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Abstract

This paper examines the “don’t know” responses for questions concerning inflation
expectations in the Tankan survey. Specifically, using machine learning techniques,
we attempt to extract “don’t know” responses where respondent firms are more likely
to “know” in a sense. We then estimate the counterfactual inflation expectations of
such respondents and examine the non-response bias based on the estimation results.
Our findings can be summarized as follows. First, there is indeed a fraction of firms
that respond “don’t know” despite the fact that they seem to “know” something
in a sense. Second, the number of such firms, however, is quite small. Third, the
estimated counterfactual inflation expectations of such firms are not statistically
significantly different from the corresponding official figures in the Tankan survey.
Fourth and last, based on the above findings, the non-response bias in firms’ inflation
expectations likely is statistically negligible.
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1 Introduction

Surveys often include an option of “don’t know” to respond to questions. Imagine the

following question:

Question : What country do you think will win the 2022 FIFA World Cup?

Suppose that there are two types of responses : “Brazil” and “don’t know.” These are

observationally different. However, people responding “don’t know” might be thinking

that Brazil is the most likely to win, but it is too uncertain. On the other hand,

people responding “Brazil” may not have much confidence in their answer. This means

that although the responses of “don’t know” and “Brazil” are observationally different,

inherently they might not be that different at all.

This paper examines the response of “don’t know” in relation to the question concern-

ing inflation expectations in the Short-term Economic Survey of Enterprises in Japan

(Tankan). In the Tankan survey, there are a significant number of responses of “don’t

know” in relation to the question which requires respondents to provide their own fore-

casts for one year, three years, and five years ahead, as pointed out by Uno, Naganuma,

and Hara (2018a) and Coibion, Gorodnichenko, Kumar, and Pedemonte (2018). For ex-

ample, more than 40 percent of firms respond “don’t know” with regard to their forecast

for five years ahead.

We think that the response of “don’t know” in relation to the question concerning

inflation expectations in the Tankan survey is similar to the example provided above.

That is, we think that some of the “don’t know” responses in the Tankan survey can

be treated as inherently similar to a quantitative answer. We therefore assume that

the “true” answer in such cases is not “don’t know” but a quantitative answer that

respondents did not have sufficient confidence in. Based on the example of the 2022

FIFA World Cup question, if a fraction of the “don’t know” answers can be regarded

as inherently the same answer as “Brazil,” we assume that the “true” answer of such

responses is “Brazil.” Note that we could alternatively assume that the “true” answer
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is “don’t know,” not “Brazil.” We discuss these assumptions in Section 4.

For the analysis, we divide “true” answers into two classes : “know” and “don’t know.”

Further, we make the following two assumptions : (1) observed “don’t know” responses

include responses where the unobserved “true class” is “know” (i.e., respondents have,

for example, quite a good idea about their inflation expectation for five years hence, but

they do not have sufficient confidence in their answer and choose “don’t know” instead);

and (2) observed “know” responses do not include responses where the unobserved “true

class” is “don’t know” (i.e., we assume that respondents that do not have a good idea

about their inflation expectation do not simply answer with a random number giving

the impression that they do “know” when they do not). Based on these assumptions,

we try to extract “don’t know” responses that are likely to fall into the “know” category

as the “true class” using machine learning techniques. In terms of machine learning, our

first assumption means that a fraction of instances labeled “don’t know” is mislabeled;

our second assumption means that instances labeled “know” are correctly labeled. To

deal with this setup, we employ the positive unlabeled (PU) classification developed by

Liu, Lee, Yu, and Li (2002), Liu, Dai, Li, Lee, and Yu (2003), and Elkan and Noto

(2008). PU classification attempts to learn a binary classifier while only having access

to positively labeled and unlabeled data.

In order to solve our PU classification problem, we combine two methods well-known in

machine learning: a support vector machine and a logistic regression classifier. Using

these methods, the “don’t know” responses in the Tankan survey are classified into

the two “true classes” : “know” and “don’t know.” We then estimate the counterfactual

inflation expectations for firms classified as “know” in terms of their “true class.” Finally,

based on the estimation results, we examine the size of the non-response bias in firms’

inflation expectations. Note that, in general, non-response bias is defined as the bias

caused by a situation where firms or households chosen for a survey are unwilling or

unable to participate. In this paper, we use the term “non-response” not only in this

general sense but also for the situation where firms have responded “don’t know.”

This paper contributes to the literature in two respects. First, we quantitatively exam-
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ine the non-response bias in firms’ inflation expectations. To the best of our knowledge,

no studies so far have examined the non-response bias in firms’ inflation expectations.

Our findings in this regard can be summarized as follows: (1) there is indeed a frac-

tion of firms that respond “don’t know” even though they seem to “know” in a certain

sense; (2) the number of such firms, however, is quite small; (3) the estimated coun-

terfactual inflation expectations of such firms are not statistically significantly differ-

ent from the corresponding official figures in the Tankan survey; and (4) based on the

above findings, the non-response bias in firms’ inflation expectations likely is statisti-

cally negligible. These figures provide a quantitative reply to the qualitative criticism by

Coibion, Gorodnichenko, Kumar, and Pedemonte (2018) that the Tankan survey has a

non-response bias.

The second contribution of the paper is that we use machine learning techniques to

address the issue of non-response bias. Statistical authorities and some statisticians have

discussed this issue for a long time. In particular, for statistical authorities, controlling

for non-response bias has played an important role in improving the quality of official

statistics. Yet, so far, the innovative techniques developed in the field of machine learning

have hardly been applied to practical problems such as non-response bias and missing

value imputation, which are two sides of the same coin. Machine learning has been

one of the fastest growing fields in statistical analysis in recent years, and applying the

innovative methods developed in this field can potentially greatly help in understanding

the issue of non-response bias.

The remainder of the paper proceeds as follows. Section 2 provides an overview of

the related literature. Section 3 describes the data used. Section 4 formulates the

problem addressed in this study as a PU classification problem. Section 5 uses a natural

experiment to examine whether our formulation of the problem as a PU classification

problem is valid. Section 6 examines our algorithms to discover the “true class,” while

Section 7 presents the results. Based on the results, Section 8 presents our estimates of

the non-response bias. Section 9 concludes.
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2 Related Literature

This paper aims to address the problem of non-response bias in a survey using machine

learning techniques. The paper therefore primarily relates to studies on non-response

bias and missing value imputation, which are two sides of the same coin. Another related

field is the PU classification problem, since we apply an algorithm developed to solve

the PU classification problem to address non-response bias. This section provides an

overview of the related literature on non-response bias and missing value imputation,

while the related literature on the PU classification problem will be summarized in

Subsection 6.1.

A key study on non-response bias and missing value imputation is that by Little and

Rubin (2002), who highlight the importance of missing data mechanisms such as missing

completely at random (MCAR), missing at random (MAR), and missing not at random

(MNAR). Based on Little and Rubin (2002)’s argument, statistical authorities have ex-

hibited a keen interest in non-response bias and missing value imputation to improve

the quality of statistics. For example, economists at the Bank of Japan have proposed a

way to impute missing values for annual projections of, for example, sales and fixed in-

vestment using the microdata from the Tankan survey (Utsunomiya and Sonoda (2004);

Hirakawa and Hatogai (2013)). Moreover, the Cabinet Office has examined the non-

response bias in the Machinery Orders Statistics (Cabinet Office (2017)). Meanwhile,

several academic researchers have used more sophisticated methods to estimate non-

response bias using microdata provided by the Institute of Statistical Mathematics, a

government-affiliated research institute (Hoshino (2010); Tsuchiya (2010)).

However, whereas these previous studies implicitly assume that there exist true values

which should be imputed for the missing values, we do not assume the existence of true

values and explicitly allow cases where there are no true values to impute. This can be

viewed as a generalization of the previous studies.

At the same time, to the best of our knowledge, this paper is the first attempt to

quantitatively evaluate the non-response bias in firms’ inflation expectation. Recently,

4



Coibion, Gorodnichenko, Kumar, and Pedemonte (2018) have argued that the mean

of firms’ inflation expectations in the Tankan survey is biased because a considerable

number of respondents non-randomly choose the response “don’t know.” We provide a

quantitative reply to this qualitative criticism of the Tankan survey.

3 Data

The data used in this paper consist of the confidential microdata gathered by the Bank

of Japan’s Research and Statistics Department for the Tankan survey, a large-scale firm-

level survey. This is the same data set as used by Uno, Naganuma, and Hara (2018a,b).

The Tankan gathers firms’ inflation expectations with regard to two types of prices :

general prices and output prices. The question with respect to general prices is phrased

as follows: “What are your institution’s expectations of the annual % change in gen-

eral prices (as measured by the consumer price index) for one year ahead, three years

ahead, and five years ahead, respectively? Please select the range nearest to your own

expectation from the options below.” Respondents are required to choose their responses

from the following ten options : (1) around +6% or higher, (2) around +5%, (3) around

+4%, and continuing in one-percentage point intervals until (10) around −3% or lower.

If respondents have no clear view on the outlook for general prices, they are asked to

select one of the following three reasons : (11) uncertainty over the future outlook is

high, (12) not really conscious of inflation fluctuations because they should not influence

the strategy of the institution, and (13) others. In this paper, “don’t know” responses

(hereafter DK instances) are defined as responses (11), (12) or (13),1 while “know”

responses (hereafter non-DK instances) are defined as responses (1) to (10).

Regarding output prices, the question is “What are your institution’s expectations of the

rate of price changes in your mainstay domestic products or services for one year ahead,

three years ahead, and five years ahead, respectively? Please select the range nearest to

your own expectation from the options below.” Respondents are again required to make

1 This means that we assume that responses (11), (12), or (13) are identical. This assumption does
not affect our results.
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responses from the following ten options : (1) around +20% or higher, (2) around +15%

and more, and continuing in five-percentage point intervals until (9) around −20% or

lower, and (10) don’t know. DK instances are defined as response (10), while non-DK

instances are defined as responses (1) to (9).

Each quarterly Tankan survey covers around 10,000 firms selected from a population

of approximately 210,000 firms with paid in capital of at least 20 million yen. The

question on inflation expectations is included in the survey from March 2014 onwards.

Our observation period therefore runs from March 2014 to September 2017. The Tankan

data are an unbalanced panel in which there is a core of firms that have been surveyed

since the start (May 1974), while some have dropped out because they fell below 20

million yen in paid in capital and/or went bankrupt. To maintain the sample size, firms

are newly added every two or three years. During our observation period, about 1,000

firms were added in March 2015.

4 Problem Formulation

This paper attempts to uncover the unobservable “true class” (“know” or “don’t know”)

for DK instances in the Tankan survey. This task can be formulated as a PU classification

problem, which is one of the binary classification problems developed by Liu, Lee, Yu,

and Li (2002), Liu, Dai, Li, Lee, and Yu (2003), and Elkan and Noto (2008). In a PU

classification problem, binary classifiers are trained on data sets with only positive and

unlabeled instances. Training a classifier on positive and unlabeled data, as opposed to

on positive and negative data, is an issue of great importance, because in practice the

lack of negative instances is quite common. For example, to identify a person’s favorite

website, one could use websites the person has bookmarked as positive instances and all

other websites as unlabeled ones.

Following the notation used by Elkan and Noto (2008), we set three random variables :

x, y, and s. The k-dimensional vector, x = (x1, x2, . . . , xk), denotes the characteristics of

firms. Let y = {1, 0} and s = {1, 0} be the binary labels “know” and “don’t know.” We
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assume that the variable y is an unobservable variable and call it the “true class.” The

variable s represents the observed response in the Tankan survey. Specifically, instances

with s = 1 and s = 0 represent non-DK instances and DK instances, respectively.

Next, we make the following two assumptions. The first is that the DK instances contain

a fraction of mislabeled instances. Using the term contamination, as in Mordelet and

Vert (2014), the DK instances are assumed to be contaminated. This can be written as

Pr(s = 0 | x, y = 1) > 0. (1)

Note that we do not make any assumptions as to which DK instances are mislabeled.

In other words, we do not make any assumptions on the sample selection mechanisms,

Pr(s = 1 | y = 1), meaning that Equation 1 allows the sample selection bias first

discussed by Heckman (1979).

The second assumption is that the non-DK instances are uncontaminated. This can be

written as

Pr(s = 1 | x, y = 0) = 0. (2)

Survey respondents (firms) may have an incentive to answer “don’t know” to the ques-

tions on inflation expectations even when they have a clear view, since they may be

concerned about revealing private information through their answer. In contrast, when

firms have no clear view on inflation expectations, they do not have an incentive to pro-

vide a quantitative answer. Thus, it is unlikely that our second assumption, Equation

2, is too strong.

Based on the two assumptions, when s = 1 it is certain that y = 1, but when s = 0,

then either y = 1 or y = 0 may be true. Next, let UP be the set of instances identified

as y = 1, and let UN be the set of instances identified as y = 0. The first task is to

uncover the “true class” (y = 1 or y = 0) for the DK instances (s = 0). The second task

is to estimate the counterfactual inflation expectations for firm j classified into the set

UP . Finally, the third task is to evaluate the magnitude of the non-response bias based

on the estimation results.
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5 Validity of Our Problem Formulation

This section examines the validity of our problem formulation presented in the previous

section. Specifically, we propose a natural experiment to identify mislabeled instances,

i.e., instances with y = 1 and s = 0. The results of the experiment show that our first

assumption, Equation 1, is empirically supported.

5.1 A Natural Experiment

In order to conduct the Tankan survey, the Bank of Japan’s Research and Statistics

Department keeps various kinds of information, such as the location of firms’ head of-

fice, their main products/services, contact persons, and so on. In this paper, we treat

changes in the contact person as a natural experiment. As is well known among sta-

tistical authorities, a change in the contact person can occur for various reasons, such

as retirement, transfer, change of the department responsible for cooperating with the

statistical authorities, and so on.

The treatment, a change in the contact person, can be regarded as being independent

of the “true class” of a firm’s response with regard to inflation expectations denoted by

the variable y. For example, imagine that the outlook for oil prices becomes extremely

uncertain due to an increase in geopolitical risk. In this situation, it may be difficult for

some firms to form a clear view on future inflation. That is, a state transition from the

state “know” (y = 1) to the state “don’t know” (y = 0) can occur due to the increase in

geopolitical risk. However, the state transition is independent of a change in the contact

person. The reason is that the change in the contact person obviously does not affect

geopolitical risk and, conversely, it is unlikely that a change in geopolitical risk leads to

the retirement or transfer of the contact persons. Therefore, the treatment is likely to

be independent and possibly random.

Following the notations in Section 4, the state transition from the state “know” at time
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t− 1 to the state “don’t know” at time t can be described as follows:

Pr(yt = 0 | xt, yt−1 = 1, zt = 0) = Pr(yt = 0 | xt, yt−1 = 1, zt = 1) (3)

where t represents the survey period and z = {1, 0} is a binary label which represents

whether the contact person changed or not. The assumption that the variable z is

independent of the “true class” denoted by y ensures this equality.

Suppose that Equation 1 does not hold, i.e., Pr(s = 0 | x, y = 1) = 0. Then the response

in the Tankan survey, variable s, is equal to the “true class,” suggesting that

Pr(st = 0 | xt, st−1 = 1, zt = 0) = Pr(st = 0 | xt, st−1 = 1, zt = 1). (4)

As for the reverse direction, suppose that Equation 4 does not hold; in that case, Equa-

tion 1 holds. This implies that we can validate whether Equation 1 holds by comparing

the transition probability from the state “know” to the state “don’t know” in the case

that the contact person changed to the probability in the case that the contact person

remained.

5.2 Results of the Experiment

In this subsection, we report the results of the experiment. In our natural experiment,

the definition of a change in the contact person is crucial. Here, taking advantage of

the Tankan survey, which collects detailed information about contact persons, we define

a change in the contact person as the case in which the job title of the contact person

remains unchanged but the name of the contact person changes. For example, a switch

from chief accountant A to chief accountant B falls under this definition, but a switch

from chief accountant A to treasurer C does not, so that such a change is excluded from

our experiment. This makes the treatment, the variable z, independent of the “true

class” denoted by the variable y.

The results of the experiment are presented in Table 1. Two results in the table stand

out. First, in the case that the contact person changed, the estimated state transition
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probabilities from the state “know” to the state “don’t know” are statistically signifi-

cantly higher for all time horizons and for both general prices and output prices than

in the case that the contact person remained unchanged. For example, with regard to

general prices for one year ahead, the estimated probability rises from 1.7 percent in the

case that the contact person remained unchanged to 3.2 percent in the case that the

contact person changed.

Table 1: Estimated state transition probabilities from state “know”
to state “don’t know”

General prices
1-year ahead 3-year ahead 5-year ahead

Treatment (z = 1) 0.032 0.059 0.061
[3792] (0.027,0.037) (0.052,0.067) (0.053,0.069)

Control (z = 0) 0.017 0.032 0.037
[142709] (0.016,0.018) (0.031,0.032) (0.036,0.038)

Differences 0.015 0.027 0.024

Output prices
1-year ahead 3-year ahead 5-year ahead

Treatment (z = 1) 0.021 0.042 0.051
[3792] (0.017,0.026) (0.036,0.049) (0.044,0.058)

Control (z = 0) 0.013 0.027 0.037
[142709] (0.011,0.016) (0.026,0.028) (0.036,0.038)

Differences 0.008 0.015 0.014

Notes : The 95% bootstrap confidence intervals are reported in brack-
ets. The resampling sizes for the treatment group and the control
group are 2,000 and 200, respectively. The numbers of observations
are reported in square brackets.

Second, the differences in the estimated probabilities between the two groups (treatment

and control) over longer time horizons and for general prices are larger than those for

shorter time horizons and output prices. For example, regarding general prices, the

difference between the two groups for five years ahead is 2.4 percentage points, while

that for one year ahead is 1.5 percentage points. Moreover, comparing the results for

general and for output prices for five years ahead, the difference of 2.4 percentage points

for general prices compares with a difference of 1.4 percentage points for output prices.

The results presented in Table 1 suggest that the variable z, which indicates whether

the contact person changed, correlates with the variable s, which denotes the response
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in the Tankan survey. Moreover, provided that the setting of our natural experiment

assuming that a change in the contact person is independent of a firm’s “true” answer

is correct, the results imply that a fraction of the DK instances departs from the “true

class.” That is, using the example presented in Section 1, the “don’t know” responses

partly include unobservable responses where “Brazil” is the “true” answer. Note that

we do not say anything about the case in which the “true” answer is “don’t know.” In

sum, the results of the experiment provide empirical support that Equation 1 holds but

are silent with regard to the other assumption represented by Equation 2.

6 Algorithm to Uncover “True Class”

In this section, we examine algorithms to solve our PU classification problem. Let

U = {UN , UP } and P = {h | sh = 1, yh = 1}.

6.1 Existing Algorithm

Basically, data set with only positive and unlabeled instances prevents the application

of supervised classification algorithms which require negative instances in the data set.

According to Yang, Liu, and Yang (2017), algorithms to solve PU classification problems

can be roughly categorized into the following four types. The first is algorithms in which

Pr(y = 1 | x) is directly estimated with some assumptions on the sample selection

mechanism, Pr(y = 1 | s = 1) (Heckman (1979); Lee and Liu (2003); Elkan and Noto

(2008)). As mentioned in Section 4, we do not make any assumptions regarding the

sample selection mechanism, so this type of algorithms cannot be applied to our problem.

The second type consists of methods based on bootstrap sampling (Mordelet and Vert

(2014); Yang, Liu, and Yang (2017)). These methods treat unlabeled instances as nega-

tive instances and bootstrap sampling is performed on the set U . A data set consisting of

a random subset of U and positive instances is used to train base binary classifiers that

form an ensemble. These methods exploit the advantages of Breiman (1996)’s bagging

method. A key assumption of these methods is that potential positive instances in the
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set U and positive instances in the set P are generated from the same distribution. In

the context of this paper, this means that the non-response bias is assumed to be zero.

Therefore, we cannot employ methods of this type.

The third type are heuristic algorithms consisting of a “two-step strategy” (Liu, Lee,

Yu, and Li (2002); Liu, Dai, Li, Lee, and Yu (2003)). The first step of such algorithms

extracts a set of reliable negative instances, RN , which are likely to be negative based

on criteria from the set U , and uses positive instances in the set P and reliable negative

instances in the set RN to solve a PN classification problem. Note that in the first

step the PU classification problem is replaced by a PN classification problem. In the

second step, the classifier trained in the first step classifies unlabeled instances in the

set U . The instances classified as negative are added to the set RN , and the retained

positive instances and the newly classified reliable negative instances are used to train

the classifier again. The iteration converges when no instances in the set U \ RN are

classified as negative. Note that the “two-step strategy” does not make any assumptions

on the sample selection mechanism. Therefore, it can be applied to our problem if

reliable negative instances can be correctly extracted.

The last type of algorithm consists of methods developed to solve “one-class classifica-

tion,” where only positive instances are used for training a classifier (Li, Guo, and Elkan

(2011)). Intuitively, the underlying idea behind these methods is that the classifier fit-

ted using only positive instances can identify potential positive instances in the set U .

According to Khan and Madden (2014), the algorithm called one-class support vector

machine (hereafter “one-class SVM”) proposed by Tax and Duin (1999, 2004) has been

widely applied to solve “one-class classification” problems. Importantly, one-class SVM

allows assuming that potential positive instances in the set U and positive instances

in the set P are generated from different distributions. In addition, although one-class

SVM performs poorly on data sets with only a small number of positive instances and a

large number of unlabeled instances, when a relatively large number of positive instances

is available, as in the analysis here, the algorithm can be expected to fit the data set

well.

12



6.2 Our Algorithm

Given the considerations in the previous subsection, we tackle the PU classification

problem using an algorithm that combines the “two-step strategy” and one-class SVM

as follows.2

Step 1 Step 1 extracts a set of reliable negative instances using one-class SVM. In our

problem setting, we have no information that would allow us to identify reliable negative

instances a priori, so the instances mechanically classified by one-class SVM as “outside

of the target class” are treated as reliable negatives.

Formally, one-class SVM is trained on instances of two classes : a target class and an

outlier class. Suppose that the target class is distributed in a hypersphere characterized

by two parameters : a center a and a radius R. One-class SVM solves the following

minimization problem:

min

[
R2 + C

M∑
h

ξh

]
, subject to ‖xh − a‖2 ≤ R2 + ξh, ξh ≥ 0, ∀h,

where ξh denotes slack variables, C is a misclassification penalty, M indicates the number

of instances used for training, and ‖·‖ represents the l2 norm.

The hypersphere contains M non-DK instances in the set P . Intuitively, the M non-DK

instances within the hypersphere (classified as the target class) are relatively homoge-

nous; the non-DK instances on the boundary or outside the boundary (classified as the

outlier class) are different in firms’ characteristics from any instances within the hyper-

sphere. We treat the instances outside of the target class as reliable negative instances.

Note that, following Tax and Duin (2004), we use the Gaussian kernel for the calculation

of l2 norms to obtain more flexible data descriptions.

Step 2 In Step 2, we first train a classifier on positive instances and the reliable

negative instances extracted in Step 1. Here, we employ the following logistic regression

2 We implement our algorithm in R language. See Appendix A.
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classifier :

Pr(y = 1 | x) = [1 + exp(−{β0 + β1x1+, . . . ,+βkxk})]−1 .

The parameters are estimated employing maximum likelihood estimation. Next, using

the trained classifier, we identify negative instances in the set U \RN satisfying P̂r(y =

1 | x) < 0.5 and put them in the set RN . While retaining the size of the set of positive

instances denoted by L, we again train the classifier on the set L and the newly defined set

RN . The iteration stops when no instances in the set U \RN satisfy P̂r(y = 1 | x) < 0.5.

6.3 Settings of Hyper-Parameters

In machine learning, parameters that cannot be estimated by training classifiers on

a data set are called hyper-parameters to distinguish them from model parameters.

Our algorithm involves several hyper-parameters in each step. In this subsection, we

summarize our settings of the hyper-parameters.

Step 1 To start, we set the misclassification penalty for one-class SVM, C. As shown

by Tax and Duin (2004), the parameter is given by C = 1/νM , where ν indicates the

fraction of outliers. We set the parameter ν instead of C to interpret the obtained results

intuitively. In our problem setting, the parameter ν should be set at a sufficiently small

value to accurately extract reliable negative instances. Here, the parameter is set at

ν = 0.02, meaning that we assume that the proportion of outliers in the set P is 2

percent.

Next, we set the width parameter of the Gaussian kernel. Intuitively, a sufficiently small

value of the parameter allows us to make a flexible boundary, meaning that reliable

negative instances could be correctly classified. Here, the width parameter is set at 0.05.

Finally, the number of non-DK instances used in Step 1 is set at M = #P ,3 which we

expect to be large enough to obtain accurate results.

3 #P denotes the number of instances in the set P .
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Step 2 In Step 2, we set the number of non-DK instances denoted by L to train the

logistic regression classifier. In Step 2, we iteratively run the logistic regression classifier

using non-DK instances and the reliable negative instances extracted in Step 1 while

keeping L constant. If we use all non-DK instances in the set P , i.e., L = #P , when

we first run the classifier, the training data with the set L and the set RN could be

imbalanced. As discussed by Liu, Lee, Yu, and Li (2002), the optimal size of L is not

obvious a priori, so we set it at L = #RN . Meanwhile, the non-DK instances in the set

L are randomly sampled from the set P . Note that, in the process of iteration in Step

2, the proportion of negative instances increases.

6.4 Independent Variables

Independent variables denoted by the k-dimensional vector x mainly consist of the fol-

lowing firms characteristics : (1) sector (31 categories), (2) firm size (20 categories),

(3) head office location (by prefecture : 47 categories), (4) firms’ subjective judgment on

business conditions, their capacity utilization, and so on (21 questions; each question has

four options for answers), and (5) a time dummy (our observation period: 15 quarters).

All of these variables are categorical variables. When we count them as binary vari-

ables, the number of independent variables is k = 192. Note that the set of independent

variables is identical in each step of our algorithm.

7 Results

This section reports the “true classes” uncovered by our algorithm described in Subsec-

tion 6.2. We then verify the result.

7.1 Uncovered “True Class”

The results are shown in Table 2. Strikingly, a huge number of the DK instances are

classified into “don’t know” as the “true class,” as shown in row #UN . At the same
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time, there are indeed a small number of the DK instances classified into “know” as the

“true class,” as shown in row #UP . The result that the number of instances classified

into the set UP is not zero is in line with the argument in Subsection 5.2 that a fraction

of the DK instances departs from their “true class.”

Table 2: Result of uncovered “true class”

General prices
1-year ahead 3-year ahead 5-year ahead

#P 135600 (0.85) 111884 (0.70) 95291 (0.60)
#U 23958 (0.15) 47674 (0.30) 64267 (0.40)

#UP 315 (0.01) 407 (0.01) 411 (0.01)
#UN 23643 (0.99) 47267 (0.99) 63856 (0.99)

Output prices
1-year ahead 3-year ahead 5-year ahead

#P 146272 (0.92) 122817 (0.77) 102679 (0.64)
#U 13286 (0.08) 36741 (0.23) 56879 (0.36)

#UP 289 (0.02) 238 (0.01) 188 (0.00)
#UN 12997 (0.98) 36503 (0.99) 56691 (1.00)

Note : The weights are reported in brackets.

Specifically, the fraction of instances classified into “don’t know” as their “true class” is

more than 98 percent for all time horizons and for both general prices and output prices.

Although not shown in the table, each survey includes an extremely small number of

instances that depart from the “true class.” For example, regarding five years ahead

general prices, the December 2014 survey contains only 16 instances.

7.2 Verification of the Results

In this subsection, we verify the result presented in the previous subsection. Specifically,

we check the sectoral and firm-size distributions of the uncovered “true classes” to verify

the results obtained in the previous subsection.

Sector Table 3 presents the share of manufacturers and of non-manufacturers in each

“true class.”
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Table 3: Share of manufacturers and non-manufacturers in each
“true class”

General prices
1-year ahead 3-year ahead 5-year ahead

Mfr. Non-mfr. Mfr. Non-mfr. Mfr. Non-mfr.

P 0.40 0.60 0.39 0.61 0.39 0.61
U 0.44 0.56 0.44 0.56 0.43 0.57
UP 0.25 0.75 0.35 0.65 0.39 0.61
UN 0.45 0.55 0.44 0.56 0.43 0.57

Output prices
1-year ahead 3-year ahead 5-year ahead

Mfr. Non-mfr. Mfr. Non-mfr. Mfr. Non-mfr.

P 0.40 0.60 0.39 0.61 0.39 0.61
U 0.45 0.55 0.46 0.54 0.44 0.56
UP 0.42 0.58 0.43 0.57 0.29 0.71
UN 0.45 0.55 0.46 0.54 0.44 0.56

As can be seen in Table 3, for all time horizons and for both general prices and output

prices, the share of non-manufacturers in the set UP is higher than in the set UN . For

example, for one year ahead general prices, while the share of non-manufacturers in

the set UN is 55 percent, that in the set UP is 75 percent. This means that the non-

manufacturer shares in the set UP are closer to those in the set P than in the set UN .

In fact, for five years ahead general prices, the shares of non-manufacturer in the set UP

and in the set P are both 61 percent. The similarity of the shares in the set UP and the

set P suggests that our algorithm works well in that it learns the sectoral distribution

of firms in the set P .

Firm Size Next, we compare the size of firms in the “true class.” Table 4 presents

the mean values of capital stock by “true class.”

As can be seen in Table 4, the mean value of the capital stock in the set UP is statistically

significantly lower than that in the set UN in almost all cases (the only exception is the

case of five years ahead general prices). At the same time, the mean values of the capital

stock in the set UP are not significantly different from those in the set P in almost all

cases (the exceptions are three years ahead and five years ahead output prices). This
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Table 4: Capital stock by “true class”

General prices
1-year ahead 3-year ahead 5-year ahead

P 2610 2088 1932
(2517,2703) (2012,2164) (1854,2010)

U 10805 7953 6670
(10082,11528) (7540,8366) (6356,6983)

UP 2106 3159 4872
(957,3253) (48,6270) (533,9211)

UN 10921 7994 6681
(10188,11654) (7578,8410) (6367,6996)

Output prices
1-year ahead 3-year ahead 5-year ahead

P 2663 2174 2151
(2572,2755) (2098,2250) (2068,2234)

U 16798 9412 6890
(15544,18052) (8887,9937) (6544,7236)

UP 5693 519 483
(1207,10178) (201,837) (182,785)

UN 17045 9470 6911
(15767,18323) (8942,9998) (6564,7259)

Notes : The table reports the mean with a 95% confi-
dence interval using the normal distribution in brackets.
The unit is million yen.

means that the distribution of capital stock in the set UP is closer to that in the set P

than that in the set UN . This similarity suggests that our algorithm performs well in

that the mean of firm size in the set P is learned almost correctly.

8 Non-Response Bias

In this section, we estimate the counterfactual inflation expectations for the DK instances

classified into the set UP . We then examine the magnitude of the non-response bias based

on the estimation results.
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8.1 Counterfactual Inflation Expectations

We estimate the counterfactual inflation expectations for the DK instances in the set UP

using a matching estimator. Specifically, we reuse the set of independent variables shown

in Subsection 6.4 to implement the propensity score matching developed by Rosenbaum

and Rubin (1983), which matches the instances in the set UP to the instances in the

set P one by one. This allows us to identify firm h in the set P that is most similar to

firm j in the set UP based on the propensity score values. We define the counterfactual

inflation expectations of firm j as the inflation expectations held by firm h.

Figure 1: Estimated counterfactual inflation expectations
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Figure 1 shows the mean value of the estimated counterfactual inflation expectations for

the firms in the set UP (the red line in the figure) and the 95 percent confidence intervals
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calculated assuming that the parameter is normally distributed (the dotted line in the

figure). As can be seen, the estimated counterfactual inflation expectations fluctuate

substantially because of the extremely small number of firms classified into the set UP ,

as discussed in Subsection 7.1. Moreover, for both general prices and output prices, the

longer the time horizon, the larger the extent of the fluctuations. This pattern with

regard to the time horizon is similar to the actual inflation expectations. That is, as

shown in Uno, Naganuma, and Hara (2018b), with regard to the inflation expectations

in the Tankan survey, the longer the time horizon, the larger is the standard deviation.

Therefore, the pattern with regard to the time horizon in Figure 1 implies that the firms

in the set UP may have been drawn from the same distribution underlying the firms in

the set P . We discuss this point further in the next subsection.

8.2 Non-Response Bias

We denote the mean value of the estimated counterfactual inflation expectations of

firms in the set UP and the mean value of inflation expectations of firms in the set P by

µUP
and µP , respectively. Note that µP corresponds to the official figures for inflation

expectations in the Tankan survey. When letting q be q = #UP /(#UP + #P ), the

non-response bias, B, is defined as B = q(µP − µUP
).

Table 5 presents the result of the calculated non-response bias. As shown in the table,

the non-response bias in inflation expectations in the Tankan survey is zero for all time

horizons and for both general prices and output prices. Looking at the results in more

detail, the bias is also zero for each firm size and each sector. Two factors contribute to

this result. First, the number of firms classified into the set UP is extremely small, as

discussed in Subsection 7.1. That is, the q is quite small for all time horizons and for

both general prices and output prices.

The second factor is that the counterfactual inflation expectations, µUP
, are not sta-

tistically significantly different from the corresponding official figures. That is, from a

statistical perspective, µP − µUP
is equal to zero. This implies that the distribution

of firms in the set UP in terms of firm characteristics such as firm size, sector, and so
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Table 5: Non-response bias

General prices
1-year ahead 3-year ahead 5-year ahead

µP µUP
B µP µUP

B µP µUP
B

Total 1.1 1.1 0.0 1.3 1.2 0.0 1.4 1.4 0.0
(0.00) (0.07) (0.00) (0.06) (0.00) (0.07)

By firm size
Large 0.8 0.7 0.0 1.0 1.0 0.0 1.0 1.1 0.0

(0.01) (0.13) (0.01) (0.11) (0.01) (0.13)
Medium 1.0 1.1 0.0 1.2 1.3 0.0 1.3 1.1 0.0

(0.01) (0.14) (0.01) (0.11) (0.01) (0.15)
Small 1.2 1.2 0.0 1.5 1.3 0.0 1.5 1.6 0.0

(0.00) (0.10) (0.01) (0.08) (0.01) (0.09)

By sector
Mfr. 1 1.1 1.3 0.0 1.3 1.3 0.0 1.3 1.3 0.0

(0.01) (0.21) (0.01) (0.17) (0.01) (0.16)
Mfr. 2 1.0 1.1 0.0 1.3 1.2 0.0 1.3 1.3 0.0

(0.01) (0.16) (0.01) (0.11) (0.01) (0.15)
Non-mfr. 1.1 1.1 0.0 1.3 1.2 0.0 1.4 1.4 0.0

(0.00) (0.08) (0.00) (0.08) (0.01) (0.09)

Output prices
1-year ahead 3-year ahead 5-year ahead

µP µUP
B µP µUP

B µP µUP
B

Total 0.6 0.7 0.0 1.3 1.1 0.0 1.6 1.5 0.0
(0.01) (0.19) (0.01) (0.32) (0.02) (0.40)

By firm size
Large 0.4 0.5 0.0 0.6 0.1 0.0 0.7 1.2 0.0

(0.02) (0.60) (0.03) (0.84) (0.04) (0.66)
Medium 0.5 0.3 0.0 1.0 0.4 0.0 1.1 1.7 0.0

(0.01) (0.26) (0.02) (0.50) (0.03) (0.79)
Small 0.8 1.0 0.0 1.7 1.8 0.0 2.2 1.5 0.0

(0.01) (0.24) (0.02) (0.44) (0.02) (0.59)

By sector
Mfr. 1 0.8 0.7 0.0 1.5 2.0 0.0 1.8 1.5 0.0

(0.02) (0.53) (0.04) (0.90) (0.05) (0.66)
Mfr. 2 0.1 −0.3 0.0 0.3 −1.3 0.0 0.3 0.4 0.0

(0.02) (0.38) (0.03) (0.71) (0.04) (1.07)
Non-mfr. 0.8 1.0 0.0 1.7 1.9 0.0 2.1 1.7 0.0

(0.01) (0.24) (0.02) (0.34) (0.02) (0.56)

Notes : Large firms are defined as firms with capital of at least 1 billion yen; Medium
firms are defined as firms with capital of at least 100 million yen but less than 1 billion
yen; Small firms are defined as firms with capital of at least 20 million yen but less than
100 million yen. Mfr. 1, Mfr. 2, and Non-mfr. denote manufacturing (basic materials),
manufacturing (processing), and non-manufacturing, respectively. The standard errors
are reported in brackets.
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on, is similar to that of firms in the set P . In fact, as discussed in Subsection 7.2, the

distribution of firms in terms of firm size and sector in the two groups is very similar.

In sum, the very small number of firms classified into the set UP can be regarded as

drawn from the same distribution as the firms in the set P . In terms of the example

presented in the introduction, this means that a few randomly chosen firms respond

“don’t know” even though their “true” answer is “Brazil.” In contrast to the qualitative

argument by Coibion, Gorodnichenko, Kumar, and Pedemonte (2018) that firms non-

randomly choose the option “don’t know,” we quantitatively show that the choice is

random.

9 Conclusion

In this paper, we used machine learning techniques to extract firms that respond “don’t

know” to questions concerning inflation expectations in the Tankan survey even though

they seem to have quantitative answers. We then estimated the counterfactual inflation

expectations for such firms based on a propensity score matching estimator.

Our findings can be summarized as follows. First, there is indeed a fraction of firms that

respond “don’t know” even though they seem to “know” something in a sense. Second,

the number of such firms is quite small. They are mostly small firms and firms in non-

manufacturing. Third, the estimated counterfactual inflation expectations of such firms

are not statistically significantly different from the corresponding official figures in the

Tankan survey. Fourth and finally, based on the above findings, the non-response bias

in firms’ inflation expectations likely is statistically negligible.
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Appendix A R code

� �
library(dplyr)
library(kernlab)

data_p <- data %>%
filter(know == 1)

data_u <- data %>%
filter(know == 0)

var_names <- colnames(data)
f <- as.formula(paste("know~",

paste(var_names[var_names != "know"],
collapse = "+")))

# step 1 #
sigma <- 0.05
outlier <- 0.02
M <- length(data_p$know)
occ_svm <- ksvm(x = f, data = data_p, type = "one-svc",

kernel = "rbfdot", kpar = list(sigma = sigma),
C = 1/(outlier*M),
nu = outlier)

occ_pred <- predict(occ_svm, newdata = data_u)
L <- length(occ_pred) - sum(occ_pred)

# step 2 #
new_positive <- occ_pred
data_u_temp_U <- data_u
dif_U <- 1

repeat{
if(dif_U > 0){
U_size_temp <- length(data_u_temp_U$know)
data_u_temp_N <- data_u_temp_U %>%
cbind(new_positive) %>%
filter(new_positive == FALSE) %>%
select(-new_positive)

data_u_temp_U <- data_u_temp_U %>%
cbind(new_positive) %>%
filter(new_positive == TRUE) %>%
select(-new_positive)

Z <- sample(nrow(data_p), size = L)
glm_fit <- glm(formula = f,

data = rbind(data_p[Z,], data_u_temp_N),
family = binomial)

pred <- predict(glm_fit, newdata = data_u_temp_U, type = "response")
new_positive <- as.data.frame(pred$pred >= 0.5)
colnames(new_positive) <- c("new_positive")
dif_U <- U_size_temp - length(data_u_temp_U$know)

} else {
break

}
}� �
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