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Abstract 
In this paper, we discuss the approaches to nowcasting Japanese GDPs, namely preliminary 

quarterly GDP estimates and revised annual GDP estimates. First, we look at nowcasting preliminary 
estimates of quarterly GDP using monthly indicators, ranging from hard data to soft data. In doing so, 
we compare a variety of mixed frequency approaches, a bridge equation approach, Mixed-Data 
Sampling (MIDAS) and factor-augmented version of these approaches, and also discuss the usefulness 
of forecast combination. Second, we work on nowcasting revised annual GDP, which is compiled with 
comprehensive statistics but only available after a considerable delay. In nowcasting the revised annual 
GDP, we employ several benchmarking methods, including Chow and Lin (1971), and examine the 
usefulness of monthly supply-side indicators to predict revised annual GDP. Our findings are 
summarized as follows. First, regarding nowcasting preliminary quarterly GDP, some of the mixed 
frequency models discussed in this paper record out-of-sample performance superior to an in-sample 
mean benchmark. Furthermore, there is a gain from combining model forecasts and professional 
forecasts. Second, regarding nowcasting revised annual GDP, some benchmarking models that exploit 
supply-side data serve as useful tools for predicting revised annual growth rates. 
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1. Introduction 

Understanding the current state of economy is crucial for policy makers. However, 

due to the inevitable publication delays of some key economic data, such as GDP, 

policy makers are forced to set policies without knowing the current state, and 

sometimes, even without knowing the past state, of the economy. 

Nowcasting, the prediction of the current state of the economy, consequently has a 

growing body of literature around it. Although GDP is compiled mostly at a quarterly 

frequency and released with a lag, many business cycle indicators are more timely and 

available at higher frequencies; e.g., monthly industrial production data, high-frequency 

financial data, or big-data obtained from internet/electronic transactions. Economists 

want to exploit such data in the most efficient way to monitor current state of economy 

in a timely manner.  

Another important yet often neglected problem is data revision. While the vast 

majority of nowcast literature focuses on predicting the preliminary estimate of GDP, in 

reality, there are subsequent data revisions, which can sometimes be sizeable. Therefore, 

nowcasting the revised version of GDP, or in other words, nowcasting the subsequent 

revision of GDP, is equally important. Indeed, in the case of Japan, which we focus on 

in this paper, the preliminary estimates of GDP are subject to relatively large revisions 

at the annual update, which is released with a delay of up to two years. 

In this paper, we study two types of nowcasting in the context of Japanese GDP. 

First, we discuss nowcasting the preliminary estimates of quarterly GDP. To effectively 

utilize timely indicators which are available monthly, ranging from hard data (e.g., 

industrial production index) to soft data (business surveys), we employ mixed frequency 

approaches, Mixed-Data Sampling (MIDAS) and bridge equation approach. In doing so, 

we also examine factor models that utilize a novel sparse principal component approach, 

and also examine combination of models and professional forecasts. Second, we discuss 

the nowcasting of the revised annual GDP, which is compiled based on several annual 

statistics which are comprehensive, but only available after a considerable delay. In 

nowcasting the revised annual GDP, we employ benchmarking methods popularly used 

in national accounts compilation (e.g., Chow and Lin, 1971; and Denton, 1971), 
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exploiting timely indicators. 

Our findings are outlined as follows. First, in nowcasting the preliminary quarterly 

GDP estimates, we find that out-of-sample forecasts produced by the employed models, 

namely MIDAS and bridge equation models, outperform those of an in-sample mean 

benchmark. In addition, we find that there is a gain from employing a sparse principal 

component approach and from combining individual model forecasts and professional 

forecasts. Second, regarding nowcasting the revised annual GDP, benchmarking 

methods that exploit supply-side monthly indicators serve as useful tools for predicting 

the revised annual GDP. 

As for previous studies of the Japanese economy, Hara and Yamane (2013), 

Urasawa (2014), and Bragoli (2017) develop short-term forecasting models to conduct 

real-time GDP forecasts for Japan and assess performance. These papers show that the 

forecasts generated by the proposed model are comparable with or outperform the 

simple univariate model/professional forecasts. Our paper contributes to the literature 

through the following points. First, while the approaches are dynamic or static factor 

models, we employ a variety of mixed frequency models, including MIDAS models and 

Factor MIDAS models, and employ a novel sparse principal component analysis 

(SPCA) approach in extracting factors. Second, we consider forecast combination 

schemes and examine the usefulness of combining model forecasts and professional 

forecasts. Another important feature of this paper is that, while previous literature 

focuses on the estimation of preliminary quarterly GDP estimates, we also discuss the 

method of predicting revised annual GDP, which is more accurate but only available 

after a considerable delay. 

Some central banks utilize nowcasting as a method of capturing current economic 

conditions in a timely fashion. For example, the Federal Reserve Bank of New York 

(NY Fed) releases the New York Fed Staff Nowcast regularly. In the NY Fed, the aim 

of the nowcast is to provide a model-based counterpart to the forecasts, which have 

traditionally been based on expert judgment. The Federal Reserve Bank of Atlanta 

(Atlanta Fed) releases GDPNow. In the Atlanta Fed, GDPNow is best viewed as a 

running estimate of real GDP growth based on available data for the current measure 

quarter. These nowcasts are updated quite frequently: the New York Fed Staff Nowcast 
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is updated every Friday (except on Federal holidays) and the GDPNow forecast is 

updated six or seven times a month.1 As for the methodology, in both cases, a dynamic 

factor model is employed to effectively distill the information contained in large data 

sets through a small number of common factors.2 Bank of England (BOE) reports the 

nowcast of GDP in the Inflation Report. While the nowcast that represents the MPC 

estimate of GDP growth in the current quarter is ultimately judgmental, they are heavily 

informed by statistical models, such as MIDAS models.3 Furthermore, in the inflation 

report, BOE also utilizes backcasts in the final estimate of GDP. In addition, Norges 

Bank regularly releases short-term forecasts for GDP growth rates and inflation rates 

produced by the system for averaging models (SAM). SAM combines the forecast of 

three types of models: Vector Autoregression (VAR); a leading indicator model; and a 

factor model (Aastveit et al., 2011).  

It should be stressed that the models discussed in this paper are no magic wand. 

Like other central banks' models, or other models in the nowcasting field, our models 

are accompanied by some estimation errors (in our case, the root mean square error of 

around 0.4). Moreover, the optimal models can be changed in the future, as more data 

become available. Therefore, models proposed in this paper should be regularly 

reviewed and updated if necessary. 

The paper is organized as follows. In Section 2 we describe the revision processes of 

Japanese GDP. Section 3 discusses approaches to nowcasting preliminary quarterly 

GDP estimates. Section 4 discusses approaches to nowcasting revised annual GDP. 

Section 5 concludes. 

 

2. Japanese GDPs 

National statistical offices publish quarterly estimates of GDP exploiting timely 

indicators available at a high frequency prior to the release of high quality estimates of 
                                                
1 It should be noted that in both banks, the nowcasts are not an official forecast but a staff forecast. 
For example, the Atlanta Fed emphasizes that the nowcasts are based solely on the mathematical 
results of the model and are not adjusted by judgment or subjective factors. 
2 Higgins (2014) provides a detailed description of the data sources and methods implemented in the 
GDPNow model. 
3 Anesti et al. (2017) describe the details of the approach to GDP nowcasting. 
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annual GDP. There is inevitably a delay to the release of the relevant annual benchmark, 

thus, compilation of initial quarterly estimates requires some forecasts. The published 

quarterly estimates are then revised when the annual benchmark becomes available. In 

other words, quarterly estimates of GDP can be viewed as a nowcast/forecast of annual 

GDP. 

Like other countries, in Japan, the initial quarterly estimate of GDP is compiled 

based on timely indicators, then the initial quarterly estimate is revised along with the 

increasing availability of more relevant data. Specifically, GDP series are revised in the 

following manner: 

1. Quarterly Estimates of GDP: First Preliminary Estimates (QE1) 

QE1 is released with a delay of around 45 days; e.g., the first quarter QE1 is 

released in mid-May.  

2. Quarterly Estimates of GDP: Second Preliminary Estimates (QE2) 

QE2 is released with a delay of around 75 days; e.g., the first quarter QE2 is 

released in mid-June. 

3. Annual Report on National Accounts (ARNA GDP) 

ARNA GDP is an annual GDP series released with a delay of up to two years; 

i.e., this year's ARNA GDP will be released in December of next year.4 

In each revision, the quality of the estimates improves as more information become 

available. The compilation of the ARNA GDP utilizes comprehensive supply-side 

annual data (e.g. the Census of Manufacture; and the Economic Census), which leads to 

improved accuracy.5 On the other hand, the compilation of Quarterly Estimates (QE1 

and QE2) partly relies on demand-side data (e.g., the Family Income and Expenditure 

Survey; and the Financial Statements Statistics of Corporations by Industry). Although 

GDP measured with demand-side data and measured with supply-side data are 

conceptually identical, in reality they do not coincide. As a consequence, Quarterly 
                                                
4 To be precise, the first estimate of ARNA GDP is initially released and is subsequently revised in 
the second and third annual estimates. Also, it should be noted that ARNA GDP can be revised due 
to methodological changes, including the update of the national accounts compilation manuals. 
5 In this paper, supply-side data and demand-side data are defined according to Cabinet Office 
(2018). Supply-side data are used for the commodity-flow method of estimating GDP, and are 
typically collected from firms that supply goods or services. On the other hand, demand-side data are 
typically collected from households and firms that purchase (demand) goods and services. 
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Estimates are subject to some revision when ARNA GDP is released. 

Thus, in this paper, we discuss two central issues. In Section 3, as in most of the 

nowcast literature, we discuss the method of nowcasting QEs. In doing so, we take a 

variety of mixed frequency approaches, a bridge equation approach, Mixed-data 

sampling (MIDAS) approach and factor-augmented version of these approaches, 

exploiting monthly indicators (e.g., the index of industrial production) partly available 

prior to the release of QE1. 

In Section 4, we conduct nowcast exercises of the annual revised GDP series, 

ARNA GDP. As Quarterly Estimates are subject to subsequent revision, it can be 

potentially misleading to conduct business cycle analysis solely with Quarterly 

Estimates. To mitigate such data uncertainty due to revisions, we discuss the methods 

used to predict the ARNA GDP prior to its release. In doing so, we consider popularly 

used benchmarking methods and compare their performances with Quarterly Estimates. 

 

3. Nowcasting Quarterly Estimates (QEs) 

This section focuses on forecasting the preliminary quarterly GDP growth of Japan, 

which is only available with a delay of two months. To estimate quarterly GDP growth, 

economists want to efficiently utilize data available at higher frequencies such as 

industrial production or survey data available at monthly. In this section, we compare 

several mixed frequency approaches: the bridge equation approach, Mixed-Data 

Sampling (MIDAS), and factor-augmented version of these approaches (see, for 

example, Bańbura et al., 2013; Schumacher, 2016 for survey).6,7 Then we discuss 

forecast combination. 

                                                
6 One of other popular approaches is a dynamic factor model approach, which specifies a joint 
model for the variable of interest and for predictors. See, for example, Bańbura and Modugno (2014) 
for dynamic factor model. 
7 In this paper, the estimations of MIDAS are done using the R package midasr developed by 
Ghysels et al. (2016). 
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3.1 Nowcast models 

Basic Bridge Equation Model 

One of the econometric approaches to forecast in the presence of mixed-frequency 

data is a bridge equation approach. Bridge equations are linear regressions that link high 

frequency variables, such as industrial production or survey data, to low frequency ones, 

e.g., the quarterly real GDP growth, providing some estimates of current and short-term 

developments in advance of the release (see e.g. Baffigi et al., 2004). This method 

allows the computation of early estimates of low-frequency variables by using high 

frequency indicators. A bridge equation model is defined as: 

𝑦𝑦𝑡𝑡 = 𝛼𝛼 + �𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖,𝑡𝑡
𝑄𝑄

𝑁𝑁

𝑖𝑖=1

+ 𝜖𝜖𝑡𝑡 , (1) 

where 𝑦𝑦𝑡𝑡  is GDP growth in quarter 𝑡𝑡 , 𝑥𝑥𝑖𝑖,𝑡𝑡
𝑄𝑄  is a monthly economic indicator 𝑖𝑖 

converted to quarterly value at quarter 𝑡𝑡. For growth rates, conversion can be done with 

the following equation (Mariano and Murasawa, 2003):  

𝑥𝑥𝑖𝑖,𝑡𝑡
𝑄𝑄 =

1
3

(𝑥𝑥𝑖𝑖,3𝑡𝑡𝑀𝑀 + 2𝑥𝑥𝑖𝑖,3𝑡𝑡−1𝑀𝑀 + 3𝑥𝑥𝑖𝑖,3𝑡𝑡−2𝑀𝑀 + 2𝑥𝑥𝑖𝑖,3𝑡𝑡−3𝑀𝑀 + 𝑥𝑥𝑖𝑖,3𝑡𝑡−4𝑀𝑀 ) , (2) 

where 𝑥𝑥𝑖𝑖,3𝑡𝑡𝑀𝑀  is a monthly growth rate of indicator 𝑖𝑖 in 3𝑡𝑡th month. 

Estimation for equation (1) is performed by the Ordinary Least Square (OLS) 

method. In the forecasting exercise, forecasters typically face ragged edge data, where 

monthly indicators are only partially available. To handle ragged edge data, auxiliary 

equations are employed to forecast missing values.  

Bridge equation models can be further extended to include lagged dependent 

variables. However, Stock and Watson (2002) show that the introduction of lagged 

dependent variables creates efficiency losses. Thus, in this paper we do not include 

lagged dependent variables. 
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Bridge Equation Model with Factors 

An extension of the basic bridge equation model is the introduction of factor terms. 

Factor approaches are employed in many empirical exercises, with the aim of capturing 

movements reflected in a large dataset. The information included in a large dataset can 

be summarized by a few factors that represent key economic driving forces. Factor 

models read as 

𝑦𝑦𝑡𝑡 = 𝛼𝛼 + �𝛽𝛽𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑥𝑥𝑖𝑖,𝑡𝑡
𝑄𝑄 + �𝛾𝛾𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝐹𝐹𝑖𝑖,𝑡𝑡
𝑄𝑄 + 𝜖𝜖𝑡𝑡,  (3) 

where 𝑦𝑦𝑡𝑡 is GDP growth in quarter 𝑡𝑡, 𝑥𝑥𝑖𝑖,𝑡𝑡
𝑄𝑄  is a selected monthly economic indicator 𝑖𝑖 

converted to quarterly value at quarter 𝑡𝑡, 𝐹𝐹𝑖𝑖,𝑡𝑡
𝑄𝑄  is a ith factor extracted from monthly 

indicators converted to quarterly value at quarter 𝑡𝑡. Monthly-quarterly conversion is 

done using equation (2).  

In this paper, we consider two approaches for estimating factors. The first approach 

is the standard principal component analysis (PCA) approach employed by a large 

number of forecasting exercises (e.g., Stock and Watson, 2002). The second approach is 

sparse principal component analysis (SPCA) proposed by Zou et al. (2006). 

Under standard PCA, the factor loading coefficients are all typically nonzero, 

making interpretation of the estimated components difficult. Zou et al. (2006) address 

this issue by proposing a modified method in which the LASSO (or elastic net) is used 

to construct principal components with sparse loadings (see Appendix A for 

methodological detail). A number of recent studies apply SPCA for forecasting 

exercises and often obtain improvements in forecasting accuracy compared with 

standard PCA approaches (Kristensen, 2017; Kim and Swanson, 2018). In estimating 

SPCA, we obtain factors based on LASSO-type loss function, and select a tuning 

parameter based on Bayesian Information Criterion (BIC) following Kristensen (2017).8 

                                                
8 In this paper, the calculation of SPCA is done using the R package sparsepca. 
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MIDAS Model 

Mixed-Data Sampling, or MIDAS, regressions are a recently developed framework 

(Andreou et al., 2010) for handling regressions where the dependent variable is of a 

lower frequency to the explanatory variables. MIDAS models have been employed and 

have shown promise in forecasting contexts (e.g., Foroni and Marcellino, 2014; Kuzin 

et al., 2013; and Schumacher, 2016) as well as in structural analysis (Ferrara and Guérin, 

2018). 

MIDAS models can be applied to a context such as ours, where monthly variables 

(e.g., industrial production, survey indices, and possibly other variables) are used to 

forecast quarterly GDP growth. Unlike bridge equation models, which rely on auxiliary 

regressions to forecast explanatory variables, MIDAS models are a direct forecasting 

tool that directly estimates the current quarter with a lag structure which corresponds to 

ragged edge data. This yields different models for different forecasting horizons. A 

MIDAS model reads as: 

𝑦𝑦𝑡𝑡 = 𝛼𝛼 + ��𝛽𝛽𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,3𝑡𝑡−𝑗𝑗𝑀𝑀

𝑙𝑙𝑖𝑖

𝑗𝑗=0

𝑘𝑘

𝑖𝑖=1

+ 𝜖𝜖𝑡𝑡.  (4) 

In (4), 𝑦𝑦𝑡𝑡 denotes a GDP growth in quarter 𝑡𝑡. 𝑥𝑥𝑖𝑖,3𝑡𝑡−𝑗𝑗𝑀𝑀  denotes a monthly economic 

indicator 𝑖𝑖 in 3𝑡𝑡 − 𝑗𝑗th month. 𝑘𝑘 stands for the number of indicators, and 𝑙𝑙𝑖𝑖 denotes 

the number of lags for the indicator 𝑖𝑖 in terms of month. 

In the standard MIDAS literature, functional lag polynomials are employed to avoid 

parameter proliferation in the case of long high-frequency lags (Andreou et al., 2010). 

This approach can have the advantage of greater parsimony — if a large number of 

parameters needed be estimated — otherwise it comes at the cost of flexibility.  

On the other hand, unrestricted MIDAS (U-MIDAS), a variant of the MIDAS 

approach considered by Foroni et al. (2015), does not impose restrictions on parameters 

with a certain functional form. Foroni et al. (2015) argues that U-MIDAS outperforms 

standard MIDAS where differences in sampling frequencies are small, as is the case 

with our quarterly-monthly data. Therefore, in this paper, we employ U-MIDAS. 
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To deal with the possible presence of misspecification and the availability of 

numerous indicators, forecast combination is often applied in MIDAS models. 

Factor MIDAS Model 

It is possible to augment the MIDAS regressions with the factors extracted from a 

high frequency dataset in order to exploit large high frequency datasets for predicting 

low-frequency variables. While the basic MIDAS framework consists of a regression of 

a low-frequency variable on a set of high-frequency indicators, the Factor-MIDAS 

approach exploits estimated factors rather than single or small groups of economic 

indicators as repressors. Factor MIDAS has been employed in recent forecasting papers 

and often improves forecast performances (Foroni and Marcellino, 2014; Schumacher, 

2016; and Kim and Swanson, 2017). Factor MIDAS can be defined as 

𝑦𝑦𝑡𝑡 = 𝛼𝛼 + ��𝛽𝛽𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,3𝑡𝑡−𝑗𝑗𝑀𝑀

𝑙𝑙1,𝑖𝑖

𝑗𝑗=0

𝑘𝑘1

𝑖𝑖=1

+ ��𝛾𝛾𝑖𝑖,𝑗𝑗𝐹𝐹𝑖𝑖,3𝑡𝑡−𝑗𝑗𝑀𝑀

𝑙𝑙2,𝑖𝑖

𝑗𝑗=0

𝑘𝑘2

𝑖𝑖=1

+ 𝜖𝜖𝑡𝑡, (5) 

where 𝐹𝐹𝑖𝑖,3𝑡𝑡−𝑗𝑗𝑀𝑀  is a 𝑖𝑖th factor extracted from monthly indicators in 3𝑡𝑡 − 𝑗𝑗 th month. 𝑘𝑘1 

denotes the number of indicators, and 𝑘𝑘2 denotes the number of factors, respectively. 

𝑙𝑙1,𝑖𝑖 denotes the number of lags for indicator 𝑖𝑖, and 𝑙𝑙2,𝑖𝑖 denotes the number of lags for 

factor 𝑖𝑖 in terms of month. 

Because of small differences in sampling frequencies, we choose U-MIDAS 

following Foroni et al. (2015) instead of standard MIDAS models. 

3.2 Forecast Combination 

In Section 3.1, we discuss individual forecasting models. In this subsection, we 

discuss the ways to combining multiple forecasts. There is a large body of literature that 

suggests that forecast combinations can provide more accurate forecasts by combining 

multiple models rather than relying on a specific model (see Hendry and Clements, 

2004; and Timmermann, 2006).9 One justification for using forecast combinations 

methods is the presence of model uncertainty that forecasters face due to different sets 

                                                
9 See, for example, Ohyama (2001) for the application of forecast combination to Japanese data. 
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of predictors and different modeling approaches. In addition, forecast combinations can 

deal with model instability and structural breaks (Hendry and Clements, 2004).  

Given 𝑁𝑁 individual forecasting models, a linear version of forecast combination 

can be defined as follows 

𝑌𝑌𝑡𝑡 = �𝑤𝑤𝑗𝑗,𝑡𝑡𝑌𝑌𝑗𝑗,𝑡𝑡

𝑁𝑁

𝑗𝑗=1

, (6) 

where 𝑤𝑤𝑗𝑗,𝑡𝑡 is a weight given to the 𝑗𝑗th forecast model in period 𝑡𝑡. 

Forecast combinations have frequently been found in empirical studies to produce 

better forecasts than methods based on individual forecasting models. However, there is 

no consensus concerning how to form the forecast weights. Thus, in this paper we 

consider variety of weighting schemes. 

A Simple Average 

First, we consider a simple average method that ignores historical performance. 

Despite more refined combination schemes existing, much of the literature finds that 

simple averages perform well.10 Under this simple scheme, a weight is given as 

𝑤𝑤𝑖𝑖,𝑡𝑡 =
1
𝑁𝑁

. (7) 

Triangular Kernel Approach 

Simple rank-based weighting schemes are another popular approach. The most 

common scheme in this class is to use the median forecast (Hendry and Clements, 2004). 

Alternatively, forecasters can consider a triangular weighting scheme that sets the 

combination weights inversely proportional to the models' performance rank (Aiolfi and 

Timmermann, 2006). Since ranks are likely to be less sensitive to outliers, this 

weighting scheme can be expected to be more robust. With this scheme, weights can be 

computed as 

                                                
10 This phenomenon is often called the "forecast combination puzzle" (Stock and Watson, 2004). 
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𝑤𝑤𝑖𝑖,𝑡𝑡 =
1/𝑟𝑟𝑖𝑖,𝑡𝑡

∑ 1/𝑟𝑟𝑗𝑗,𝑡𝑡
𝑁𝑁
𝑗𝑗=1

, (8) 

where 𝑟𝑟𝑗𝑗,𝑡𝑡 denotes the model j's rank at period 𝑡𝑡, which is determined according to 

mean square forecast error (MSFE). 

Inverse Mean Square Error 

Another popular approach is to determine a weight proportional to the inverse of 

mean square error (MSE). Theoretically, this weighting scheme corresponds to the 

optimal weighting scheme discussed by Bates and Granger (1969) when individual 

forecasts are uncorrelated. The weights are computed as: 

𝑤𝑤𝑖𝑖,𝑡𝑡 =
1/𝑀𝑀𝑀𝑀𝐹𝐹𝑀𝑀𝑖𝑖,𝑡𝑡

∑ 1/𝑀𝑀𝑀𝑀𝐹𝐹𝑀𝑀𝑗𝑗,𝑡𝑡
𝑁𝑁
𝑗𝑗=1

, (9) 

where 𝑀𝑀𝑀𝑀𝐹𝐹𝑀𝑀𝑖𝑖,𝑡𝑡 denotes the model 𝑖𝑖's mean square forecast error (MSFE) at 𝑡𝑡. 

Discounted Mean Square Forecast Errors 

Stock and Watson (2004) propose the discounted mean square forecast error 

(dMSFE) forecast combination method. Each individual predictor is given a weight 

according to its historical performance and the weight is inversely proportional to the 

predictor's dMSFE. The discount factor attaches greater weight to the recent predictive 

ability of the individual predictor. The weights are given as 

𝑤𝑤𝑖𝑖,𝑡𝑡 =
1/𝑚𝑚𝑖𝑖,𝑡𝑡

∑ 1/𝑚𝑚𝑗𝑗,𝑡𝑡
𝑁𝑁
𝑗𝑗=1

, (10) 

𝑚𝑚𝑖𝑖,𝑡𝑡 = � 𝛿𝛿𝑡𝑡−𝑠𝑠�𝑌𝑌𝑠𝑠 − 𝑌𝑌�𝑖𝑖,𝑠𝑠�
2

𝑡𝑡

𝑠𝑠=𝑇𝑇0

, 
 

and 𝑌𝑌�𝑖𝑖,𝑠𝑠 denotes model 𝑖𝑖's forecast for time 𝑠𝑠. In this paper, the dMSFE forecasts are 

computed for the value of 𝛿𝛿 =  0.95, following Stock and Watson (2004).  
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Bayesian Model Averaging 

Buckland et al. (1997) propose popular Bayesian Model Averaging (BMA) 

approaches for combining models. Under this approach, weights are defined as 

𝑤𝑤𝑖𝑖,𝑡𝑡 = 𝑃𝑃(𝑀𝑀𝑖𝑖|𝐷𝐷𝑡𝑡) =
𝑃𝑃(𝐷𝐷𝑡𝑡|𝑀𝑀𝑖𝑖) ∗ 𝑃𝑃(𝑀𝑀𝑖𝑖)

∑ 𝑃𝑃�𝐷𝐷𝑡𝑡|𝑀𝑀𝑗𝑗� ∗ 𝑃𝑃�𝑀𝑀𝑗𝑗�𝑁𝑁
𝑗𝑗=1

, (11) 

where 𝑃𝑃(𝐷𝐷𝑡𝑡|𝑀𝑀𝑖𝑖) denotes model 𝑖𝑖's (𝑀𝑀𝑖𝑖′𝑠𝑠) marginal likelihood for the dataset 𝐷𝐷𝑡𝑡 =

(𝑌𝑌1, … ,𝑌𝑌𝑡𝑡) and 𝑃𝑃(𝑀𝑀𝑖𝑖) denotes prior weight for model 𝑖𝑖. 

Our BMA weights are set as: 

𝑤𝑤𝑖𝑖,𝑡𝑡 = 𝑃𝑃(𝑀𝑀𝑖𝑖|𝐷𝐷𝑡𝑡) ≈
exp �−

𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖,𝑡𝑡
2 �

∑ exp �−
𝐵𝐵𝐵𝐵𝐵𝐵𝑗𝑗,𝑡𝑡

2 �𝑁𝑁
𝑗𝑗=1

, 

(12) 

where 𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖,𝑡𝑡 denotes Bayesian Information Criterion (BIC) for model 𝑖𝑖. This is an 

approximate BMA for the case of equal model priors. 

3.3 Empirical Application 

3.3.1 Data 

Typically, short-term indicators, such as business surveys or industrial production 

indexes, are released at a monthly frequency and are partially available before the 

release of GDP growth data. Thus, in this paper, we consider a set of monthly indicators 

for forecasting GDP growth (see Appendix B for data description). 

For hard data, we employ the Index of Industrial Production (IIP), the Index of 

Tertiary Industry Activity (ITA), and the Current Survey of Commerce (CSC). The IIP 

captures monthly production activity of the manufacturing sector and is widely utilized 

in a forecasting context (see, e.g., Bragoli, 2017 for Japan's case). The ITA captures 

monthly activity of the service sector and is often utilized in forecasting Japan's GDP 

growth (Hara and Yamane, 2013; and Bragoli, 2017). In addition, we also consider the 
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Current Survey of Commerce (CSC), which the captures sales value of firms.11 The 

CSC is closely related to the ITA, but is complementary as it sometimes exhibits 

different movement and is available slightly earlier than the ITA. 

For soft data, following previous research, we utilize a set of business survey 

indicators obtained from Reuters’ Tankan Survey (Urasawa, 2014; and Bragoli, 2017).12 

In doing so, we extract factors from a set of survey indicators using a sparse principal 

component analysis, rather than relying on a single indicator. Survey data can be useful 

as they are promptly available. However, it is unclear whether such survey data improve 

forecasting performance. Thus, we also examine the case where only hard data are 

included in explanatory variables. 

It should be noted that we intentionally use final vintage data rather than real-time 

vintage. In Japan, GDP has undergone a large revision due to methodological changes, 

including the update of National Accounts Compilation Manual.13 This suggests that, if 

we employ real-time data, models may not be suitably estimated for forecasting GDP 

because GDP is compiled with the updated methodology. For that reason, we choose 

final vintage data, which are compiled in line with the updated methodologies. 

3.3.2 Forecast evaluation schemes 

In this subsection, we evaluate out-of-sample forecasting performances of the bridge 

equation models and MIDAS models described in Section 3.1. In the empirical 

application, we evaluate model forecasts at two months (60 days) and one month (30 

days) prior to GDP release dates, based on increasingly available information from the 

indicators. That is, in our forecast experiment, we consider the ragged-edge of the 

monthly indicators according to the data publication lag reported in Appendix B. For 

MIDAS models, GDP forecasts are directly computed with ragged edge data. For bridge 

models, ragged edge data are handled in following ways. First, we extrapolate missing 

data due to publication lag, exploiting already-published data of the corresponding 

                                                
11 For the CSC, we use wholesale value and deflate it with producer price index. 
12 We also utilize the Economic Watcher Survey to extrapolate the ITA using bridge equation 
models. See Appendix C for the auxiliary equations for the extrapolation. 
13 For example, in 2016, Japanese GDP was revised due to the introduction of 2008SNA. Hara and 
Ichiue (2011) describe details of other major methodological changes.  
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month based on auxiliary regressions (see Appendix C for methodology). In the case of 

two-month ahead forecasts, where no data in the third month of the quarter are available, 

we simply assume that the third month of GDP level is equal to the average of first 

month and second month of GDP. With this simple assumption, we calculate quarterly 

GDP growth rate according to the monthly-quarterly growth rate conversion of Mariano 

and Murasawa (2003) (see Appendix D for detail).14 

In our recursive forecasting experiment, we split the sample (from 2000Q2 to 

2018Q1) into an estimation subsample and an evaluation subsample. First, we estimate 

parameters with the subsample between 2000Q2 and 2012Q4, and then extend the 

estimation subsample recursively.  

For benchmark comparison, we compute in-sample mean of GDP growth, which is 

also recursively re-estimated for every estimation sample. In the forecast literature, this 

benchmark has turned out to be a strong competitor to more sophisticated approaches 

(Giannone et al., 2008; Kuzin et al., 2013). In evaluating forecast performances, we 

conduct the Diebold-Mariano test (Diebold and Mariano, 1995) and compare predictive 

accuracy between the model forecasts and this simple benchmark.15 

3.3.3 Forecast evaluation (individual models) 

Table 1 reports root mean square error (RMSE) of bridge equation models. For most 

of the models considered, RMSE is lower than the simple benchmark model. 

Furthermore, in some cases, predictive accuracy is statistically better than the simple 

benchmark according to the Diebold-Mariano test. The table also compares bridge 

equation models with factors estimated with PCA and SPCA. 16 Although SPCA 

improves the predictive accuracy of some models, the difference is not large. Among 

others, the model with the IIP, the ITA and the first factor of surveys extracted by 

SPCA records the best performance. 

                                                
14 We also examine the approaches employed by Altissimo et al. (2010), where third-month GDP 
level (or third-month growth rate) is equal to that of second-month. We find that the approach 
considered in this paper (i.e., third-month GDP level is equal to the average of first-month GDP level 
and second-month GDP level) works better.     
15 Throughout the paper, we apply quadratic loss function for the Diebold-Mariano test. 
16 In some cases, the results obtained with PCA and SPCA are identical since the tuning parameter 
of SPCA is estimated as 0 (see Appendix A). 
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For MIDAS models, we report forecast performances of each single indicator 

models, in addition to multi-indicator models that correspond to the aforementioned 

bridge equation models (Table 2).17 In some models, RMSE is lower than the simple 

benchmark model, with the predictive accuracy statistically better than the benchmark. 

Overall, however, results are mixed, suggesting that some of the models suffer 

misspecification or parameter instability. Thus, following the MIDAS literature 

(Clements and Galvão, 2008; Andreou et al., 2013; Kuzin et al., 2013; Anesti et al., 

2017), in the next section, we apply forecast combination to MIDAS models. 

3.3.4 Forecast evaluation (forecast combination) 

Combined MIDAS 

To deal with the possible presence of misspecification and the availability of many 

indicators, forecast combination is often applied to MIDAS models (Clements and 

Galvão, 2008; Andreou et al., 2013; Kuzin et al., 2013; Anesti et al., 2017). Thus, we 

pool MIDAS models evaluated in Section 3.3.3 and combine them using the weighting 

schemes discussed in Section 3.2. For comparison, we report two sets of combinations: 

the combination of MIDAS models and Factor MIDAS models estimated with PCA 

listed in Table 2; and the combination of MIDAS models and Factor MIDAS models 

estimated with SPCA listed in Table 2. As with Section 3.3.3, we evaluate models' 

out-of-sample performances, with the evaluation sample from 2013Q1 to 2018Q1. In 

doing so, we update weights for combination recursively according to the past 

out-of-sample performances.18  

Table 3 reports out-of-sample forecast performances of combined MIDAS models. 

As reported, in many cases, combined MIDAS models work well compared with the 

individual MIDAS models discussed in Section 3.3.3. It is also found that the 

combination that utilizes SPCA records superior performances compared with the 

combination that utilize regular PCA. Among other combinations, the simple average of 

                                                
17 MIDAS models considered in this paper include at most three predictor variables to prevent 
proliferation of number of parameters. 
18 To compute weights in this way, we need out-of-sample performances prior to 2013Q1. Hence, 
we compute out-of-sample performances from 2008Q1 to 2012Q4 and utilize them for computing 
weights. 
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MIDAS models and Factor MIDAS models estimated with SPCA shows the best 

performances for both forecasts at 1-month and 2-month prior to GDP release dates. 

Forecast combination with professional forecasters 

An interesting question is whether a combination of model forecasts and judgmental 

forecasts from the professional forecasters produces better results than the best single 

ones. This approach can be appealing, given that the sets of information available from 

models and judgmental forecasts differ. In particular, judgmental survey forecasts may 

exploit subjective information as well as anticipated policy effects. Aiolfi et al. (2011) 

find that the combination of model-based forecasts and judgmental survey forecasts 

improve forecast accuracies. 

Thus, in this subsection, we also combine model forecasts and surveys conducted by 

Bloomberg and Japan Center for Economic Research (JCER). Bloomberg conducts a 

survey and collects forecasts from professional forecasters in order to produce 

predictions for GDP and other market-relevant variables before their release dates. 

Likewise, JCER conducts JCER ESP Forecast, a survey on short-term forecasts of 

Japanese GDP, and collects forecasts from professional economists. JCER ESP Forecast 

is published monthly, and is utilized in many empirical exercises on Japan (see, for 

example, Miyamoto et al, 2018; and Bragoli, 2017). 

As for model forecasts, we utilize the combined MIDAS model that records the best 

performance (i.e., the combination that employs SPCA and a simple weighting 

approach) and the bridge equation model that also records the best performance (i.e., the 

bridge equation model using the IIP, ITA, and the first factor of SPCA). We examine all 

possible combinations of forecasts and apply weighting schemes as listed in Section 3.2. 

Since this combination includes model-free forecasts, we do not calculate Bayesian 

Model Averaging. We evaluate out-of-sample performances, with the evaluation sample 

from 2013Q1 to 2018Q1. As done previously, we update weights for combination 

recursively according to the past out-of-sample performances. 

Table 4 reports out-of-sample performances of combined forecasts and individual 

forecasts.19 As reported in the table, in many cases, combined forecasts outperform 

                                                
19 RMSE for the surveys is also calculated based on final vintage GDP growth rates. 
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individual forecasts. Among the variety of combinations, the combination of the Bridge 

equation model and combined MIDAS weighted with simple average records the best 

performances at 2-month prior to GDP release dates, with predictive accuracy 

statistically better than the simple benchmark model. At 1-month prior to GDP release 

dates, however, the combination of combined MIDAS and JCER survey weighted with 

simple average records the best performance, suggesting that combining judgmental 

forecasts with model forecasts can improve predictive accuracy. On average, the 

combination of the Bridge equation model, combined MIDAS and JCER survey 

weighted with simple average records the best performances (Table 4, Figures 1 and 2).  

 

4. Nowcasting the ARNA GDP 

The previous section discusses the methods used to nowcast the Quarterly Estimate 

(QE) of Japanese GDP. However, as discussed in Section 2, QE is subject to subsequent 

revisions at the release of ARNA. In that sense, QE is viewed as one way to nowcast 

ARNA, and its predictive accuracy could possibly be improved. Thus, this section 

discusses alternative ways to nowcast the ARNA GDP.  

In this section, we discuss nowcasting the ARNA GDP, employing benchmarking 

methods popularly used in national accounts compilation. Benchmarking methods 

derive quarterly estimates of an annual aggregate, exploiting preliminary series 

available at a higher frequency. The methods can be split into two parts: distribution and 

extrapolation. The former procedure is used to generate quarterly series which are 

consistent with annual values (i.e., the quarter values sum up to the annual value), while 

mimicking the movement of preliminary series. Extrapolation refers to the calculation 

of quarterly series based on preliminary indicators before the annual benchmark, the 

ARNA GDP, become available. Thus, benchmarking methods can be used to calculate 

an early projection of the ARNA GDP before it become available. 

In this section, we discuss the method used to nowcast the ARNA GDP. In doing so, 

we assess the predictive accuracy of popularly used benchmarking methods. The 

following subsection discusses the methods and empirical results. 
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4.1 Benchmarking Methods 

4.1.1 Regression Based Method 

Let 𝐱𝐱 be an unobserved quarterly GDP series to be estimated, and let 𝐙𝐙 be the 

matrix of quarterly indicator series with 4𝑀𝑀 × 𝑁𝑁, where 𝑀𝑀 is the sample size in year, 

and 𝑁𝑁  is the number of indicator variables used for estimating the unobserved 

quarterly GDP 𝐱𝐱. We specify the relationship between 𝐱𝐱 and 𝐙𝐙, as follows: 

𝐱𝐱 = 𝐙𝐙𝐙𝐙 + 𝐮𝐮 (13) 

s.t. 𝑀𝑀(𝐮𝐮) = 0, 𝑀𝑀(𝐮𝐮𝐮𝐮′) = 𝐕𝐕.  

Next, we introduce a transformation matrix 𝐂𝐂, which annualizes quarterly series and is 

defined as: 

𝐂𝐂 ≡ 𝐈𝐈𝐌𝐌⨂ �
1
4

  
1
4

  
1
4

  
1
4
�. (14) 

We introduce 𝐲𝐲, which denotes the 𝑀𝑀 × 1 vector of observed annual GDP series for 

𝑀𝑀  years. The relationship between the observed annual GDP series 𝐲𝐲  and the 

unobserved quarterly GDP series 𝐱𝐱 can be expressed as: 

𝐲𝐲 = 𝐂𝐂𝐱𝐱. (15) 

Using (13) and (15), we obtain the following equation: 

𝐲𝐲 = 𝐂𝐂𝐙𝐙𝐙𝐙 + 𝐂𝐂𝐮𝐮. (16) 

Given that covariance matrix 𝐕𝐕 in (13), the GLS estimator 𝐙𝐙�𝐆𝐆𝐆𝐆𝐆𝐆  can be obtained as: 

𝐙𝐙�𝐆𝐆𝐆𝐆𝐆𝐆 = [𝐙𝐙′𝐂𝐂′(𝐂𝐂𝐕𝐕𝐂𝐂′)−𝟏𝟏𝐂𝐂𝐙𝐙]−𝟏𝟏𝐙𝐙′𝐂𝐂′(𝐂𝐂𝐕𝐕𝐂𝐂′)−𝟏𝟏𝐲𝐲. (17) 

The GLS estimator 𝐙𝐙�𝐆𝐆𝐆𝐆𝐆𝐆 of (17) is proposed by Chow and Lin (1971). The estimated 
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quarterly GDP series 𝐱𝐱� is given by: 

𝐱𝐱� = 𝐙𝐙𝐙𝐙� + 𝐕𝐕𝐂𝐂′(𝐂𝐂𝐕𝐕𝐂𝐂′)−𝟏𝟏�𝐲𝐲 − 𝐂𝐂𝐙𝐙𝐙𝐙��. (18) 

(18) states that the quarterly fitted value is composed of the value predicted by 

preliminary series 𝐙𝐙𝐙𝐙�  and forecast error for annual value adjusted by 

variance-covariance matrix 𝐕𝐕𝐂𝐂′(𝐂𝐂𝐕𝐕𝐂𝐂′)−𝟏𝟏�𝐲𝐲 − 𝐂𝐂𝐙𝐙𝐙𝐙��.  Specifically, when 𝑽𝑽 = 𝐈𝐈, 𝐙𝐙𝐆𝐆𝐆𝐆𝐆𝐆 

is reduced to be an OLS estimator 𝐙𝐙�𝐎𝐎𝐆𝐆𝐆𝐆: 

𝐙𝐙�𝐎𝐎𝐆𝐆𝐆𝐆 = [𝐙𝐙′𝐂𝐂′(𝐂𝐂𝐂𝐂′)−𝟏𝟏𝐂𝐂𝐙𝐙]−1𝐙𝐙′𝐂𝐂′(𝐂𝐂𝐂𝐂′)−𝟏𝟏𝐲𝐲. (19) 

Variance-Covariance Matrix Based on Chow-Lin 

Chow and Lin (1971) assume that the error term 𝑢𝑢𝑡𝑡 is governed by stationary 

AR(1) process,  

𝑢𝑢𝑡𝑡 = 𝜌𝜌𝑢𝑢𝑡𝑡−1 + 𝜀𝜀𝑡𝑡, 

where |𝜌𝜌| < 1, 𝜀𝜀𝑡𝑡 ∼ 𝑖𝑖𝑖𝑖𝑖𝑖(0,𝜎𝜎𝜀𝜀2). 
(20) 

Given (20), the variance-covariance matrix 𝐕𝐕𝛒𝛒 can be written as: 

𝐕𝐕𝛒𝛒 =
𝜎𝜎𝜀𝜀2

1 − 𝜌𝜌2
�

1 𝜌𝜌 𝜌𝜌2 ⋯ 𝜌𝜌4𝑀𝑀−1

𝜌𝜌 1 𝜌𝜌 ⋯ 𝜌𝜌4𝑀𝑀−2
⋮ ⋮ ⋮ ⋱ ⋮

𝜌𝜌4𝑀𝑀−1 𝜌𝜌4𝑀𝑀−2 ⋯ ⋯ 1

�. (21) 

There are several ways to estimate the autoregressive parameter 𝜌𝜌 in the Chow-Lin 

method. Here, we examine two methods, the maximum likelihood approach and the 

minimization of the weighted residual sum of squares. First, as for the maximum 

likelihood approach, Bournay and Laroque (1979) suggest the maximization of the 

following likelihood: 
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𝜌𝜌� = argmax
𝜌𝜌

 
exp �−1

2𝐮𝐮
′𝐂𝐂′�𝐂𝐂𝐕𝐕𝛒𝛒𝐂𝐂′�

−𝟏𝟏
𝐂𝐂𝐮𝐮�

(2𝜋𝜋)𝑀𝑀 2⁄ ∙ det�𝐂𝐂𝐕𝐕𝛒𝛒𝐂𝐂′�
1 2⁄ . (22) 

The second approach is the minimization of the weighted residual sum of squares, as 

suggested by Barbone et al. (1981): 

𝜌𝜌� = argmin 
𝜌𝜌

𝐮𝐮′𝐂𝐂′�𝐂𝐂𝐕𝐕𝛒𝛒𝛒𝛒𝐂𝐂′�
−𝟏𝟏
𝐂𝐂𝐮𝐮, (23) 

where 

𝐕𝐕𝛒𝛒𝛒𝛒 = �

1 𝜌𝜌 𝜌𝜌2 ⋯ 𝜌𝜌4𝑀𝑀−1

𝜌𝜌 1 𝜌𝜌 ⋯ 𝜌𝜌4𝑀𝑀−2
⋮ ⋮ ⋮ ⋱ ⋮

𝜌𝜌4𝑀𝑀−1 𝜌𝜌4𝑀𝑀−2 ⋯ ⋯ 1

�. (24) 

Variance-Covariance Matrix Based on Fernández 

Fernández (1981) suggests the models that assume that the quarterly residuals 

follow a unit root process: 

𝑢𝑢𝑡𝑡 = 𝑢𝑢𝑡𝑡−1 + 𝑣𝑣𝑡𝑡 . (25) 

In the case of Fernández (1981), the variance-covariance matrix is expressed as follows: 

𝐕𝐕𝟎𝟎 = 𝜎𝜎𝜀𝜀2[𝐃𝐃′𝐃𝐃]−1, (26) 

where 𝐃𝐃 is the matrix that makes variables first difference: 

𝐃𝐃 =

⎣
⎢
⎢
⎢
⎡

1 0 0 ⋯ 0
−1 1 0 ⋯ 0
0 −1 1 ⋱ ⋮
⋮ 0 ⋱ ⋱ 0
0 ⋯ 0 −1 1⎦

⎥
⎥
⎥
⎤
. (27) 
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Variance-Covariance Matrix Based on Litterman 

In addition to the unit root process, Litterman (1983) further assumes that 𝑣𝑣𝑡𝑡 

follows AR (1) process: 

𝑣𝑣𝑡𝑡 = 𝛼𝛼𝑣𝑣𝑡𝑡−1 + 𝜀𝜀𝑡𝑡. (28) 

The variance-covariance matrix is expressed as follows: 

𝐕𝐕𝜶𝜶 = 𝜎𝜎𝜀𝜀2[𝐃𝐃′𝐇𝐇′𝐇𝐇𝐃𝐃]−1,   (29) 

where 

𝐇𝐇 =

⎣
⎢
⎢
⎢
⎡

1 0 0 ⋯ 0
−𝛼𝛼 1 0 ⋯ 0
0 −𝛼𝛼 1 ⋱ ⋮
⋮ 0 ⋱ ⋱ 0
0 ⋯ 0 −𝛼𝛼 1⎦

⎥
⎥
⎥
⎤
. (30) 

𝛼𝛼 is obtained by solving the following optimization problem: 

𝛼𝛼� = argmax
𝛼𝛼

 
exp �−1

2𝐮𝐮
′𝐂𝐂′(𝐂𝐂𝐕𝐕𝛂𝛂𝐂𝐂′)−𝟏𝟏𝐂𝐂𝐮𝐮�

(2𝜋𝜋)𝑀𝑀 2⁄ ∙ det(𝐂𝐂𝐕𝐕𝜶𝜶𝐂𝐂′)1 2⁄ . (31) 

4.1.2 Proportional Denton Method 

In the Denton methods, the benchmarked estimates 𝐱𝐱 are obtained by allocating the 

discrepancy between the sum of four preliminary quarterly estimates 𝐳𝐳  and 

corresponding annual estimates 𝐲𝐲 to the four quarters in each year. Specifically, for the 

Proportional First Differences (PFD) version of the Denton method, where the 

proportional period-to-period changes of the benchmarked series 𝐱𝐱 are solved by 

directly linking those of the preliminary variables 𝐳𝐳, benchmarked estimates can be 

computed by minimizing the following quadratic loss function: 

min
𝐱𝐱

(𝐱𝐱 − 𝐳𝐳)′𝐐𝐐(𝐱𝐱 − 𝐳𝐳), (32) 
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s.t. 𝐲𝐲 = 𝐂𝐂𝐱𝐱, (33) 

where 𝐐𝐐 = diag(𝐳𝐳)−1𝚫𝚫′𝚫𝚫 diag(𝐳𝐳)−1 and (34) 

𝚫𝚫 = �

−1 1 0 ⋯ 0
0 −1 1 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋮
0 0 0 ⋯ 1

�. (35) 

In the above, 𝚫𝚫 is the first difference matrix. For the optimization problem described 

by (32) and (33), Di Fonzo (1994) shows the matrix form solution as follows: 

𝐱𝐱� = [diag(𝐳𝐳) 𝟎𝟎] � 𝚫𝚫′𝚫𝚫 diag(𝐳𝐳)𝐂𝐂′
𝐂𝐂diag(𝐳𝐳) 𝟎𝟎 �

−1

�𝟎𝟎𝐲𝐲�. (36) 

Given a preliminary variable 𝐳𝐳, we can extrapolate 𝐱𝐱 using the estimated quarterly 

values 𝐱𝐱� . Unlike the regression based methods discussed in Section 4.1.1, the 

proportional Denton method does not model the relationship between preliminary 

variable and annual benchmark. Instead, it directly links preliminary variable and 

annual benchmark, smoothing the changes in their proportions two between neighboring 

quarters. 

4.2 Empirical Application 

Prior to presenting the estimation results, we describe the data used for the 

estimation and the models to be evaluated in our exercises.20 

4.2.1 Data 

The ARNA GDP is compiled using annual statistics, such as the Census of 

manufacturing and the Economic Census for Business Activity, which comprehensively 

captures Japanese economic activity from supply-side. Our strategy is to employ 

preliminary series available at a higher frequency that similarly measure Japanese 

                                                
20 The estimations use the R package tempdisagg developed by Sax and Steiner (2013). 
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economic activity from the supply-side. Specifically, we consider the following 

indicators: 

 Index of Industrial Production (IIP); 

 Index of Tertiary Industry Activity (ITA); 

 Index of Construction Industry Activity (ICA); and 

 Index of All Industry Activity (IAA). 

In the above, all four indicators are available at a monthly frequency (see Appendix B 

for data description). These indicators capture Japanese economic activity from the 

supply-side. The first three indicators are sector-specific indicators and should be used 

jointly to comprehensively capture Japanese economic activity. On the other hand, the 

IAA can serve as a single preliminary indicator as it captures overall Japanese economic 

activity. 

4.2.2 Models 

We estimate unobservable quarterly GDP 𝐱𝐱 using annual ARNA GDP and the 

preliminary series listed in Section 4.2.1. We evaluate the performance of the following 

six methods elaborated on above: 

i. Ordinary Least Square (OLS) 

The parameters 𝐙𝐙 are obtained by (19). 

ii. Chow-Lin method with maximum likelihood 

The parameters 𝐙𝐙 are estimated by (17). The variance covariance matrix (21) is 

used and 𝜌𝜌 is estimated by (22). 

iii. Chow-Lin method with minimization of residual 

The parameters 𝐙𝐙 are estimated by (17). The variance covariance matrix (24) is 

used and 𝜌𝜌 is estimated by (23). 

iv. Litterman method 
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The parameters 𝐙𝐙 are estimated by (17). The variance covariance matrix (29) is 

used and 𝛼𝛼 is estimated by (31). 

v. Fernández method 

The parameters 𝐙𝐙 are estimated by (17). The variance covariance matrix (26) is 

used. 

vi. Proportional Denton method 

The quarterly GDP values are calculated by (36). 

The first five methods are regression based approaches, while the Proportional Denton 

method is not regression based. For i, ii and iii, we estimate using both levels and log 

first difference of the indicators. For iv, v and vi we estimate using the level of the 

indicators. 

4.2.3 Estimation results 

In this subsection, we evaluate out-of-sample forecasting performances of the 

benchmarking models listed in Section 4.2.2. In this exercise, we evaluate forecasting 

performances at the one- and two- year horizon 𝑟𝑟 prior to ARNA GDP release dates. In 

doing so, we evaluate predictive accuracy of models in terms of predicting ARNA GDP 

growth rates, based on root mean squared error (RMSE). 

In our recursive forecasting experiment, we split the sample (from 1988 to 2016) 

into an estimation subsample and an evaluation subsample.21 22 First, we estimate 

parameters with the subsample between 1988 and 2000, and then extend the estimation 

subsample recursively. 

For comparison, we also compute RMSE of QE1 and QE2.23 As discussed, QEs are 

                                                
21 As for the models that use log first differences, the sample starts from 1989. Also, in the case that 
the ICA is used, the sample starts from 1993 in the case of level, or from 1994 in the case of log first 
difference, due to the availability of the ICA. 
22 ARNA GDP starts from 1994. To increase sample size, we calculate GDP from 1988 to 1993 
using the growth rates of provisional estimates of GDP released by Cabinet Office.  
23 For QE1 and QE2, annual growth rates are computed from their quarterly growth rates. Prior to 
2016/Q3 data, Japanese GDP was compiled based on the System of National Account, 1993 (SNA 
1993). To adjust the revisions stemming from compilation methodologies, from 2000 to 2014, we 
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viewed as a nowcast of ARNA. We conduct Diebold-Mariano tests and compare the 

predictive accuracy of the benchmarking model forecasts and QEs. 

Table 5 shows forecasting performance measured by RMSE calculated in terms of 

growth rates. As shown in the seventh row of the tables, the models using the IAA and 

time trend record smaller RMSE, indicating that IAA's out-of-sample performances is 

superior to that of other indicators. Among the models using the IAA and time trend, 

Fernández and Litterman record the best performance in terms of both one-year ahead 

and two-year ahead forecasts; RMSE of 0.464 in one-year ahead forecast and RMSE of 

0.438 in two-year ahead forecast.  

The last two rows of Table 5 show RMSE for QE1 and QE2. These RMSEs are 

0.833 and 0.840 for one-year ahead out-of-sample forecast, and 0.838 and 0.823 for 

two-year ahead out of sample forecast, respectively. The Fernández and Litterman 

models using the IAA and time trend record smaller RMSE than QEs.  

Table 5 also lists the parameter estimates of 𝜌𝜌 and 𝛼𝛼 in (20) and (28). In the 

Litterman model using the IAA and time trend, the estimate value of 𝛼𝛼 is zero, 

indicating that the estimated model of Litterman is reduced to the Fernández model in 

our results.24 In addition, as stated above, RMSEs of the two models are exactly same. 

Figure 3 shows out-of-sample forecasting performance of the Fernández model using 

the IAA and trend. According to Figure 3, we find that the predicted annual values of 

each period generated by the Fernández model are in line with the actual ARNA GDP. 

Figures 4 and 5 plot the in-sample quarterly predicted values in terms of level and 

growth rate. The values in level and growth rate of quarterly predicted values are 

broadly in line with quarterly ARNA GDP. 

 

5. Conclusion 

In this paper, we discuss the approaches used to nowcast Japanese GDPs, namely 

                                                                                                                                          
use SNA 1993 version of ARNA GDP growth rates to evaluate performances of QEs. 
24 In estimating 𝜌𝜌 and 𝛼𝛼, we employ the restrictions that the 𝜌𝜌(𝛼𝛼) is nonnegative and less than 1. 
When we estimate under the restriction that |𝜌𝜌|(|𝛼𝛼|) is less than 1, optimization procedures don't 
work well. 
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preliminary quarterly estimates and revised annual estimates.  

First, we attempt to nowcast the preliminary estimates of quarterly GDP using 

monthly indicators, such as the index of industrial production. In doing so, we employ a 

variety of mixed frequency approaches, bridge equation approach, MIDAS approach, 

and factor-augmented version of them, to utilize those data effectively. We find that 

those models outperform an in-sample mean benchmark. Furthermore, we find that 

there is a gain from employing sparse principal component analysis in extracting factors 

and from combining individual model forecasts and survey forecasts. 

Second, we work on nowcasting the revised annual GDP (ARNA GDP), which is 

compiled based on comprehensive annual statistics, but only available after a 

considerable lag. In nowcasting the revised GDP, we apply several benchmarking 

methods, including Chow and Lin (1971) and Fernández (1981). We find that some 

benchmarking models that utilize timely monthly supply-side indicators serve as useful 

tools for predicting ARNA GDP growth rates. 
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Appendix A: Sparse Principal Component Analysis (SPCA) 

Stock and Watson (2002) propose a technique to forecast objective variables with 

factors obtained from a large number of macroeconomic variables by means of principal 

component analysis. They show that the subsequent forecasts perform well when 

compared with other models and leading indicators. This appendix provides an 

explanation of sparse principal component analysis (SPCA), a variant of the principal 

component approach proposed by Zou et al. (2006).25 

A standard factor model is represented as follows:  

where 𝐗𝐗𝐭𝐭 = {𝑥𝑥𝑖𝑖𝑡𝑡}  for 𝑡𝑡 = 1, … ,𝑇𝑇  is a 𝑛𝑛 × 1  vector of observed variables. 𝑟𝑟  is 

defined as the number of factor. Hence, 𝚲𝚲 = {𝜆𝜆𝑖𝑖𝑗𝑗} is a 𝑛𝑛 × 𝑟𝑟 matrix of the factor 

loadings, 𝐅𝐅𝐭𝐭 is a 𝑟𝑟 × 1 vector of common latent factors. To simplify the descriptions, 

we introduce the matrix notations, 𝐗𝐗 = (𝐗𝐗𝟏𝟏, . . . ,𝐗𝐗𝐓𝐓)′. 

In classical principal component analysis (PCA), as each factor is a linear 

combination of all variables, some of the loadings may be typically nonzero. Even 

though the estimated factors allow us to be very parsimonious in the forecasting 

equations, the factors are by no means parsimonious. Therefore, the traditional PCA can 

be modified such that the estimated loadings will be sparse, which we will denote a 

sparse principal component analysis (SPCA). 

Zou et al. (2006) employ LASSO and elastic net penalization by developing a 

regression optimization framework. For the LASSO penalization case, consider first the 

problem of estimating a single factor. Augmenting the least squares criterion with the 

penalty terms will give us the following objective function: 

𝑉𝑉LASSO(𝐅𝐅,𝚲𝚲;𝐗𝐗,𝜓𝜓𝑇𝑇) =
1
𝑛𝑛𝑇𝑇

���(𝑥𝑥𝑖𝑖𝑡𝑡 − 𝛌𝛌𝐢𝐢𝐅𝐅𝐭𝐭)2
𝑇𝑇

𝑡𝑡=1

𝑛𝑛

𝑖𝑖=1

+ 𝜓𝜓𝑇𝑇�|𝛌𝛌𝐢𝐢|
𝑛𝑛

𝑖𝑖=1

�. (A2) 

                                                
25 This appendix follows the argument of Kristensen (2017). 

𝐗𝐗𝐭𝐭 = 𝚲𝚲𝐅𝐅𝐭𝐭 + 𝐞𝐞𝐭𝐭 (A1) 
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𝛌𝛌𝐢𝐢 is the 𝑖𝑖th row of 𝚲𝚲, say, a 1 × 𝑟𝑟 vector. Note that the functions are written in terms 

of 𝐅𝐅 and 𝛌𝛌 in order to make it explicit that we are only estimating single factors. 

Furthermore, the objective functions now also depend on the tuning parameter 𝜓𝜓𝑇𝑇.26  

One of the appealing features of SPCA is that the estimated factor will be a linear 

combination of the observed variables 𝐗𝐗 just as in the PCA case. For example, in the 

LASSO case, subsequent factors are given as: 

𝐅𝐅�𝟏𝟏𝐆𝐆𝐋𝐋𝐆𝐆𝐆𝐆𝐎𝐎 =
𝐗𝐗𝛌𝛌�𝟏𝟏𝐆𝐆𝐋𝐋𝐆𝐆𝐆𝐆𝐎𝐎

𝑛𝑛
. (A3) 

However, the crucial difference is that the loadings will now be sparse, in the sense that 

some of the entries of 𝛌𝛌�𝟏𝟏𝐆𝐆𝐋𝐋𝐆𝐆𝐆𝐆𝐎𝐎 will be zero. Hence, the factor may depend only on some 

selected variables. 

The factors can be estimated in a sequential approach as detailed in the following 

manner. The SPCA of the first factor and associated loadings are obtained by: 

�𝐅𝐅𝟏𝟏�,𝛌𝛌�𝟏𝟏� = argmin
𝐅𝐅,𝛌𝛌

𝑉𝑉LASSO(𝐅𝐅,𝛌𝛌;𝐗𝐗,𝜓𝜓𝑇𝑇)  𝑠𝑠. 𝑡𝑡.   𝛌𝛌′𝛌𝛌 𝑛𝑛⁄ = 1. 

Let the residuals from the estimation of the 𝑘𝑘th factor be defined as 𝑒𝑒𝑘𝑘, then for 𝑘𝑘 > 1 

the subsequent estimates are given as 

�𝐅𝐅�𝐤𝐤,𝛌𝛌�𝐤𝐤� = argmin
𝐅𝐅,𝛌𝛌

𝑉𝑉LASSO(𝐅𝐅,𝛌𝛌; 𝐞𝐞𝐤𝐤−𝟏𝟏,𝜓𝜓𝑇𝑇)  𝑠𝑠. 𝑡𝑡.   𝛌𝛌′𝛌𝛌 𝑛𝑛⁄ = 1. 

Hence the SPCA factor estimates of 𝑟𝑟 factors and the loading matrix are given as 𝐅𝐅� =

�𝐅𝐅�𝟏𝟏, … ,𝐅𝐅�𝐫𝐫� and 𝚲𝚲� = (𝛌𝛌�𝟏𝟏, … ,𝛌𝛌�𝐫𝐫). 

 

  

                                                
26 Following Kristensen (2017), the tuning parameter is set to optimize the Bayesian Information 
Criterion (BIC) of forecasting models. 
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Appendix B: Data Description 

(1) Series used in the nowcasting models 

 
(2) Series used only for extrapolation 

 
(3) Series used in the benchmarking models 

 
Notes:  
1. METI: Ministry of Economy, Trade and Industry; CAO: Cabinet Office; TR: Thomson Reuters; 

BOJ: Bank of Japan. 
2. The survey of production forecast figure is calculated based on METI's adjusted value. 
3. Reporting lag indicates the lag between month-end (quarter-end) dates and data release dates. 

Name Frequency Source Transformation
Reporting lag
(months) (days)

Hard indicators:

Index of industrial production Monthly METI sa, m/m change 1 27  ̶  31

Index of tertiary industry activity Monthly METI sa, m/m change 2 40  ̶  51

Current survey of commerce (sales value, wholesale) Monthly METI sa, m/m change 1 27  ̶  30
[Deflator for sales value] producer price index Monthly BOJ - 1 10  ̶  16

Official GDP estimate Quarterly CAO sa, q/q change - -

Soft indicators:
Reuters Tankan DI (manufacturers) Monthly TR level 0 -24  ̶  -7
Reuters Tankan DI (materials) Monthly TR level 0 -24  ̶  -7
Reuters Tankan DI (textile and paper) Monthly TR level 0 -24  ̶  -7
Reuters Tankan DI (chemicals) Monthly TR level 0 -24  ̶  -7
Reuters Tankan DI (oil refinery and ceramics) Monthly TR level 0 -24  ̶  -7
Reuters Tankan DI (steel and metals) Monthly TR level 0 -24  ̶  -7
Reuters Tankan DI (manufactured products) Monthly TR level 0 -24  ̶  -7
Reuters Tankan DI (food) Monthly TR level 0 -24  ̶  -7
Reuters Tankan DI (metal and machinery) Monthly TR level 0 -24  ̶  -7
Reuters Tankan DI (electric machinery) Monthly TR level 0 -24  ̶  -7
Reuters Tankan DI (transport equipment) Monthly TR level 0 -24  ̶  -7
Reuters Tankan DI (precision machinery) Monthly TR level 0 -24  ̶  -7
Reuters Tankan DI (non-manufacturers) Monthly TR level 0 -24  ̶  -7
Reuters Tankan DI (real estate) Monthly TR level 0 -24  ̶  -7
Reuters Tankan DI (wholesalers) Monthly TR level 0 -24  ̶  -7
Reuters Tankan DI (retailers) Monthly TR level 0 -24  ̶  -7
Reuters Tankan DI (transport and utility) Monthly TR level 0 -24  ̶  -7
Reuters Tankan DI (other services) Monthly TR level 0 -24  ̶  -7

Name Frequency Source Transformation
Reporting lag
(months) (days)

Survey of Production Forecast Monthly METI sa, m/m change 0 -3  ̶  0

Economy watchers survey (DI for current conditions) Monthly CAO level 1 8  ̶  12

Name Frequency Source Transformation
Reporting lag
(months) (days)

Index of all industry activity Quarterly METI sa, level 2 50  ̶  56

Index of industrial production Quarterly METI sa, level 1 27  ̶  31

Index of tertiary industry activity Quarterly METI sa, level 2 40  ̶  51

Index of construction industry activity Quarterly METI sa, level 2 50  ̶  56

Official GDP estimate (Annual Report on National Accounts) Annual CAO level - -
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Appendix C: Extrapolation in bridge equation approaches 

The monthly indicators used for nowcasting preliminary quarterly estimates have 

different publication lags. As discussed in Section 3, some indicators have to be 

extrapolated using bridge model approaches. First, the IIP is extrapolated simply by 

using the result of the Survey of Production Forecast (SPF), conducted by Ministry of 

Economy, Trade and Industry (see Appendix B).27 Second, we extrapolate the Current 

Survey of Commerce (CSC) using the following auxiliary equation 

where 𝐵𝐵𝑀𝑀𝐵𝐵𝑡𝑡,𝑚𝑚 denotes the CSC at 𝑚𝑚th month of the quarter 𝑡𝑡, 𝑀𝑀𝑃𝑃𝐹𝐹𝑡𝑡,𝑚𝑚 denotes the 

SPF at 𝑚𝑚th month of the quarter 𝑡𝑡.28 

Thirdly, we extrapolate the Index of Tertiary Activities (ITA). In doing so, we 

utilize the Economic Watcher Survey (EWS), which is available prior to the release of 

the ITA (see Appendix B). The auxiliary equation reads as: 

where 𝐵𝐵𝑇𝑇𝐼𝐼𝑡𝑡,𝑚𝑚 denotes the ITA at 𝑚𝑚th month of the quarter 𝑡𝑡, 𝐵𝐵𝑀𝑀𝐵𝐵� 𝑡𝑡,𝑚𝑚 denotes fitted 

value of the CSC in (C1) for the 𝑚𝑚th month of the quarter 𝑡𝑡, and 𝑀𝑀𝐸𝐸𝑀𝑀𝑡𝑡,𝑚𝑚 denotes the 

EWS at 𝑚𝑚th month of the quarter 𝑡𝑡.29 

 

 

 
  

                                                
27 The SPF is the survey conducted for the purpose of projecting near-term IIP. The survey covers 
about 760 firms and around 80 percent of total production. To avoid bias of the survey, we use the 
adjusted value of the SPF, which is also published by Ministry of Economy, Trade and Industry.    
28 Since the sample size of the SPF is relatively small, equations (C1) and (C2) are estimated with 
actual values of IIP. 
29 The CSC is released prior to the release of the ITA (see Appendix B). When the CSC is available, 
the fitted value of the CSC is replaced by actual value of the CSC. 

dlog�𝐵𝐵𝑀𝑀𝐵𝐵𝑡𝑡,𝑚𝑚� = 𝛽𝛽0 + 𝛽𝛽1dlog�𝑀𝑀𝑃𝑃𝐹𝐹𝑡𝑡,𝑚𝑚� + 𝜀𝜀𝑡𝑡,𝑚𝑚, (C1) 

dlog�𝐵𝐵𝑇𝑇𝐼𝐼𝑡𝑡,𝑚𝑚� = 𝛽𝛽0 + 𝛽𝛽1dlog�𝑀𝑀𝑃𝑃𝐹𝐹𝑡𝑡,𝑚𝑚� + 𝛽𝛽2dlog�𝐵𝐵𝑀𝑀𝐵𝐵� 𝑡𝑡,𝑚𝑚� 
+𝛽𝛽3𝑀𝑀𝐸𝐸𝑀𝑀𝑡𝑡,𝑚𝑚 + 𝜀𝜀𝑡𝑡,𝑚𝑚, 

(C2) 
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Appendix D: Approximation of the quarter-on-quarter 

growth rate using monthly growth rates 

This appendix discusses the method used to obtain quarter-on-quarter growth rates 

from monthly growth rates in bridge equation models. Mariano and Murasawa (2003) 

propose approximating quarter-on-quarter growth rates of GDP using three-month 

growth rates of each month in the quarter. Let 𝑞𝑞𝑡𝑡 represent the quarter-on-quarter 

growth rates at quarter 𝑡𝑡. Then, 𝑞𝑞𝑡𝑡 can be approximated as: 

where 𝑚𝑚𝑡𝑡,𝑖𝑖
(3)  is three-month growth rate at 𝑖𝑖th month of quarter 𝑡𝑡 , which can be 

expressed as the sum of 𝑚𝑚𝑡𝑡,𝑗𝑗, monthly growth rates at 𝑗𝑗th month of quarter 𝑡𝑡 

𝑚𝑚𝑡𝑡,1
(3) =  𝑚𝑚𝑡𝑡−1,2 +  𝑚𝑚𝑡𝑡−1,3 + 𝑚𝑚𝑡𝑡,1

𝑚𝑚𝑡𝑡,2
(3) =  𝑚𝑚𝑡𝑡−1,3 + 𝑚𝑚𝑡𝑡,1 + 𝑚𝑚𝑡𝑡,2

𝑚𝑚𝑡𝑡,3
(3) =  𝑚𝑚𝑡𝑡,1 + 𝑚𝑚𝑡𝑡,2 + 𝑚𝑚𝑡𝑡,3.

 (D2) 

At two months prior to GDP release dates, where information on 𝑚𝑚𝑡𝑡,3 is not 

available, we simply assume that the monthly GDP level for third month is the average 

of the values at the first and second months: 

𝑚𝑚𝑡𝑡,3 =
𝑀𝑀𝑡𝑡,1 +𝑀𝑀𝑡𝑡,2

2 −𝑀𝑀𝑡𝑡,2

𝑀𝑀𝑡𝑡,2
=

1
2�

𝑀𝑀𝑡𝑡,1

𝑀𝑀𝑡𝑡,2
− 1� =

1
2�

1
1 + 𝑚𝑚𝑡𝑡,2

− 1� ≈ −
1
2
𝑚𝑚𝑡𝑡,2, (D3) 

where 𝑀𝑀𝑡𝑡,𝑘𝑘 denotes the monthly level of GDP for the 𝑘𝑘th month of quarter 𝑡𝑡. 

Thus, at two months prior to GDP release dates, the quarter-on-quarter growth rates 

can be expressed as 

𝑞𝑞𝑡𝑡 =
1
3
�𝑚𝑚𝑡𝑡,1

(3) + 𝑚𝑚𝑡𝑡,2
(3) + 𝑚𝑚𝑡𝑡,3

(3)�, (D1) 
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𝑞𝑞𝑡𝑡 =
1
3
�𝑚𝑚𝑡𝑡,1

(3) + 𝑚𝑚𝑡𝑡,2
(3) + 𝑚𝑚𝑡𝑡,3

(3)�

=
1
3 ��

𝑚𝑚𝑡𝑡−1,2 + 𝑚𝑚𝑡𝑡−1,3 +𝑚𝑚𝑡𝑡,1� + �𝑚𝑚𝑡𝑡−1,3 + 𝑚𝑚𝑡𝑡,1 + 𝑚𝑚𝑡𝑡,2�

+ �𝑚𝑚𝑡𝑡,1 +𝑚𝑚𝑡𝑡,2 −
1
2
𝑚𝑚𝑡𝑡,2�� 

     =
1
3
�𝑚𝑚𝑡𝑡−1,2 + 2𝑚𝑚𝑡𝑡−1,3 + 3𝑚𝑚𝑡𝑡,1 +

3
2
𝑚𝑚𝑡𝑡,2�. 

(D4) 

Similarly, at one month prior to GDP release dates, where all values for the quarter 

are available: 

𝑞𝑞𝑡𝑡 =
1
3
�𝑚𝑚𝑡𝑡,1

(3) + 𝑚𝑚𝑡𝑡,2
(3) + 𝑚𝑚𝑡𝑡,3

(3)�

=
1
3 ��

𝑚𝑚𝑡𝑡−1,2 +𝑚𝑚𝑡𝑡−1,3 + 𝑚𝑚𝑡𝑡,1�+ �𝑚𝑚𝑡𝑡−1,3 + 𝑚𝑚𝑡𝑡,1 + 𝑚𝑚𝑡𝑡,2�

+ �𝑚𝑚𝑡𝑡,1 + 𝑚𝑚𝑡𝑡,2 + 𝑚𝑚𝑡𝑡,3��       

=
1
3 �
𝑚𝑚𝑡𝑡−1,2 + 2𝑚𝑚𝑡𝑡−1,3 + 3𝑚𝑚𝑡𝑡,1 + 2𝑚𝑚𝑡𝑡,2 + 𝑚𝑚𝑡𝑡,3�. 

(D5) 
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Table 1: Bridge Model RMSE 
 

Model Predictors 
RMSE 

2-month 
prior to GDP release dates 

1-month  
prior to GDP release date 

Bridge IIP , ITA 0.470  0.449 * 

 IIP, CSC 0.536  0.520  

 IIP 0.570  0.564  

 ITA 0.610  0.494 * 

 CSC 0.596  0.485  

Bridge with PCA IIP, ITA, PC1, PC2 0.473  0.455 * 

 IIP, CSC, PC1, PC2 0.544  0.533  

 IIP, ITA, PC1 0.467  0.443 * 

 IIP, CSC, PC1 0.539  0.521  

 IIP, PC1, PC2 0.588  0.587  

 ITA, PC1, PC2 0.703  0.585  

 CSC, PC1, PC2 0.613  0.493  

 IIP, PC1 0.575  0.571  

 ITA, PC1 0.669  0.542 * 

 CSC, PC1 0.613  0.492  

 PC1, PC2 0.807  0.819  

 PC1 0.710  0.712  

Bridge with SPCA IIP, ITA, SPC1, SPC2 0.469  0.453 * 

 IIP, CSC, SPC1, SPC2 0.547  0.533  

 IIP, ITA, SPC1 0.464  0.439 * 

 IIP, CSC, SPC1 0.538  0.520  

 IIP, SPC1, SPC2 0.592  0.590  

 ITA, SPC1, SPC2 0.660  0.534 * 

 CSC, SPC1, SPC2 0.613  0.493  

 IIP, SPC1 0.574  0.569  

 ITA, SPC1 0.652  0.526 * 

 CSC, SPC1 0.612  0.489  

 SPC1, SPC2 0.801  0.812  

 SPC1 0.713  0.714  

In-sample mean (Benchmark)  0.684  0.684  

Note: The shading indicates the lowest RMSE. PC1 and PC2 stand for first and second factor of the surveys 
extracted with the principal component approach. SPC1 and SPC2 stand for first and second factor of 
the surveys extracted with sparse principal component analysis. Asterisks indicate statistical 
significance of the Diebold-Mariano test compared with the benchmark model (in-sample mean). 
* Denotes significance at the 10% level.  
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Table 2: MIDAS Model RMSE 

 

Model Predictors 
RMSE 

2-month 
prior to GDP release dates 

1-month 
prior to GDP release dates 

MIDAS IIP, ITA, CSC 0.554  0.501  

 IIP, ITA 0.571  0.574 ** 

 IIP, CSC 0.512  0.581  

 ITA, CSC 0.707  0.814  

 IIP 0.513 * 0.571 * 

 ITA 0.486  0.411 * 

 CSC 0.636  0.548  

Factor MIDAS with PCA IIP, ITA, PC1 0.627  0.596  

 IIP, CSC, PC1 0.517  0.570  

 ITA, CSC, PC1 0.625  0.723  

 IIP, PC1 0.529  0.578  

 ITA, PC1 0.500 * 0.405 * 

 CSC, PC1 0.498  0.465  

 PC1 0.591  0.637  

Factor MIDAS with SPCA IIP, ITA, SPC1 0.636  0.597  

 IIP, CSC, SPC1 0.498  0.557  

 ITA, CSC, SPC1 0.544  0.703  

 IIP, SPC1 0.524  0.565  

 ITA, SPC1 0.500 * 0.405 * 

 CSC, SPC1 0.465  0.480  

 SPC1 0.591  0.637  

In-sample mean (Benchmark)  0.684  0.684  

Note: The shading indicates the lowest RMSE. PC1 stands for the first factor of the surveys extracted with 
principal component analysis. SPC1 stands for the first factor of the surveys extracted with sparse 
principal component analysis. Asterisks indicate statistical significance of the Diebold-Mariano test 
compared with the benchmark model (in-sample mean). 

* Denotes significance at the 10% level. 
**  Denotes significance at the 5% level. 
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Table 3: Combined MIDAS RMSE 

 

 

RMSE 

2-month 

prior to GDP release dates 

1-month 

prior to GDP release dates 

with PCA 

Simple Average 0.426 * 0.412 * 

Triangular Kernel Approach 0.462 * 0.495 * 

Inverse Mean Squared Error 0.433 * 0.430 * 

Discounted Mean Squared Forecast Errors 

(δ=0.95) 
0.433 * 0.428 * 

Bayesian Model Averaging 0.512 * 0.569 
 

with SPCA 

Simple Average 0.414 * 0.406 * 

Triangular Kernel Approach 0.455 * 0.485 * 

Inverse Mean Squared Error 0.421 * 0.425 * 

Discounted Mean Squared Forecast Errors 

(δ=0.95) 
0.421 * 0.423 * 

Bayesian Model Averaging 0.512 * 0.569  
Note: The shading indicates the lowest RMSE. Asterisks indicate statistical significance of the 

Diebold-Mariano test compared with the benchmark model (in-sample mean). “With PCA” indicates 
the combination of the MIDAS models and the Factor MIDAS models estimated with principal 
component analysis listed in Table2. “With SPCA” indicates the combination of the MIDAS models 
and the MIDAS models estimated with sparse principal component analysis listed in Table 2. 

* Denotes significance at the 10% level. 
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Table 4: Forecast Combination RMSE 

 

  Simple Average   
Triangular Kernel 

Approach 
  

Inverse Mean Squared 

Error 
  

Discounted Mean 

Squared Errors 

 

2-month 
prior to 
GDP 

release 
dates 

 

 

1-month 
prior to 
GDP 

release 
dates 

  

2-month 
prior to 
GDP 

release 
dates 

 
 

1-month 
prior to 
GDP 

release 
dates 

  

2-month 
prior to 
GDP 

release 
dates 

 
 

1-month 
prior to 
GDP 

release 
dates 

  

2-month 
prior to 
GDP 

release 
dates 

 
 

1-month 
prior to 
GDP 

release 
dates 

  

Bridge, C-MIDAS 0.413 * 0.410 *   0.424 * 0.417 *   0.426 * 0.417 *   0.424 * 0.416 * 

Bridge, JCER 0.432 * 0.425 *   0.433 * 0.423 *   0.432 * 0.423 *   0.432 * 0.423 * 

Bridge, Bloomberg 0.456 * 0.434 *   0.451 * 0.430 *   0.451 * 0.430 *   0.451 * 0.430 * 

C-MIDAS, JCER 0.429 * 0.393 *   0.445 * 0.409 *   0.435 * 0.398 *   0.435 * 0.397 * 

C-MIDAS, Bloomberg 0.444 * 0.406 *   0.464 * 0.397 *   0.447 * 0.404 *   0.446 * 0.404 * 

Bridge, C-MIDAS, JCER 0.414 * 0.400 *   0.420 * 0.410 *   0.418 * 0.406 *   0.417 * 0.406 * 

Bridge, C-MIDAS, Bloomberg 0.428 * 0.408 *   0.434 * 0.412 *   0.430 * 0.412 *   0.430 * 0.411 * 

Bridge, JCER, Bloomberg 0.453 * 0.437 *   0.439 * 0.427 *   0.443 * 0.429 *   0.444 * 0.430 * 

C-MIDAS, JCER, Bloomberg 0.452 * 0.415 *   0.467   0.420 *   0.456 * 0.417 *   0.455 * 0.416 * 

Bridge, C-MIDAS, JCER, Bloomberg 0.432 * 0.411 *   0.430 * 0.413 *   0.430 * 0.412 *   0.430 * 0.412 * 

Bridge 0.464   0.439 *                               

C-MIDAS 0.414 * 0.406 *                               

JCER 0.489   0.467                                 

Bloomberg 0.515   0.480                                 
Note: The left column indicates forecasts included in forecast combination. The shading indicates the lowest RMSE. 

Asterisks indicate statistical significance of the Diebold-Mariano test compared with the benchmark model 
(in-sample mean). “C-MIDAS” indicates the combination of the MIDAS models and the Factor MIDAS 
models with SPCA listed in Table 2 weighted with simple average. 
* Denotes significance at the 10% level. 
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Table 5: Benchmarking Model RMSE 

  Method 

 Predictors i. Ordinary Least 

Square (OLS)  

ii. Chow-Lin method with 

maximum likelihood  

iii. Chow-Lin method with 

minimization of residual 

1st year 
 

2nd year 
  

1st year 
 

2nd year 
 

ρ 
 

1st year 
 

2nd year 
 

ρ 

dlog(GDP) dlog4(IAA) 0.483 ** 0.475 ** 
 

0.483 ** 0.475 ** 0 
 

0.485 *** 0.440 *** 0.599 

dlog(GDP) dlog4(IIP), dlog4(ITA) 0.534 *** 0.529 *** 
 

0.535 *** 0.529 *** 0 
 

0.559 ** 0.517 ** 0.603 

dlog(GDP) dlog4(IIP), dlog4(ITA), dlog4(ICA) 0.691   0.804 
  

0.691 
 

0.804 
 

0 
 

0.746 
 

0.771 
 

0.601 

GDP IAA 4.750   1.910   
 

0.958   1.045   0.998 
 

2.325   2.142   0.934 

GDP IIP, ITA 2.322 
 

0.716 
  

1.007 
 

0.886 
 

0.944 
 

1.391 
 

1.130 
 

0.890 

GDP IIP, ITA, ICA 1.987 
 

0.992 
  

1.068 
 

1.046 
 

0.992 
 

1.353 
 

1.145 
 

0.879 

GDP IAA, trend 0.657 * 0.488 ** 
 

0.537 ** 0.464 *** 0.747 
 

0.497 *** 0.449 *** 0.719 

GDP IIP, ITA, trend 0.932 
 

0.588 ** 
 

0.687 
 

0.653 
 

0.873 
 

0.698 
 

0.647 
 

0.777 

GDP IIP, ITA, ICA, trend 0.752   0.712   
 

0.702 
 

0.699   0.557 
 

0.658 * 0.679   0.665 
 

   Method 

 

Predictors 
iv. Litterman method 

 
v. Fernández method 

 

vi. Proportional 

Denton method 

1st year  2nd year  α  1st year  2nd year   1st year  2nd year   

dlog(GDP) dlog4(IAA)       
 

    
 

         

dlog(GDP) dlog4(IIP), dlog4(ITA) 
               

dlog(GDP) dlog4(IIP), dlog4(ITA), dlog4(ICA) 
               

GDP IAA 0.755 
 

0.831 
 

0.512 
 

0.767 
 

0.834 
  

0.902 
 

0.981   

GDP IIP, ITA 0.729 
 

0.765 
 

0.373 
 

0.728 
 

0.764 
      

GDP IIP, ITA, ICA 0.773 
 

0.835 
 

0.534 
 

0.779 
 

0.846 
      

GDP IAA, trend 0.464 *** 0.438 *** 0 
 

0.464 *** 0.438 *** 
     

GDP IIP, ITA, trend 0.583 ** 0.571 ** 0 
 

0.583 ** 0.571 ** 
     

GDP IIP, ITA, ICA, trend 0.692 * 0.713 
 

0 
 

0.692 * 0.713 
  

  
 

  
 

 QE1 0.833 
 

0.838 
            

 QE2 0.840 
 

0.823 
            

Note: The shading indicates the lowest RMSE, and dlog4 stands for four-quarter log-difference growth rates.  
RMSE is computed in terms of growth rates. Asterisks indicate the statistical significance of the 
Diebold-Mariano test compared with the QE2. 
*  Denotes significance at the 10% level. 
**  Denotes significance at the 5% level. 
*** Denotes significance at the 1% level.  
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Figure 1: Forecast combination performances (2-month prior to GDP 

release dates) 

 

 
Note: “Combined MIDAS” indicates combination of MIDAS models and Factor MIDAS models 

with SPCA listed in Table 2 weighted with simple average. 
“Bridge Equation Model” indicates Bridge Equation Model with IIP, ITA and first factor 

extracted with sparse principal component analysis (SPC1). 
“Forecast Combination” indicates the combination of Combined MIDAS, Bridge Equation 
Model and JCER weighted with simple average. 
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Figure 2: Forecast combination performances (1-month prior to GDP 

release dates) 

 

 
Note: “Combined MIDAS” indicates combination of MIDAS models and Factor MIDAS models 

with SPCA listed in Table 2 weighted with simple average. “Bridge Equation Model” 
indicates the Bridge Equation Model using IIP, ITA and first factor extracted with sparse 
principal component analysis (SPC1). 

“Forecast Combination” indicates the combination of Combined MIDAS, Bridge Equation 
Model and JCER weighted with simple average. 

 
 
 
 
 
 
 
 
 
 
 
 
  

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2013Q1 2013Q3 2014Q1 2014Q3 2015Q1 2015Q3 2016Q1 2016Q3 2017Q1 2017Q3 2018Q1

actual value Bridge Equation Model

Combined MIDAS Forecast Combination

q/q % chg.



45 
 

Figure 3: Benchmarking model out-of-sample forecasts (year-on-year 

growth rates) 

 
Note: “Predicted values” indicates the out-of-sample forecasts produced by the Fernández method 

with the preliminary variable of the IAA and time trend. 
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Figure 4: Benchmarking model quarterly fitted values (level) 

 

 
Note: “Quarterly predicted values” indicates the fitted values produced by the Fernández method 

with the preliminary variable of the IAA and time trend. The fitted values from 2000 to 2016 
are in-sample values, and the fitted values from 2017 are out-of-sample values. 
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Figure 5: Benchmarking model quarterly fitted values 

(quarter-on-quarter growth rates) 

 

 
Note: “Quarterly predicted values” indicates the fitted values produced by the Fernández method 

with the preliminary variable of the IAA and time trend. The fitted values from 2000 to 
2016 are in-sample values, and the fitted values from 2017 are out-of-sample values. 
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