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On Liquidity Shocks and Asset Prices

Pablo A. Guerron-Quintana Ryo Jinnai*

March 2019

Abstract

In models of financial frictions, stock market booms tend to follow adverse liquidity shocks.
This finding is clearly at odds with the data. We demonstrate that this counterfactual result
is specific to real business cycle models with exogenous growth. Once we allow for both
endogenous productivity and growth, this puzzling price dynamics easily disappear. Intu-
itively, the gloomy economic-growth outlook following the adverse liquidity shocks generates
a predictable and negative long-run component in dividend growth, leading to the collapse

of equity prices.

1 Introduction

The severity and widespread impact of the Great Recession has propelled substantial research to
better understand the interconnection between the financial sector and the aggregate economy.
One strand of this literature emphasizes the role of financial shocks affecting how easily investors
obtain funds for investment. Yet these models of financial frictions (Jermann and Quadrini (2012)
and Kiyotaki and Moore (Forthcoming)) have been often criticized because of their counterfactual
stock market dynamics (Shi (2015)). More precisely, these models tend to predict a stock market
boom following an adverse financial shock, clearly at odds with the data. To complicate matters,
the counterfactual asset price response is robust to a wide range of specifications such as nominal
rigidities, habit formation in consumption, and adjustment costs in capital or investment. This
prediction is troublesome not only because it is counterfactual but also because it arises precisely
at the heart of the transmission mechanism they feature. It is therefore crucial to correct these

models; otherwise, the reliability of the analysis based on them will be questioned.
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Jinnai gratefully acknowledges the financial support from the Ministry of Education, Culture, Sports, Science and
Technology of the Japanese Government through JSPS KAKENHI Grants (24330094, 16K17080, 16H03626, and
17H00985) and the Hitotsubashi Institute for Advanced Study, as well as the hospitality of the Bank of Japan
where a part of this research was conducted.



In this paper, we argue that this stock market anomaly is a consequence of the disconnect
between productivity and the financial shock. To support our claim, we construct an endogenous
productivity model with cash strapped investors. Specifically, we introduce a learning-by-doing
mechanism in an otherwise standard liquidity model, allowing for endogenous growth. In this
framework, an adverse liquidity disturbance has a long-lasting negative effect on the level of
macroeconomic variables. This prediction is consistent with recent empirical work documenting
that recessions associated with financial crises tend to be long and painful (Cerra and Saxena
(2008) and Jorda, Schularick, and Taylor (2014)). Because of the adverse long-run predictable
component in dividend growth associated with the collapse in liquidity, the stock market plunges
following the unfavorable shock as long as households have a large enough intertemporal elasticity
of substitution. The insight is similar to the one emphasized in the long-run risk literature in
finance (Bansal and Yaron (2004)).

2 Model

Our model is based on Shi (2015). The economy is populated by a continuum of households with
measure one. Fach household has a unit measure of members. At the beginning of the period,
all members of the household are identical. During the period, members are separated from each
other, and each member receives a shock that determines her role in the period. A member will be
an entrepreneur with probability = € [0, 1]; otherwise, she will be a worker in the period. These
shocks are i.i.d. among members and across time.

A period is divided into three stages: household’s decision making, production, and investment.
In the household’s decision stage, all members of the household are together and share their assets
that are s; units of equity claims. An equity is the ownership of a unit of capital. Aggregate
shocks to exogenous state variables are realized. Because all the members of the household are
identical in this stage, the head of the household evenly divides the assets among the members.
The head of the household also gives contingency plans to each member as follows. If one becomes
an entrepreneur, she invests 4;, consumes ¢y, and makes necessary trades in the stock market so
that she holds sf,; units of equity claims at the end of the period. In contrast, if the member
becomes a worker, she supplies /; units of labor, consumes c}’, and makes necessary trades in the
stock market so that he or she holds s}, ; units of equity claims at the end of the period. After
receiving these instructions, the members go to the market. They remain separated from each
other for the rest of the period.

At the beginning of the production stage, each member receives the shock whose realization
determines whether the individual is an entrepreneur or a worker. Competitive firms produce

final consumption goods y; using labor services [P and capital services kP with the production



technology
= A (RP)" (12)'

Here, « is the capital share, the superscript D indicates demand, and A; is the technology level,

which both households and firms take as given. Their first order conditions are standard;

a@:rt and (1—04)2—;):10,5,
where r; denotes the rental price and w; denotes the wage rate. After production, workers re-
ceive wage income, equity holders receive compensation for capital, and a fraction 6 of capital
depreciates.

Finally, the third stage in the period is the investment stage, where entrepreneurs seek finance
and undertake investment projects. An entrepreneur can transform i; units of consumption goods
into 4; units of new capital. Consumption takes place in this stage too. After these events, the
period ends. The members of the household get together, their identities are reset, and the new
period begins.

The instructions given to the members of the household have to satisfy a number of constraints.

First, the budget constraints have to be satisfied;
Cf"—it = Tt5t+qt ((]_ —6) St+it —5§+1) (].)

and
C;U =T8¢+ ((1 - 6) St — S%U_i_l) + wtlt (2)

where ¢; denotes the equity price. Equation (1) is the constraint entrepreneurs face and equation
(2) is the constraint workers face. Because the members of the household share their assets at the

end of the period, the following identity holds;
S = iy + (1— ) st (3)

Crucial in the Kiyotaki-Moore model, there are frictions in the equity market. First, an
entrepreneur can issue at most 6i; of equity against the new capital. In addition, she can sell at
most a fraction ¢, of existing capital in the market. Effectively, these constraints introduce a lower

bound to the entrepreneur’s capital holdings:
Sip = (L= 0)ir+ (1= ) (1—6) se. (4)
¢, is an exogenous random variable we call a liquidity shock. We assume that it follows

log (%) = pylog <¢t¢_1> + & (5)

3




where &, is an i.i.d. shock. A similar constraint applies to workers, i.e., s\ ; > (1 — ¢,) (1 — ) sy,
but we omit it because it does not bind. Specifically, workers are net buyers of equities in the
equilibrium we are interested in, meaning that s}, > (1 — ) s; always holds. There are non-
negativity constraints for i, l;, ¢f, ¢, and s}, but we omit them too because they do not bind
either.

The head of the household chooses instructions to its members to maximize the value function
defined as

v (st; Ky, ) = max
c,i,l,s

eN1— - w _ 1- _
{7‘[‘<Ct> P11 (1= [ (1—=1)" " -1 + OE, [v (5t+1;Kt+1,¢t+1)}

1—p L—p
(6)
subject to (1), (2), (3), and (4).
Rewriting the constraints is helpful to understand the household’s problem. First, multiplying
mand (1 — ) to (1) and (2) respectively, adding them up, and then substituting (3), we obtain

me; + (1 —m) ¢ + qusepr =15 +qe (1 —0) s + (1 — ) wly + 7 (¢ — 1) iy (7)

This is the standard budget constraint at the household level except for the very last term
7 (q — 1) ;. The term is zero if ¢ is equal to one. If ¢, exceeds one, however, i; relaxes the
budget constraint because the household makes money out of investment in this case. But there
is a limit on this activity because funding is limited. Specifically, substituting (1) into (4), we find

the upper bound on i;;
i (1 —0q) < risp+ dq0 (1 —06) sy — . (8)

The left-hand side is the minimum cost entrepreneurs have to self-finance to conduct investment i;.
They are smaller than i; because entrepreneurs can issue #i; of equity against the new capital. The
right-hand side is the maximum liquidity available to entrepreneurs after consumption. Hence,
(8) is the feasibility constraint for investment.

We can draw a few important implications from (7) and (8). First, if the price of capital ¢, is
equal to one, the optimal investment level is not uniquely pinned down. Instead, any level of i,
satisfying (8) is optimal. This is because i; disappears from the budget constraint if ¢; is equal
to one, and hence, its choice becomes irrelevant to the household’s optimization but only s;,; is.
Intuitively, investment and equity purchase are perfect substitutes because the price of capital is
identical to the marginal costs of creating new one. In this case, the inequality constraint (8) does
not bind in general.

However, if the price of capital exceeds one, the inequality constraint (8) must be binding
at the optimum. If not, the household can increase i; without violating (8), which loosens the
budget constraint, allowing the household to increase utility by increasing ¢f and ¢}’ for example.

Intuitively, if the household is able to make money out of investment, they utilize this opportunity



up to the limit.

Finally, the capital price ¢; is strictly less than the inverse of 6 in the equilibrium. If not,
the inequality constraint (8) holds for an arbitrarily large positive i; because (1 — 6¢g;) < 0 holds.
Because ¢; > 1 also holds, the household can relax the budget constraint (6) freely, resulting in
the violation of the market clearing condition.

As in the related literature, we will restrict our attention to the case in which the equilibrium
price of capital always exceeds one. Because the inequality constraint (8) always binds in this

case, we can combine (8) and (7), obtaining

i+ (1 — 7) ¢’ +qeseyr = 1ese+(1 — ) wily4-qe (1 — 6) s+

qt — e

7 TSt + ¢uqr (1 — 0) 8¢ — ¢

1 —0q, ~~ d
SN—— liquidity after consumption

)

The last term is crucial. It is a product of three terms; the fraction of entrepreneurs 7, the liquidity

liquidity services

held by entrepreneurs after consumption, and the fraction (¢ — 1) / (1 — 0q;), which Shi (2015)
calls liquidity services. The liquidity services are positive because 1 < ¢ < 1/6 holds. They
measure how much profits entrepreneurs can make using a unit of liquidity. Remember that they
can convert a unit of liquidity to 1/ (1 — 0q,) units of capital by investment with leverage, each of
which is worth ¢; in the market.

The optimization problem becomes simpler; the household chooses cf, ¢, l;, and s;41 to

maximize the utility function (6) subject to (9). The optimality condition for labor supply is

W
Cy

1—1

n = Wt.

The left-hand side is the marginal rate of substitution of leisure for consumption. If it is equal to
the real wage, workers do not have incentive to readjust time allocation locally.

The optimality condition for the intra-household consumption allocation is

e\—p _ g —1 w\—p n(1-p)

@ = e @t
—— — Uq; N ~ v
marginal utility from cg ~~—— marginal utility from cy’

liquidity services

Interestingly, there is a wedge between entrepreneur’s marginal utility and worker’s. Specifically,
the entrepreneur’s marginal utility is larger. The reason is clearly seen from the budget constraint
(9). The entrepreneur’s consumption not only increases the left-hand side but also decreases the
right-hand side, while the worker’s consumption only increases the left-hand side. In this sense,
the entrepreneur’s consumption is more expensive than the worker’s from the household’s point of

view. This is because the entrepreneurs can make money using liquidity. Hence, their consumption



involves the opportunity costs for giving up this profit.

The Euler equation for investment is

Cw —p 1 _ l 7](1*9) — 1
o =E |3 iwl ot Ter1 + (1 —0) quyr + WL Tyl + Qr1Piin (1-9)
Ct 1—1 , 1—0q |~ ~

~~ liquidity provision
stochastic discount factor

This equation determines the equity price. We see the worker’s marginal utilities in the stochas-
tic discount factor because they are marginal investors. The parenthesis in the right-hand side
summarizes the benefits of holding equity, among which the last term is for providing liquidity to

entrepreneurs.

2.1 Equilibrium

The competitive equilibrium is defined in a standard way. Market clearing conditions for final

goods, factor services, and equity are

7+ (1—m) e + iy = A, (KP)* (1P)' ™,

P =01 -7,
ktD — Kt,
and
Kt = St

for all ¢. Capital accumulation rule is Ky = (1 — 8) Ky + miy.

2.2 Sources of Growth

We compare results under two alternative assumptions regarding the source of growth. In one, we

assume that the technology level A; grows at a constant rate:
—ant
At = AO (71 ) ;

where Ay is a scale parameter and 7 denotes the (gross) growth rate of the economy along the
balanced growth path. This is a standard assumption in the business cycle literature (King,

Plosser, and Rebelo (1988)). In the second case, we assume that the level of A; is endogenous:

At — AO (Kt)l_a .



We interpret this assumption following Arrow (1962), Sheshinski (1967), and Romer (1986);
namely, knowledge is not only a by-product of investment but also a public good that anyone

can access at zero cost.! Under this assumption, the production function is written as
Y, = AgK, [(1 — ) 1] .

The long-run tendency for capital to experience diminishing returns is eliminated. As such, the

economy can grow in the long run.

3 Calibration

Because the model has no closed-form solution, we solve it numerically. Table 1 reports our
calibration. A period is a quarter of a year. We set the discount factor at § = 0.994, which
is standard in the literature. We set the fraction of investors at m = 0.06, the capital share
at @ = 0.36, and the persistence in liquidity shock at py, = 0.9, which are standard choices in
the literature (Kiyotaki and Moore (Forthcoming) and Shi (2015)). The relative risk aversion
parameter is set at p = 1/1.85 so that the implied intertemporal elasticity of substitution (the
inverse of p) is both consistent with the value used in the macro-finance literature (Kung and
Schmid (2015)) and within the credible set estimated by Schorfheide, Song, and Yaron (2018). We
set in the exogenous growth model the growth rate along the balanced growth path at v = 1.004
and normalize the scale parameter by Ay = 1. We calibrate the scale parameter Ay in the
endogenous growth model so that the implied growth rate along the balanced growth path is
1.004. Following Kiyotaki and Moore (Forthcoming), we assume that the fraction of new equity
0 is equal to the steady state resalability ¢. We calibrate ¢, the curvature in leisure in the utility
function 7, and the capital depreciation rate ¢ using the following targets: the aggregate hours of
work in the steady state (0.25), the ratio of capital to annual output in steady state (3.32), and

the ratio of annual investment to capital in steady state (0.076).

4 Results

The solution method is standard. Many variables in our model are non-stationary, but their
ratios to the trend term are stationary along the balanced growth path. After finding the steady
state values of these ratios, we linearize the system of equations characterizing the equilibrium
around them, then computing impulse response functions (Fernandez-Villaverde, Rubio-Ramirez,

and Schorfheide (2016)). The appendix provides a detailed discussion.

LOur specification follows chapter 4.3 in Barro and Sala-i-Martin (1999). We use the learning-by-doing structure
for simplicity. Similar results would follow from more involved endogenous productivity models such as love-for-
varieties or Schumpeterian.



Table 1: Parameters and Calibration Targets

Value
Parameter END EXO LOG Calibration Target
(; discount factor 0.994 0.994 0.994 Exogenously chosen
p; relative risk aversion 1/1.85 1/1.85 1 Exogenously chosen
m; fraction of entrepreneurs 0.06 0.06 0.06  Annual fraction of investing firms = 0.24
7); curvature in leisure utility = 2.41 2.41 2.45 Hours of work = 0.25
«; capital share 036  0.36  0.36 Labor income share (1 — ) = 0.64
0; capital depreciation rate 0.015  0.015 0.015 Annual investment/capital = 0.076
Ag; scale parameter 0.183 1 0.182 Normalization; steady-state growth = 1.004
v; steady-state growth - 1.004 - Steady-state growth = 1.004
¢; steady-state resalability 0.10 0.10 0.16  Capital stock/annual output = 3.32
Pg; persistence in resalability 0.9 0.9 0.9  Exogenously chosen
0; fraction of new equity 0.10 0.10 0.16 Set equal to ¢

Figure 1 reports impulse response functions to an unanticipated drop in liquidity. The top panel
shows the evolution of the shock; ¢, is in the steady state in period 0, but drops unexpectedly in
period 1 by 10% relative to its steady state value. No other shocks hit the economy thereafter.
Liquidity recovers to the steady state over time, almost fully returning to its pre-shock level in 25
quarters. This is the input to the model in the following exercise.

The other four panels plot the impulse response functions of output y;, aggregate consumption
e + (1 —m) ¢y, investment i;, and labor ;. The solid blue lines show the responses in the
endogenous growth model, and the red dashed lines show responses in the exogenous growth
model. We plot responses in levels; for example, the second panel plots the percentage deviation
of the output level after the shock from the output level without the shock.?

The negative liquidity shock is generally contractionary in the short run, reducing output,
investment, and labor. The only exception is consumption, which rises initially.> These results
are robust to the source of growth; the impulse response functions in period 1 are almost identical
in both the endogenous and the exogenous growth models.

However, the responses are similar only in the short run. In the exogenous growth model, all
variables in the figure come back to zero, meaning that the liquidity shock generates short-run
fluctuations around the trend but the trend itself is unaffected. Yet in the endogenous growth
model, the impulse response functions of output, consumption, and investment do not come back

to zero, but shift down to a lower level by about 2 percentage points. These persistently adverse

2Let y; denote the level of output in period t in the benchmark scenario in which ¢, evolves as plotted in the
top panel of Figure 1. Let 7; denote the level of the output in period ¢ in the alternative scenario in which no shock
hits the economy and therefore ¢, is always in the steady state value. We plot 100 x log (y; /7+) in the second panel
of Figure 1.

3A few ways to overturn this prediction are known in the literature such as nominal wage rigidities (Ajello
(2016)), insight from the news shock literature (Guerron-Quintana and Jinnai (Forthcoming)), and investment
adjustment costs (Shi (2015)).



effects have an important consequence for asset prices.

Figure 2 displays the asset price dynamics. We plot impulse response functions of both the
equity price ¢; (solid red line) and the aggregate stock market value defined as Stock; = ¢ K11
(solid blue line), both in the benchmark endogenous growth model (top panel) and the otherwise
identical exogenous growth model (middle panel). In the endogenous growth model, a negative
liquidity shock decreases both the equity price and the aggregate stock market value. In contrast,
the same variables move in the opposite direction in the exogenous growth model.

Loosely speaking, a bad liquidity shock in our endogenous growth model induces business-cycle
and long-run fluctuations. In the short run, “liquid” capital becomes scarce, so that its price must
rise to restore equilibrium (recall that households value capital in part because of its liquidity
services). However, the adverse liquidity shock, via the learning-by-doing channel, compresses the
economy and lowers dividends in the long run, thus reducing the demand for capital. This force
drives equity prices down. In our calibration, a large intertemporal elasticity of substitution tilts
the emphasis to the long-run feature, which leads to the drop in asset prices and the stock market
value.

To formalize this intuition, let’s take a closer look at the asset pricing equation. As shown in

the appendix, the following equation holds both in the endogenous and exogenous growth models:

Stock, — F ) " (1=l e G — 1 :
OCRy = It ﬁ 0 Y1 + T Ciy 1 — T4 + StOth+1
Cy 1—1 1 —0gi11

~~ - ~~ -
stochastic discount factor dividends

(10)
This equation says that the stock market value is the present-discounted value of the future
dividend stream, which includes the benefit of relaxing entrepreneur’s resource constraint. Taking

a log-linear approximation in the endogenous growth model, we find

StOth Kt/KO
) = 11
g(vtStocko) og( ~ (11)
~~ N
IRF realized change in trend
g K i/ K
HL=51) 3 (00 B 1 - gyt (K2
j=1

(. J/

expected change in trend

+Z (ﬁ’Yl_p)jil By [cycle, ],
=1

~
cyclical fluctuations around trend
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where cycle, ; is defined as

& l Lo
cyclesy; = plog( e )—n(l—p)l_llog( s ) (12)

i1 leyj

) (1)

q=1 ne _
Ozy+7rlec e Y

W&ée e .
(1= ) ———0log () + (L + 00 oq (92
170(1 — ce g—1 1—40q q

—(1-py"") — fl ——log (Zti> .

ay + 7T179q

The left-hand side of equation (11) is the impulse response function of the stock market value
in period ¢. The right-hand side decomposes it into three distinct contributions: realized and
expected changes in the endogenous trend term, and the contribution of cyclical fluctuations
around the trend. Equation (12) shows the components of the cyclical term. In this equation,
variables with a hat indicate that they are divided by the endogenous trend term; for instance, 9,
denotes g, = y;/K;. Variables without time subscript denote their steady state values.

Each of these contributions is plotted in Figure 2 in colored bars. In the endogenous growth
model, the contributions of the cyclical term to asset prices are positive, but the trend contributions
push the stock market into negative territory. In contrast, the exogenous growth model lacks these
counterforces. Consequently, the aggregate stock market value is entirely driven by the cyclical
term, resulting in a stock market appreciation in the short run. This is a robust prediction in
liquidity models with exogenous growth as discussed at large in Shi (2015).*

The forces reducing asset prices are fluctuations in the endogenous trend component. Expec-
tations play a key role in the short run, particularly so in period 1. According to equation (11),
the stock market response in period 1 is affected by expectations about the future trend as follows:

00
(=) (L= 577) 30 (677) "' By fog (2751) (13)

j=1
The terms in the weighted sum are the log deviations of the future capital level (K1) from the
one realized along the balanced growth path (77K;). Because the adverse financial shock hurts
investment, this term is negative. Since we calibrate the inverse of the intertemporal elasticity of
substitution (IES) at p = 1.857!, the whole expression is negative, which pushes down the asset

price in period 1 (the argument readily extends to ¢t > 1).

For the previous argument to go through, the IES (= 1/p) must be bigger than 1. Although

4Del Negro, Eggertsson, Ferrero, and Kiyotaki (2017) show that the interaction of a zero lower bound (ZLB) on
interest rates and nominal rigidities restores the asset price dynamics. However, the puzzle stands still outside the
ZLB or in real models.
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this follows mechanically from the future trend element, the role of the TES in equation (13) hides
some subtleties brought about by the production structure in our model. To see this, note that a
liquidity contraction affects both the dividend and the stochastic discount factor elements of the
stock market value. Let’s consider dividends, which are the first three terms in the parenthesis in
the right-hand side of equation (10). Their impulse response function (not depicted) is similar to
that of output plotted in Figure 1. Hence, dividends sink persistently after a negative liquidity
shock. If the stochastic discount factor were constant, the stock market value would decrease with
this channel alone.

However, the stochastic discount factor is endogenous in general equilibrium. In our model, it

e NP, 0\ P)
SDF, ;= (ﬂ) <¢)

C%U l—lt

is

for j > 1, which has intertemporal substitutions both in consumption and leisure. Because of
growth, the consumption ratio is more important. The impulse response function of the worker’s
consumption (not depicted) is similar to that of aggregate consumption plotted in Figure 1. As a

result, it monotonically decreases after period 1, satisfying

c? c?
log [ -] > 1o S
. i (Vtcf)”)/ § (7”103 ’

Vv Vv
IRF in period t IRF in period t+1

Rearranging terms, we find .

ct’
for t > 1. This inequality implies that the worker’s consumption growth after a negative liquidity
shock is smaller than the growth rate along the balanced growth path (7). The stochastic discount
factor therefore increases, which means that the household discounts future dividends less heavily.
This change alone puts upward pressure on the stock market valuation.

Importantly, a higher IES weakens the discount factor channel. This can be seen by noting
that a higher IES makes households more willing to substitute future consumption for present
consumption if prices change. As a result, the equilibrium price does not move much when an
exogenous shock moves the equilibrium allocation. This is why the stochastic discount factor,
which is essentially the inverse of the shadow price of future consumption goods, becomes less
sensitive to a change in the consumption profile, leading to the weakening of the discount factor
channel.

In summary, there are two competing forces driving the dynamics of asset prices, one from the
dividends growth and the other from the stochastic discount factor, the latter of which is sensitive

to the value of p. To highlight this point, the bottom panel of Figure 2 plots the asset price

13



responses in the endogenous growth model with log utility (p = 1).5 Unlike the benchmark model,
the aggregate stock market value increases in the short run. Moreover, the contribution to asset
prices from the expected trend change vanishes, and the contribution from the cyclical terms rises
(the blue bars in Figure 2). This is because with a low IES, the discount factor channel operates
strongly, putting upward pressure on the asset prices.

The importance of the intertemporal elasticity of substitution for asset price dynamics is fa-
miliar in the finance field. Most closely related to our work, the long-run risk literature (Bansal
and Yaron (2004)) emphasizes that the IES has to be large to obtain a reasonable stock market
response to a change in growth prospects. While the mechanism is similar, we provide a con-
crete interpretation of long-run risk in a production economy. That is, the long-run risk is an
endogenous outcome caused by financial shocks. Our findings might be of interest in the literature

searching for a structural origin of the long-run risk.
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5 Appendix (Not for Publication)

5.1 Model Summary

The equilibrium is summarized by the following equations;

_ -1 _ _
)7 = (14 ) (P -y,

w
C

1—1

Yt
(1 — 7T) lt7

U = (-«

q = By

&+ (1—0q,) i = oy, + ¢,q: (1 — 8) Ky,
yr = Ay (K)“[(1 —7) lt]l_a,
wei + (1 —m) ¢ + iy = yy,

and
Kt+1 = (1 — 6) Kt + 7T’it.

5.2 Exogenous Growth Model

We assume Ay = Ay (v'7%)". The variables are detrended as follows.

~e\— q_l AW\ — -
@07 = (14 ) @ -y,

¢t U
—(1—a)—2t
1—lt ( Oé)(l—’ﬂ')lt7

Ui

Ky 1=0g11 \ K.y
&+ (1= 0q,) iy = gy + ¢yqr (1 — 6) Ky,
g =40 ()" 10— m) ),
7+ (1 — ) &8 + iy = G,

and
")/Kt_i_l = (1 — 6) Kt + W%t.

where variables with hat denote the original variables divided by 7, for example, ¢f = ¢¢/~".
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5 (c};jrl)p (1 — lt+1)n(1p) <a Yt+1 (1= 8) qur+7 Giv1— 1 <a Yer1 + gt (1 5)))
— —0) i1 41 — ;
¢y’ 1—1 Ky ’ 1—0q1 \ K e

ow P 1—1 n(1-p) » -1 1
3 ( 2;1 7) ( : tl+1) (a Jitl | (1—8)qur + 7 dt+1 (a Z{tﬂ + 1y (1— 6))) ’
"



The following parameters are exogenously chosen: § = 0.994, 7 = 0.06, a = 0.36, v = 1.004,
and Ay = 1. The ratio of annual investment to capital in the steady state is set at 47/ K = 0.076.

Depreciation rate of capital ¢ is found as

147
S=14+-"0_ .
tix

known

Aggregate hours of work in the steady state is set at (1 — 7)1 = 0.25. Hours of work per worker

in the steady state is found as
1
l .

S 1l—7

(1—m)L.
known

The ratio of capital to annual output is set at K/ (43) = 3.32. Steady state output is backed out

% a
:l;: - 1—m)l.
(%) am

g
—~
known

from

Other steady state values are backed out as follows.

and
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5.3 Endogenous growth model

We assume A; = Ay (Kt)l_a. The variables are detrended as follows;

-1
e = D R

1— 9qt
¢t Ui
—(1—q)—2
nl—lt ( Oé)(l—’ﬂ')lt7
G 11— lia n=r) N Qry1 — 1 N
q =B B — - i1+ (1 —=0) g + 71— (Oé?/t+1 + G104 (1 — 5)) ;
Cy 1-—1 1 —0qi11
&+ (1—0g) iy = afe + g0 (1 — 6),
7 = Ao [(1 - 7T) lt]lia )
Wéf -+ (1 — 7T> é;;u + 'ﬂ'%t = ﬂt,
and

vy =1— 6+ miy.

where 7, = K;1/K,; and hat variables denote the original variables divided by K, for example,
& = /K.

The following parameters are exogenously chosen: [ = 0.994, 7 = 0.06, a = 0.36, and
v = 1.004. The ratio of annual investment to capital in the steady state is set at 4mwi;/K;|ss. =

477 = 0.076. Hence
- 0.076
C A4rn
——

known

0 is found as
b=14+mt—g.
k
Aggregate hours of work in the steady state is set at (1 — )l = 0.25. Steady state individual
hours of work in the steady state is backed out from
1
l —

= 1—m)l.
- (1-7)
————

known

The ratio of capital to annual output is set at K;/ (4y;) |s.s. = 1/ (43;) |s.s. = 3.32. Hence

= (1) (5)
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Ag=gl(1-—my~".
—_—

known

The following equations are solved for ¢, ¢¥, ¢, n, and ¢ = 0;

it ao(1-),

E+(1—9¢q)i=ay+oq(l—0),

qg=p6()" (Oé@+(1—5)q+7rq

and
T+ (1—m) e’ +7mi=7y.

5.4 Asset pricing equation

The Euler equation is

3 (C;U“)_p <1 — lt“)n(l_p) <a Yo 4 (1= 8) gy + w2 L <a Pl Gt (1 6)))
—= - 1 i1 - :
cf 1—1 Ky " 1 —0q1 \ K M

Multiply K;.1 to both sides, we find

5 (C;uH)*p (1lt+l>n(1p)
Stock, = E, xa 711_“
(ayt+1 + (1 = 0) a1 K1 + 74 (ayt—H + G141 (1 —0) Kt+1))

1—9qt+1

g = By

Because ¢§ + (1 — 0¢;) iy = oy + ¢,q: (1 — 6) K, holds in equilibrium, substituting and rearranging

we obtain

- Cih 1=l Hi=e) Qi1 — 1 .
Stock; = Ey |0 QYpy1 + T————Cy — Wiy + Stock,q | | -

c’ =1 1 —0gi41
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