUTIONS SPRINT ALTRIA GROUP G.M.
2007 G.M. WAL-MART STORES HOME DEPOT MOTOROLA SOLUTIONS MEDCO HEALTH SOLUTIONS CVS HEALTH AMERISOURCEBERGEN AT&T CARDINAL HEALTH FORD
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Figure 12: Identification of Demand and Supply Shocks (Japan, 2008)

Figure 13: Share of Firms Classified as Demand Shocks
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Figure 14: Contributions of Shocks to TFP Growth (Japan)
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Figure 15: Contributions of Shocks to TFP Growth (U.S.)
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(1) Japan
         Granular residual shock to TFP Granular residual shock to TFP   Granular residual shock to TFP

(supply shock) (demand shock)

(2) U.S.
         Granular residual shock to TFP Granular residual shock to TFP   Granular residual shock to TFP

(supply shock) (demand shock)

Note: Dotted lines indicates plus minus 1 sigma bands of the cumulative impulse responses.

Figure 16: Local Projection (+1σ Cumulative Responses)
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