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Abstract 

 We nowcast Japan's exports using maritime big data (the Automatic Identification 

System data), which contains information on vessels such as their locations. The data has 

been only relatively rarely used for capturing economic trends. In doing so, we improve 

the accuracy of nowcasts by utilizing official statistics such as geographical data on ports 

and machine learning techniques. The analysis shows that the nowcasting model 

augmented with AIS data improves the performance of nowcasting relative to existing 

statistics (provisional reports on the Trade Statistics of Japan) that is available in close to 

real-time. In particular, the nowcasting model developed in this paper follows the 

movements of exports reasonably well even when they increase or decrease significantly 

(e.g., when the pandemic began in the spring of 2020 and when the supply chain was 

disrupted around mid-2021). 
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1. Introduction 

In recent years, there has been a growing interest in so-called "alternative data," which 

refers to non-traditional data based on sources different from existing statistics.1 One of 

the advantages of using alternative data for economic analysis is the fact that many 

alternative data are available in a more timely manner (i.e., the time until the data become 

available is shorter) than existing statistics, which makes them useful for timely analyses 

of the current economic situations. In this regard, previous studies report that these 

alternative data contribute to improving performance of economic nowcasting (Galbraith 

and Tkacz, 2020; Nymand-Andersen and Pantelidis, 2018; Nakazawa, 2022; Okubo et al., 

2022; Furukawa et al., 2020).2 

In Japan, nowcasting models have been developed for GDP (Hayashi and Tachi, 2022; 

Maehashi and Shintani, 2020; Hara and Yamane, 2013; Chikamatsu et al., 2021; 

Nakazawa, 2022), private consumption (Okubo et al., 2022), and industrial production 

(Shintani, 2005; Furukawa et al., 2022).3 Meanwhile, it has been relatively difficult to 

nowcast exports, which account for about 20 percent of Japan's GDP, with a reasonable 

degree of accuracy due to their large fluctuations. However, the latest studies in other 

countries (Arslanalp et al., 2019, 2021; Cerdeiro et al., 2020) show that maritime big data 

(Automatic Identification System data, see Section 3 for details) that records information 

on vessels including their locations, which has been used relatively rarely for economic 

analyses, is useful in capturing export trends in a timely manner. 

Against this background, this paper utilizes the maritime data for nowcasting Japan's 

exports. To the best of our knowledge, this paper is the first study in Japan that utilizes 

the maritime data for nowcasting exports. Since seaborne trade accounts for about 70 

percent of the nominal value of Japan's exports, maritime big data is likely to offer useful 

information on export trends (Figure 1). The unique part of this paper is the identification 

of vessels engaged in export activities by combining AIS data with geographic data on 

ports. Based on these vessels, we calculate the "export index" that serves as an 

explanatory variable in a nowcasting model (linear regression model). We also use a 

machine learning technique in calculating the export index in order to improve the 

                                                   
1 This paper follows the definition of alternative data in Kameda (2022). Alternative data refers to 

data other than traditional economic data (e.g., monthly and quarterly macroeconomic indicators and 

earnings disclosure data of listed companies). 
2  Nowcasting means capturing current economic trends rather than forecasting the future. Since 

official statistics on economic activities are typically published with time lag, researches to capture 
economic trends in a more real-time fashion have been increasing in number in recent years. 
3 A notable prior study of nowcasting economic activity abroad is Giannone et al. (2008). 
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accuracy of the nowcasting model.  

There are three main contributions of this paper. The first contribution is that the export 

index developed in this paper captures trends in real exports. While official statistics on 

exports including the Ministry of Finance's Trade Statistics of Japan and the Bank of 

Japan's Developments in Real Exports and Real Imports are released around the end of 

the following month,4 our nowcasting model captures export trends nearly three weeks 

earlier than these official statistics. 

Second, the export index tends to result in better outcomes than existing statistics that 

is also available in real-time (provisional reports of the Trade Statistics of Japan). In 

particular, we are able to follow the movements of exports reasonably well on occasions 

when they increase or decrease significantly such as in the spring of 2020, when the 

pandemic began, and around the middle of 2021, when the global supply chain was 

disrupted. These results suggest that AIS data, which has not been utilized widely in 

economic analyses in Japan, can be useful in capturing export trends in the country. 

Third, we propose a method to improve the accuracy of nowcasting exports with the 

export index by precisely identifying vessels engaged in export activities and using a 

machine learning technique in calculating the export index. We consider this contribution 

the most important of the three. Specifically, we accurately identify which ports vessels 

have entered and exited by using geographic data on the boundaries of ports and calculate 

the export index by applying machine learning techniques such as kernel methods and 

deep learning in estimating the export function. We test the predictive accuracy of the 

nowcasting model for real exports using root mean squared error (RMSE). The results 

show that the model that does not utilize machine learning in calculating the export index 

achieve only a slight improvement compared to the model that uses only the existing 

statistics, while the performance improves significantly when the export index is 

calculated using machine learning techniques (RMSE is 5.80 for the nowcasting model 

with existing statistics, 5.70 for the model with export indexes calculated without machine 

learning, and 3.64 for the model with export indexes calculated with machine learning). 

This implies that there is a strong nonlinear element in the nowcasting of real exports and 

that machine learning techniques may be useful in capturing such relationships. 

The rest of the paper is organized as follows. Section 2 reviews previous studies and 

                                                   
4 For example, the Trade Statistics of Japan and Developments in Real Exports and Real Imports for 

June 2022 were released on July 21, 2022. For the Trade Statistics of Japan, provisional figures for 
the first ten days of each month are released at the end of the month, and provisional figures for the 

first twenty days of each month are released at the beginning of the following month. 
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summarizes the main features of this paper; Section 3 describes the data used in this 

analysis; Section 4 explains the nowcasting model used in this paper; Section 5 

summarizes the nowcasting estimation results and their implications, and Section 6 

concludes. 

 

2. Literature Review 

The analysis in this paper is primarily related to three genres of previous studies: the 

use of AIS data, nowcasting models using alternative data, and economic prediction using 

machine learning techniques. We review them in detail below in this order. 

First, this paper is related to previous studies on nowcasting trade using AIS data 

(Adland et al., 2017; Arslanalp et al., 2019, 2021; Cerdeiro et al., 2020). Adland et al.  

(2017) use AIS data on tankers to nowcast crude oil trade volumes in oil-producing 

countries and show that AIS data is useful for capturing crude oil trade volumes, although 

the accuracy of prediction can deteriorate for some countries and times when trade 

through pipelines is large. Arslanalp et al. (2019) perform nowcasting of Malta's trade 

volume by aggregating the number of cargo vessels and the amount of cargo loaded using 

AIS data, and show that the information on vessels' locations is useful in predicting trade 

volume. Arslanalp et al. (2021) extend Arslanalp et al. (2019) and improve the nowcasting 

accuracy of trade volume in Pacific island countries by using geographic information of 

ports in each country and information on shipping liner schedules. Cerdeiro et al. (2020) 

use AIS data covering the entire world to develop indicators by country and vessel type 

(e.g., car carriers, containerships, etc.) to capture trends in maritime trade imports and 

exports in countries around the world, and find that AIS data is useful for capturing 

regional trade volumes (e.g., the volume of automobiles exported from Japan). These 

indicators are periodically updated and published in the United Nations Comtrade 

database.5,6 While the number of studies on nowcasting trade volumes using AIS data 

has been increasing in recent years, to the best of the authors' knowledge, there have been 

no studies specifically focusing on Japan. In this paper, in addition to AIS data around 

Japan's coastal areas, we use geographical data on ports and official statistics on export 

activities at each port to nowcast Japan's export trends with a high degree of accuracy. 

                                                   
5 https://comtrade.un.org/data/ais 
6 Note that although the database includes indicators for Japan, it is not always updated with the latest 
data, making it difficult to use for nowcasting. In addition, as we will see in Section 5.2., we succeed 

in capturing Japan's export with higher precision than Cerdeiro et al. (2020). 
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Second, this paper is related to nowcasting models using alternative data in that it uses 

non-traditional data, at least in the field of economic analyses, namely AIS data. For Japan, 

for example, Nakazawa (2022), Okubo et al. (2022), and Furukawa et al. (2022) construct 

nowcasting models using alternative data for GDP, private consumption, and industrial 

production, respectively. All of these studies demonstrate the usefulness of alternative 

data in capturing economic activities in real time. The data used in these studies (number 

of searches on the Internet (Nakazawa, 2022), credit card history (Okubo et al., 2022), 

and GPS data of mobile phones (Furukawa et al., 2022)) have also been used in many 

previous studies abroad. Consequently, we are rapidly accumulating knowledge about 

what alternative data is useful in nowcasting economic activities. For example, Galbraith 

and Tkacz (2015) construct a nowcasting model of GDP of Canada using transaction data 

of credit/debit card and checks and show that nowcasting accuracy improves compared 

to a model without the transaction data. Nymand-Andersen and Pantelidis (2018) also 

built a nowcasting model for new car sales in Europe (10 major countries) using Google 

search data (Google Trends) for related categories and find that the Google Trends data 

improves nowcasting accuracy. The analysis in this paper confirms that AIS data is also 

useful for nowcasting economic activities. 

Third, this paper is also related to the literature that applies machine learning 

techniques to economic prediction. Bolhuis and Rayner (2020) point out the shortcomings 

of traditional Ordinary Least Square (OLS) models, such as inability to deal with 

multicollinearity and nonlinearity, and suggest that machine learning models can be used 

to overcome these shortcomings. Many previous studies in strand of alternative data also 

find that machine learning models outperform linear models (Furukawa et al., 2022; 

Anesti et al., 2021; Ashwin et al., 2021; Richardson et al., 2021). For example, Anesti et 

al. (2021) compare the results of GDP prediction when linear models and machine 

learning models are estimated with alternative data and general macro statistics, and find 

that the improvement in prediction accuracy with the introduction of machine learning 

models is particularly large when alternative data are included as explanatory variables.7 

In this paper, we also find that we can improve predictive accuracy by using machine 

learning techniques such as kernel methods and deep learning in the process of 

aggregating AIS data. 

 

                                                   
7 In this regard, Anesti et al. (2021) point out that the use of alternative data increases the volume of 
information and the complexity of relationships among variables, which may increase the benefits of 

utilizing machine learning models that can deal with multicollinearity and nonlinearity. 
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3. Data 

3.1. AIS data 

The Automatic Identification System (AIS) is a device that allows vessels to exchange 

navigational information with each other. AIS transmits data including the vessel's 

identification codes, names, positions (latitude and longitude), draughts, which refer to 

the distance from the bottom of a vessel to the water surface, and destination. The data 

can be received by other vessels navigating in the vicinity, as well as by land-based 

receiving stations and satellites. Vessels meeting certain standards are required to carry 

AIS according to international conventions for the purpose of smooth navigation control 

and maritime accident prevention. In Japan, all passenger ships or vessels of 300 gross 

tons or more engaged in international voyages and all vessels of 500 gross tons or more 

are required to carry AIS. Therefore, in principle, all vessels large enough to be engaged 

in exports are likely to be equipped with AIS. 

The radio waves emitted by AIS can be received by anyone who has a receiving 

medium (e.g., land-based receiving station or satellite). As a result, with the development 

of small satellite technology, there has been an increase in private services that provide 

AIS data in recent years. We use AIS data around Japan provided by VesselFinder for the 

period from January 1st 2017 to March 31st 2022.8 In doing so, this paper uses AIS data 

on car carriers and containerships whose frequency is reduced to 6-hour units.9 In Japan 

exports by car carriers and containerships account for about 60% of exports (about 85% 

of maritime trade) in nominal value. Moreover, given that trade by air transportation, 

which accounts for about 30% of exports, follows roughly the same trend as exports by 

containerships (discussed below), the data in this analysis can be considered to have 

reasonable coverage (Figure 1). In this analysis, we use AIS data for 7,003 vessels. We 

can see that many vessels are concentrated in the vicinity of industrial zones (Figure 2). 

 

 

                                                   
8 Some providers provide the latest AIS data with a lag of a few minutes, making it one of the most 

real-time of the alternative data. 
9 Since there are many passenger ships and other vessels not engaged in exports sailing around Japan 

and AIS emits signals every few seconds, acquiring all AIS data would increase the data size drastically. 

We therefore filter the data on certain conditions. In addition, given that most of Japan's goods exports 

take place in Honshu, Kyushu, and Shikoku, we cover the coastal areas of these islands (i.e., we 
exclude Hokkaido and Okinawa). The data used in this analysis have 6,591,066 rows in a csv format 

and 1.1 GB in size. 
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3.2. Port data 

In order to identify whether a vessel is engaged in export activities based on AIS data, 

it is necessary to correctly determine whether the vessel is located within a port. In this 

analysis, we obtain geographic data on the boundaries of ports throughout Japan as 

designated by the Port and Harbor Act from the Ministry of Land, Infrastructure, 

Transport and Tourism, and identify the area of each port. Specifically, by combining this 

data with Japan's coastline data, we identify port "areas" bounded by port boundaries and 

coastlines (Figure 3(a)). However, there are some cases where it is difficult to identify 

port areas from port boundary and coastline data due to straits and remote islands. Among 

these cases, we manually identify areas for ports with large trade volumes (Figure 3(b)), 

while we exclude other small ports from the analysis. As a result, we identify the areas of 

302 ports, which cover 99% of Japan's exports by vessel in nominal value for the sample 

covering 2017-2020. 

 

4. Construction of the "Export Index" 

In this section, we first explain how to calculate the "export index" to capture export 

using AIS data and port data. We also discuss methods to improve the export index by 

using port-level official statistics. 

4.1. Methodology 

Step 1. Identifying vessels destined for overseas 

AIS data we use in this analysis includes not only vessels sailing from Japan to overseas, 

but also vessels traveling between domestic ports. Therefore, in order to capture a vessel's 

export activities, it is important to first identify whether the vessel's next destination is 

overseas or not. Although AIS data contains information on the next destination, it is 

difficult to use for analysis because it is entered manually by the crew and the format is 

not standardized.10  Therefore, we identify whether a vessel is headed overseas or to 

another domestic port after leaving a domestic port by continuously tracking the location 

of the vessel. 

                                                   
10 For example, if the next destination is Tokyo, the destination item in AIS data may be entered in 
various formats, such as "Tokyo," "JP TOKYO," or "TYO," making it difficult to correctly match it 

with the actual destination. 
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Specifically, after a vessel leaves a port in Japan, the vessel is assumed to be headed 

overseas if AIS data transmitted by the vessel meets either of the following conditions: 

(1) the transmission data is discontinued for 48 hours or longer, or (2) the transmission 

data is discontinued for 24 hours or longer and the draught changes over that period. Since 

AIS data we use in this analysis covers the coastal area of Japan, if the vessel's AIS data 

is discontinued for a long period of time, we can assume that the vessel has left Japan and 

is headed overseas. In the first condition, (1), we set the criterion to 48 hours.11 However, 

in cases where the distance between domestic and foreign ports is close, such as between 

Kitakyushu and South Korea, the vessel may return to Japan within 48 hours after leaving 

the domestic port. Therefore, under the condition (2), the vessel is considered to be headed 

overseas after leaving a domestic port even if the vessel's AIS data is discontinued for a 

short period of time, if the vessel's draught changes between before and after that period 

since it implies loading or unloading operation took place during this period. 

Based on these criteria, a total of 109,356 vessels are identified as having an overseas 

next destination during the sample period. 

Step 2. Estimating metric tons of cargo 

Next, we estimate the metric tons of cargo loaded on a vessel by using the information 

on draught from AIS data. As more cargo is loaded on a vessel, the vessel sinks deeper 

into the water surface and the draught becomes deeper, which means that it is possible to 

infer the metric tons of cargo from draught. Specifically, by assuming that the draught is 

proportional to the weight of the vessel, we can calculate metric tons of cargo loaded on 

vessel 𝑖 at time 𝑑 (𝑚𝑡𝑐𝑖,𝑑) from the following equation (Figure 4).12,13 

𝑚𝑡𝑐𝑖,𝑑 = 𝑚𝑡𝑐𝑖,𝑚𝑎𝑥 ×
𝑑𝑟𝑎𝑢𝑔ℎ𝑡𝑖,𝑑−𝑑𝑟𝑎𝑢𝑔ℎ𝑡𝑖,𝑚𝑖𝑛

𝑑𝑟𝑎𝑢𝑔ℎ𝑡𝑖,𝑚𝑎𝑥−𝑑𝑟𝑎𝑢𝑔ℎ𝑡𝑖,𝑚𝑖𝑛
, （1） 

                                                   
11 Even if a vessel is heading from a domestic port to another domestic port, it may temporarily leave 

the coastal area depending on its route. AIS data may also be interrupted for a short period of time for 

some reason (e.g., AIS is switched off temporarily). Therefore, we set the time period to be long 

enough to prevent such vessels from being mistakenly identified as heading overseas. 
12 To be precise, the physics law states that the weight of a vessel is equal to the weight of the seawater 

that the vessel displaces (Archimedes' principle). Assuming that the shape of the vessel is almost 

rectangular and that the volume of the part of the vessel submerged under the water surface is 

proportional to the draught, the above relationship that the draught is proportional to the weight of the 

vessel is obtained. 
13 In reality, when the metric tons of cargo is small, the draught is often deepened by loading the vessel 
with weights such as seawater to stabilize the body. Consequently, the relationship between the metric 

tons of cargo and draught may not be proportional as shown in Figure 4. 
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where 𝑑𝑟𝑎𝑢𝑔ℎ𝑡𝑖,𝑑 is the draught of vessel 𝑖 at time 𝑑, and 𝑚𝑡𝑐𝑖,𝑚𝑎𝑥, 𝑑𝑟𝑎𝑢𝑔ℎ𝑡𝑖,𝑚𝑎𝑥 

and 𝑑𝑟𝑎𝑢𝑔ℎ𝑡𝑖,𝑚𝑖𝑛 are the maximum weight of cargo that vessel 𝑖 can carry, the draught 

at maximum loading, and the draught when empty (when no cargo is loaded), respectively. 

𝑑𝑟𝑎𝑢𝑔ℎ𝑡𝑖,𝑑 is obtained from AIS data, and 𝑚𝑡𝑐𝑖,𝑚𝑎𝑥 and 𝑑𝑟𝑎𝑢𝑔ℎ𝑡𝑖,𝑚𝑎𝑥 are obtained 

from the vessel database maintained by VesselFinder. For 𝑑𝑟𝑎𝑢𝑔ℎ𝑡𝑖,𝑚𝑖𝑛, the minimum 

draught of vessel 𝑖 in the sample period (min𝑑 𝑑𝑟𝑎𝑢𝑔ℎ𝑡𝑖,𝑑) is used as an estimate. 

Step 3. Calculating the export index 

Finally, we calculate the export index using the data we obtained in Steps 1 and 2. In 

general, vessels engaging in exports call at multiple ports for loading before heading 

overseas. Hence, it is necessary to track the amount of exported goods loaded at each port 

in order to accurately capture export activities. However, since we can only estimate the 

metric tons of the entire cargo at the time of arrival and departure from AIS data, it is not 

possible to capture the amount of exported goods loaded at each port (Figure 5). Therefore, 

we calculate the export index by assuming that all cargo loaded on vessels heading 

overseas are exports and by summing the metric tons of cargo loaded on vessels identified 

as heading overseas at the port of departure. As shown in the formula below, we calculate 

the export index in a monthly frequency for car carriers and containerships, respectively. 

𝑒𝑥𝑝𝑜𝑟𝑡 𝑖𝑛𝑑𝑒𝑥𝑡𝑦𝑝𝑒,𝑡 = ∑ 𝑚𝑡𝑐𝑖,𝑑

𝑖,𝑑
𝑖∈𝑆𝑡𝑦𝑝𝑒

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑖,𝑑=𝑜𝑣𝑒𝑟𝑠𝑒𝑎𝑠

 

（2） 

where 𝑡 denotes a month (e.g., January 2022), 𝑑 is a time point within month 𝑡, 𝑡𝑦𝑝𝑒 

is the type of vessels (either car carrier or containership), 𝑆𝑡𝑦𝑝𝑒  is the set of vessels 

classified as 𝑡𝑦𝑝𝑒, and 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑖,𝑑 is a variable indicating whether vessel 𝑖's next 

destination at time 𝑑 is overseas or domestic.14 

4.2. Result 

Comparing the export index calculated above with real exports, the correlation 

coefficient of the year-on-year change rates for cars is 0.89, showing that the index 

captures the movement in real exports well (Figure 6(a)). In particular, the export index 

clearly captures the large decline in exports associated with the spread of the COVID-19 

                                                   
14 In Equation (2), all exports loaded on vessels at domestic ports are reflected in the export index 

when they leave the final port of call in Japan. However, in the Trade Statistics of Japan, the exported 
goods are recorded when they pass through customs. Hence, it should be noted that the timing of 

recognition of exports differs between the export index in this paper and the official statistics. 



10 

in the spring of 2020, suggesting that the export index for car carriers is useful in tracking 

actual car export values. 

On the other hand, for the export index for containerships, the correlation coefficient 

of the year-on-year change rate with real exports is 0.42 (Figure 6(b)). While the overall 

trends are similar, the index is not as accurate as that for car carriers. In particular, since 

the spring of 2021, its year-on-year change rate has remained consistently below that of 

real exports. 

4.3. Improving the export index for containerships 

One possible reason for the lack of accuracy of the export index for containerships 

compared to that for car carriers is that the types of goods exported by containerships are 

wide-ranging, and the value per weight can vary significantly depending on the cargo 

loaded. Indeed, as Equation (2) indicates, the export index is calculated based on the 

weight of exported goods, and thus cannot capture fluctuations in value per weight. It is 

possible that the increase of semiconductor-related exports after 2021 led to a higher share 

of goods with high values per weight (Figure 7). The fact that the year-on-year change 

rate of the export index during this period is lower than that of the actual exports may be 

due in part to such a change in the composition of exported goods. 

In addition, the weight of the containers themselves, in which the exported goods are 

stored, could work as noise and affect the accuracy of the export index for 

containerships.15 If exported goods are lightweight or containers are underutilized, the 

weight of the containers themselves may account for a high percentage of the metric tons 

of cargo, making it difficult to accurately determine trends in exports.16 

In light of these observations, it is important to consider "value per weight of cargo" 

and "weight of non-exported items in cargo" in order to accurately capture exports by 

containerships. Although these data do not exist at the vessel level in the first place and 

therefore it is not possible to obtain accurate figures, they are likely to depend on the port 

at which the vessel calls to a certain extent. Indeed, each port has distinct characteristics 

in terms of "value per weight of exported goods," "weight per container," and "share of 

exports in shipments" (Figure 8). Therefore, even without detailed vessel-level data on 

                                                   
15 In the case of the most standard size container (20-foot container), the container itself weighs about 

2 tons and the maximum loading weight is about 20 to 30 tons. Hence, more than 10% of the estimated 

loading capacity of a containership may be the weight of the containers. 
16 It should be noted that, for logistical reasons, empty containers are often loaded onto ships. In fact, 
according to the Port Statistics (Ministry of Land, Infrastructure, Transport and Tourism), in 2020, 

about 40% of containers loaded at domestic ports were empty. 
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cargo, it is possible to infer the characteristics of the cargoes (e.g., value per unit weight 

of cargo) loaded on the vessels by looking at the ports to which the vessels call.17 

Based on the above considerations, we attempt to improve the nowcasting accuracy of 

the export index for containerships by estimating the following "export function" for each 

port. 

𝑒𝑥𝑝𝑜𝑟𝑡𝑖,𝑝,𝑑 = 𝑓(𝑚𝑡𝑐𝑖,𝑝,𝑑
𝑒𝑛𝑡 , 𝑚𝑡𝑐𝑖,𝑝,𝑑

𝑒𝑥𝑖𝑡 , 𝑝𝑐𝑡𝑖,𝑝,𝑑, 𝜽𝑝) （3） 

where the subscripts 𝑖 , 𝑝 , and 𝑑  indicate that vessel 𝑖  left port 𝑝  at time 𝑑 , and 

𝑒𝑥𝑝𝑜𝑟𝑡𝑖,𝑝,𝑑, 𝑚𝑡𝑐𝑖,𝑝,𝑑
𝑒𝑛𝑡 , 𝑚𝑡𝑐𝑖,𝑝,𝑑

𝑒𝑥𝑖𝑡 , and 𝑝𝑐𝑡𝑖,𝑝,𝑑 denote the value of exports loaded at port 

𝑝 (in real term), the metric tons of cargo loaded on vessel 𝑖 when it enters/exits port 𝑝, 

and port call time at port 𝑝, respectively. The difference in the metric tons of cargo loaded 

at entry and exit, which are included in the explanatory variables, is likely to be related 

to the amount of cargo loaded at the port. However, when vessel 𝑖 loads and unloads 

cargo at the same time, it may not be possible to accurately estimate the amount of cargo 

loaded at port 𝑝 from the difference in the metric tons of cargo loaded at entry and exit 

alone. We address this issue by additionally taking into account the port call time based 

on the assumption that the greater the amount of cargo loaded and unloaded, the longer 

the port call time. 𝜽𝑝 is a set of parameters that reflect the characteristics of port 𝑝, and 

we estimate their values such that the estimated exported values achieve the highest 

accuracy. By estimating parameters for each port, it is possible, for example, to estimate 

the values per metric ton of cargo for vessels to be high if they leave ports where values 

per weight of exported goods are large. This approach is expected to improve predictive 

accuracy. 

Once the export function in Equation (3) is estimated, the revised export index for 

containerships is calculated by adding up the vessel-level export values. 

𝑒𝑥𝑝𝑜𝑟𝑡 𝑖𝑛𝑑𝑒𝑥𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟,𝑡
𝑟 = ∑ 𝑒𝑥𝑝𝑜𝑟𝑡𝑖,𝑝,𝑑

𝑖,𝑝,𝑑

 （4） 

where 𝑑 is the point in time within month 𝑡. 

Since it is not possible to determine a priori the form of the export function in Equation 

(3), we estimate Equation (3) using kernel methods and deep learning, which can handle 

                                                   
17 For example, since exports loaded at the Port of Tokyo tend to have higher values per weight than 
exports loaded at the Port of Kawasaki, it can be inferred that the cargoes of vessels leaving the Port 

of Tokyo have higher values per weight than the cargoes of vessels leaving the Port of Kawasaki. 
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nonlinearity. We use data from January 2017 to December 2020 for the estimation. An 

overview of both methods is provided below. 

4.3.1. Estimating export function using kernel methods 

In the estimation of Equation (3) using kernel methods, the explanatory variable 𝒙, 

which is a vector, is first converted to a vector in higher dimensions, 𝜙(𝒙). The export 

function then is assumed to be a linear function of 𝜙(𝒙). In the case of this analysis, the 

export function is written as follows 

𝑒𝑥𝑝𝑜𝑟𝑡𝑖,𝑝,𝑑 = 𝜽𝑝
𝑇𝜙(𝑚𝑡𝑐𝑖,𝑝,𝑑

𝑒𝑛𝑡 , 𝑚𝑡𝑐𝑖,𝑝,𝑑
𝑒𝑥𝑖𝑡 , 𝑝𝑐𝑡𝑖,𝑝,𝑑) （5） 

Here, the superscript T means transposition. Normally, the export function is estimated to 

minimize the prediction error of 𝑒𝑥𝑝𝑜𝑟𝑡𝑖,𝑝,𝑑 . However, in this analysis, data for 

𝑒𝑥𝑝𝑜𝑟𝑡𝑖,𝑝,𝑑 do not exist in the first place. Therefore, we set up the following loss function 

to estimate the export function given 𝜙 by minimizing the prediction error of export 

values at the port level.18 

𝐿𝑝 =
1

2
∑ {∑   𝜽𝑝

𝑇𝜙(𝒙𝑖,𝑝,𝑑 ) 

𝑖,𝑑

− 𝑒𝑥𝑝𝑜𝑟𝑡𝑝,𝑡}

2

𝑡

+
𝜆

2
𝜽𝑝

𝑇𝜽𝑝 （6） 

where 𝒙𝑖,𝑝,𝑑 = (𝑚𝑡𝑐𝑖,𝑝,𝑑
𝑒𝑛𝑡 , 𝑚𝑡𝑐𝑖,𝑝,𝑑

𝑒𝑥𝑖𝑡 , 𝑝𝑐𝑡𝑖,𝑝,𝑑)  and 𝑒𝑥𝑝𝑜𝑟𝑡𝑝,𝑡  is the value of exports by 

containerships (in real terms) at port 𝑝  in month 𝑡 .19  Equation (6) implies that the 

export function is estimated so that the error between the sum of the export value of all 

vessels leaving port 𝑝  in month 𝑡  and 𝑒𝑥𝑝𝑜𝑟𝑡𝑝,𝑡  is smallest (𝑑  is a point in time 

within month 𝑡). The second term on the right-hand side is a regularization term that 

prevents the value of the parameter 𝜽𝑝 from becoming too large. In this subsection, we 

provide an overview of kernel methods and the estimation results. For the detailed 

estimation method, please refer to the Appendix. 

Kernel methods transform Equation (6) so that the export function is represented as a 

function of the inner product 𝜙(𝒙)𝑇𝜙(𝒙′) rather than that of the original vector, 𝜙(𝒙). 

                                                   
18  Note that although most programming languages such as Python and R provide functions for 

estimating Equation (5), these functions cannot be used in this analysis because, as mentioned above, 

data on 𝑒𝑥𝑝𝑜𝑟𝑡𝑖,𝑝,𝑑 do not exist. In the Appendix, we explain how to estimate the export function 

using kernel methods without using these functions. 
19  The value of exports by containerships (in real terms) for port 𝑝  in month 𝑡  is calculated by 

multiplying the value of exports by containerships (in real terms, for the nation) in month 𝑡 by the 

share of exports (in nominal terms, including transportation means other than containerships) for port 

𝑝 in the same year. 
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𝜙(𝒙)𝑇𝜙(𝒙′) is called a kernel function and is conventionally denoted as 𝑘(𝒙, 𝒙′). Even 

if 𝜙(𝒙)  is of a complex form, 𝑘(𝒙, 𝒙′)  can be relatively easy to compute in certain 

cases. Hence, kernel methods can be used to estimate a variety of functions and make it 

possible to efficiently search for a form of the export function that results in high accuracy 

while reducing the amount of computation. Figure 9 shows the accuracies of the export 

function for different types of kernel functions. Based on the accuracy in the out-of-

sample period, we adopt the "Gaussian kernel function." 

Based on this kernel function, the two panels in Figure 10 show the relationships 

between the value of exports and the explanatory variables. Panel (a) shows that if the 

difference between the amount of cargo loaded at the time of departure and at the time of 

entry is negative, little exporting has taken place, and if it is positive, the value of exports 

increases as the difference increases. Panel (b) shows that the longer the time of port calls, 

the greater the value of exports is. 

4.3.2. Estimating export function using deep learning 

In this subsection, we provide an overview of deep learning method used in estimating 

the export function in Equation (3). Deep learning is a type of machine learning and 

expresses a function by combining neurons that resemble nerve cells (Figure 11). In 

general, a deep learning model is one that has a large number of hidden layers. Deep 

learning is a more versatile method than kernel methods since it can estimate the 

relationship between explanatory variables and dependent variables without making any 

a priori assumptions. However, at the same time, the number of parameters tends to be 

very large and the estimation results are not stable when the data size is small. As a result, 

the out-of-sample accuracy may not always be improved. In this analysis, as with kernel 

methods, we assume that 𝑒𝑥𝑝𝑜𝑟𝑡𝑖,𝑝,𝑑 is expressed as a function of 𝑚𝑡𝑐𝑖,𝑝,𝑑
𝑒𝑛𝑡 , 𝑚𝑡𝑐𝑖,𝑝,𝑑

𝑒𝑥𝑖𝑡 , 

and 𝑝𝑐𝑡𝑖,𝑝,𝑑 and estimate the deep learning model such that the error between the total 

export value of all vessels leaving port 𝑝 in month 𝑡 and 𝑒𝑥𝑝𝑜𝑟𝑡𝑝,𝑡 is minimized.20,21 

The relationship between the explanatory variables and exports value based on the 

export function estimated using deep learning shows that same pattern as the one 

estimated using kernel methods. Namely, little exporting has taken place if the difference 

                                                   
20 We first estimate models for various combinations of the number of hidden layers and the number 

of dimensions of the hidden layers and employed a simple deep learning model with six hidden layers 

and 300 dimensions of the hidden layers, which has the highest out-of-sample prediction accuracy. 

The model uses approximately 0.6 million parameters. 
21 A more detailed explanation on deep learning is beyond the scope of this paper and is thus omitted 

here. For more details, see for example Goodfellow et al. (2016). 
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between the amount of cargo loaded at the time of departure and at the time of entry is 

negative while the value of exports increases as the difference increases, and the longer 

the time of port calls, the greater the value of exports is (Figure 12). 

4.3.3. Result 

The fit of the revised export index with real exports during the out-of-sample period 

(January 2021 to March 2022) shows an improvement over the original version for both 

kernel and deep learning methods (Figure 13). It implies that estimating an export 

function for each port allows us to better capture the movement of real exports by taking 

into account changes in the composition of exported goods. Comparing kernel methods 

with deep learning, the former better captured real exports during the recovery phase in 

the first half of 2021, while the latter better captured real exports during the decline phase 

in the second half of 2021, making it difficult to assess which method is superior. 

 

5. Nowcasting Model 

5.1. Accuracy of nowcasting model 

In this section, we build nowcasting models for the overall real exports of Japan using 

the export indexes by vessel type constructed in this paper. We build the models in the 

following two steps. In the first step, the year-on-year change rate of real exports (not 

seasonally adjusted) is regressed by OLS on the year-on-year change rates of the export 

indexes for car carriers and containerships. In the second step, the predicted year-on-year 

change rates of real exports (not seasonally adjusted) obtained in the first step are 

converted to seasonally adjusted month-on-month change rates by using the seasonal 

factors of real exports.22 As a comparison, we also estimate a nowcasting model of real 

exports in the same step as above but using the provisional report of the Trade Statistics 

of Japan, which is an official statistics published at the end of each month, after 

controlling for the exchange rate fluctuation. 

First, we can observe in the OLS estimation result for step 1 using all samples (January 

2018 to March 2022) that the model using the export index has a higher adjusted 

coefficient of determination and hence has greater explanatory power for real exports than 

                                                   
22 Since seasonally adjusted series are generally used to evaluate economic conditions, we focus on 

capturing trends in real exports on a seasonally adjusted basis. Since the time series of the alternative 
data in this analysis are short and therefore the export index cannot be directly seasonally adjusted, we 

use the two-step process in which we first estimate the model on a seasonally unadjusted basis. 
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the model using existing statistics (provisional report of the Trade Statistics of Japan) 

(Figure 14).23 

Next, taking the period from January 2021 to March 2022 as the out-of-sample period, 

we compare the performance of the models during this period with the following four 

models (Models 1-4). Specifically, Model 1 uses only existing statistics (provisional 

report of the Trade Statistics of Japan), Model 2 uses the export index calculated without 

utilizing machine learning (calculated in Section 4.2.), and Model 3 and 4 use the export 

index for containerships calculated by kernel methods and deep learning, respectively. By 

comparing Model 1 and 2, we can verify the extent to which nowcast accuracy improves 

with Model 2, which includes more near-term information. In this regard, the RMSE of 

Model 1 is 5.80 while that of Model 2 is 5.70, suggesting that the improvement in nowcast 

accuracy by using more recent information is limited. On the other hand, looking at Model 

3 and 4, both of which use machine learning techniques, the RMSE of Model 3 was 5.04 

and that of Model 4 was 3.64, indicating that the use of deep learning significantly 

improves the prediction accuracy of real exports (Figure 15).24,25 Looking at the spring 

of 2020, when the pandemic began, and around mid-2021, when the global supply chain 

was significantly disrupted, Model 4 is able to reasonably follow the large decline in 

exports, while model 1 is far off its prediction. The main reason for the low nowcasting 

accuracy of Model 1 is possibly due to the fact that the existing statistics does not include 

information from the middle of the month onward. Furthermore, the implication of this 

analysis is that even if information from after the middle of the month is available, 

performance would not improve unless machine learning techniques are used to account 

for nonlinearities. 

These results indicate that the export indexes are useful in capturing real-time trends in 

Japan's exports. They also suggest that the nowcasting of real exports has an element of 

                                                   
23 As part of the robustness check, we tried adding a one-period lag term for the year-on-year change 

rates of real exports as an explanatory variable in each formulation in Figure 14. The coefficient of the 

lag term turned out to be insignificant and did not affect the significance of the other variables. 

Therefore, we chose to use a formulation without the lag term in our main analysis. 
24  The nowcast values for the out-of-sample period are estimated on a rolling basis. That is, for 

example, the January 2021 nowcast is calculated using a model estimated using actual data through 

December 2020, and the February 2021 nowcast is calculated using a model re-estimated using actual 

data through January 2021. This process is repeated through March 2022 to compare the nowcast 

accuracy of each model. 
25 In this analysis, the out-of-sample period is set to January 2021 and beyond in order to have a 

sufficient number of samples when calculating export indexes using machine learning techniques. In 

this regard, we confirm that there is no change in the improvement in nowcast accuracy from model 1 
through 4 even if we re-estimate model 1 through 4 with January 2020 and beyond set as the out-of-

sample period for robustness checks,. 
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nonlinearity and that machine learning techniques may be useful in capturing such 

relationships. In this regard, the analysis can be considered consistent with Anesti et al. 

(2021), who argue that the advantages of using machine learning to deal with 

nonlinearities become large when using the alternative data as the amount of data and the 

complexity of the relationships among variables increase. 

5.2. Comparison to the previous literature 

As mentioned above, Cerdeiro et al. (2020) create indexes to capture trends in imports 

and exports by vessel type (car carriers, containerships, etc.) using AIS data for countries 

around the world, including Japan. In this section, we compare the performance of the 

indexes calculated by Cerdeiro et al. (2020) with that of the export index calculated in 

this analysis, and examine whether our method improves the nowcasting accuracy. 

First, the correlation coefficients between the real exports and the export indexes 

calculated by Cerdeiro et al. (2020) for car carriers and containerships in Japan are 0.70 

and 0.39, respectively, which are lower than those between the real exports and the export 

indexes calculated in this analysis (Figure 16). Moreover, in the OLS estimation where 

the year-on-year change rates of the real exports (seasonally unadjusted) are regressed on 

the export indexes, the adjusted coefficient of determination is higher for the export 

indexes calculated in this analysis (Figure 17). In addition, when we evaluate the 

nowcasting accuracy of the model by setting the period from January 2021 through March 

2022 as the out-of-sample period, the model using the export indexes calculated in this 

analysis performs better (Figure 18). These results suggest that the export indexes 

calculated in this analysis are more useful for nowcasting Japan's export trends compared 

to those calculated by Cerdeiro et al. (2020). 

These results can be attributed to the following differences in the analytical approaches 

of this paper and Cerdeiro et al. (2020). First, in identifying port areas, we use official 

geographic information data, while Cerdeiro et al. (2020) uses mechanical estimation 

based on vessel location data.26 As a result, this paper is likely more accurate and has 

higher coverage in identifying the areas of ports in Japan than Cerdeiro et al. (2020). 

Second, with regard to the export index for containerships, we improve its accuracy by 

estimating port-specific export functions, while Cerdeiro et al. (2020) does not take such 

                                                   
26 Specifically, an unsupervised learning approach is used to identify areas where many vessels are 

gathered as harbors based on the location information of anchored vessels. 
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an approach. In sum, the improvement in nowcasting accuracy can be attributed to the 

use of official statistics and machine learning techniques in refining the export index. 

 

6. Conclusion 

In this analysis, we calculate export indexes using AIS data, alternative data that 

records the information of vessels including their locations, to nowcast Japan's export. 

The results of the analysis show that the export indexes capture trends in real exports and 

compare favorably with existing statistics (provisional report of the Trade Statistics of 

Japan) that are also available in real-time. In particular, they are able to reasonably follow 

movements in exports when they increase or decrease significantly, such as in the spring 

of 2020, when the pandemic started, and around mid-2021, when the global supply chain 

was disrupted. In addition, in calculating the export indexes, we use geographic data on 

domestic ports and official statistics on export activities at each port, and apply machine 

learning techniques to improve the performance compared to the previous studies. These 

results suggest that AIS data, which has not been utilized much in economic analyses in 

Japan, can be useful in capturing Japan's export trends. 

In this paper we assume that the relationship between vessel traffic and exports at each 

port is sufficiently stable. It should be noted, for example, that if the composition of items 

exported from a given port changes due to shifts in industrial structure and consequently 

the relationship between the amount of cargo carried by vessels leaving that port and the 

value of their exports also changes, the assumptions used for the export index calculated 

in this paper may no longer hold, and the accuracy of the nowcasting model may decrease. 

When utilizing AIS data for nowcasting trade in the future, it will be important to take 

this possibility into account and continue to make efforts to improve the accuracy of the 

analysis by updating the official statistics used to calculate export indexes as necessary. 

Since our method can be applied to any types of vessels other than car carriers and 

containerships, building a nowcasting model of Japan's import trends using data on oil 

tankers and Liquefied Natural Gas carriers would be a promising topic for future analysis. 

Once nowcasting models of export and import trends are available, it will be also possible 

to conduct nowcasting of the trade balance.  
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Appendix: Estimation methodology using kernel methods 

In this appendix, we outline how to estimate the export function from Equation (6) 

using kernel methods. First, by differentiating the loss function 𝐿𝑝 by the parameter 𝜽𝑝, 

we obtain the following equation 

𝜕𝐿𝑝

𝜕𝜽𝑝
= ∑ {∑ 𝜽𝑝

𝑇𝜙(𝒙𝑖,𝑝,𝑑)

𝑖,𝑑

− 𝑒𝑥𝑝𝑜𝑟𝑡𝑝,𝑡}

𝑡

∙ ∑ 𝜙(𝒙𝑖,𝑝,𝑑)

𝑖,𝑑

+ 𝜆𝜽𝑝 （A1） 

When the parameter 𝜽𝑝 minimizes the loss function, the above equation is equal to 

zero, yielding the following equation. 

𝜽𝑝 = −
1

𝜆
∑{𝜽𝑝

𝑇𝜓(𝒙𝑝,𝑡) − 𝑒𝑥𝑝𝑜𝑟𝑡𝑝,𝑡}

𝑡

∙ 𝜓(𝒙𝑝,𝑡) （A2） 

where 𝜓(𝒙𝑝,𝑡) = ∑ 𝜙(𝒙𝑖,𝑝,𝑑)𝑖,𝑑  (𝑑 is a time in month 𝑡). Now, let 𝒂 be a vector whose 

𝑡-th element is −
1

𝜆
∑ {𝜽𝑝

𝑇𝜓(𝒙𝑝,𝑡) − 𝑒𝑥𝑝𝑜𝑟𝑡𝑝,𝑡}𝑡  and 𝜱 be a matrix whose 𝑡-th row is 

𝜓(𝒙𝑝,𝑡)𝑇. Then Equation (A2) can be rewritten as 𝜽𝑝 = 𝚽𝑇𝒂. Substituting this into the 

loss function 𝐿𝑝 in Equation (6), we obtain the following equation. 

𝐿𝑝 =
1

2
𝒂𝑇𝜱𝜱𝑻𝜱𝜱𝑻𝒂 − 𝒂𝑇𝜱𝜱𝑇𝒚 +

1

2
𝒚𝑇𝒚 +

𝜆

2
𝒂𝑇𝜱𝜱𝑇𝒂 （A3） 

where 𝒚𝑇 = (𝑒𝑥𝑝𝑜𝑟𝑡𝑝,1, 𝑒𝑥𝑝𝑜𝑟𝑡𝑝,2, … ). By denoting 𝜱𝜱𝑇 as 𝑲, Equation (A3) can be 

further written as follows. 

𝐿𝑝 =
1

2
𝒂𝑇𝑲𝑲𝒂 − 𝒂𝑇𝑲𝒚 +

1

2
𝒚𝑇𝒚 +

𝜆

2
𝒂𝑇𝑲𝒂 （A4） 

Equation (A4) expresses the loss function 𝐿𝑝 in terms of the new parameter 𝒂. Then, 

by differentiating the equation with respect to the parameter 𝒂, we can obtain 𝒂 that 

minimizes 𝐿𝑝 as follows. 

𝒂 = (𝑲 + 𝜆𝑰)𝑇𝒚 （A5） 

where 𝑰 is the identity matrix. The element of the 𝑛th row and 𝑚th column of matrix 

𝑲 can be written as follows 

𝐾𝑛𝑚 = 𝜓(𝒙𝑝,𝑛)𝑇𝜓(𝒙𝑝,𝑚)  
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 = ∑ 𝜙(𝒙𝑖,𝑝,𝑛′)
𝑇

𝑖,𝑛′

∑ 𝜙(𝒙𝑗,𝑝,𝑚′)

𝑗,𝑚′

 
 

 = ∑ 𝜙(𝒙𝑖,𝑝,𝑛′)
𝑇𝜙(𝒙𝑗,𝑝,𝑚′)

𝑖,𝑗,𝑛′,𝑚′

 
 

 = ∑ 𝑘(𝒙𝑖,𝑝,𝑛′, 𝒙𝑗,𝑝,𝑚′)

𝑖,𝑗,𝑛′,𝑚′

 
（A6） 

where 𝑛′ and 𝑚′ are the times in month 𝑛 and month 𝑚, respectively. In Equation 

(A6), 𝑘(𝒙𝑖,𝑝,𝑛′ , 𝒙𝑗,𝑝,𝑚′) = 𝜙(𝒙𝑖,𝑝,𝑛′)𝑇𝜙(𝒙𝑗,𝑝,𝑚′)  is called the kernel function. By 

combining the results of the above calculations, the following export function is obtained. 

𝑒𝑥𝑝𝑜𝑟𝑡𝑖,𝑝,𝑑 = 𝜽𝑝
𝑇𝜙(𝒙𝑖,𝑝,𝑑)  

 = 𝒂𝑇𝜱𝜙(𝒙𝑖,𝑝,𝑑)  

 
= 𝒌(𝒙𝑖,𝑝,𝑑)

𝑇
(𝑲 + 𝜆𝑰)𝑇𝒚 （A7） 

where 𝒌(𝒙𝑖,𝑝,𝑑) is a vector whose 𝑛-th element is ∑ 𝑘(𝒙𝑗,𝑝,𝑛′ , 𝒙𝑖,𝑝,𝑑)𝑗,𝑛′ . 

As Equation (A7) shows, in kernel methods the export function is expressed in terms 

of the kernel function 𝑘(𝒙𝑖,𝑝,𝑛′, 𝒙𝑗,𝑝,𝑚′), not of the original vector 𝜙(𝒙𝑗,𝑝,𝑚′). In many 

cases, even if 𝜙(𝒙𝑗,𝑝,𝑚′) is of a complex form, 𝑘(𝒙𝑖,𝑝,𝑛′, 𝒙𝑗,𝑝,𝑚′) can be relatively easy 

to compute. Hence, kernel methods can be used to estimate a variety of functions and 

make it possible to efficiently search for a form of the export function that results in high 

accuracy while reducing the amount of computation. In addition, the kernel function 

𝑘(𝒙, 𝒙′) has the property of taking large values when two vectors 𝒙 and 𝒙′ are similar. 

Therefore, the export function estimated using kernel methods can be interpreted as a 

function that predicts the amount of exports based on the amount of exports in months 

with similar distributions of metric tons of cargo and port call times. 
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Figure 1. Export shares by means of transportation 

 
Note 1: The figures represent each item's share in nominal export values for the period between 2017 and 2021. 

Note 2: All cars are assumed to be exported by car carriers. 

Source: Ministry of Finance 

 

 

 

Figure 2. Distribution of vessels around Japan 

  

 

Note: The dots show the locations of vessels on Jan. 1st, 2017. 

Source: VesselFinder 
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Figure 3. Overview of port data 

(a) Nagoya area           (b) Kitakyushu area 

 

 

 

 

 

 

 

 

 

 
Note 1: Panel (a) shows an example where port areas can be automatically identified. Panel (b) shows an example where port areas need 

to be identified manually due to the complicated coastal lines. 

Note 2: The red lines represent boundaries of ports. The blue shadows show the identified area of each port. 

Source: Ministry of Land, Infrastructure, Transport and Tourism 

 

 

Figure 4. Relationship between amount of cargo and draught 
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Figure 5. Example of unloading and loading by a vessel 

 
Note: Blue cells represent information that can be obtained from AIS data. If we assume that all goods loaded on vessels headed overseas 

are exports, the metric tons of cargo on a vessel when it leaves the final port of call (in this case 210) is equal to the sum of all 

exported goods loaded at domestic ports (in this case 10+20+40+…+30). 

 

 

Figure 6. Export index and real exports 

(a) Car exports               (b) Exports by containerships 

 

 

 

 

 

 

 

 

 

 

 

 
Note 1: The export index in Panel (a) is for car carriers, while the export index in Panel (b) is for containerships. 

Note 2: The real exports by containerships and air in Panel (b) are calculated by dividing the nominal values of goods exported through 

the respective modes by each good's export price index. 

Source: Authors' calculation based on data from Ministry of Finance 
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Figure 7. Exports of semiconductor-related goods 

 
Note: The graph shows the export values of semiconductors and semiconductor production equipment. 

Source: Ministry of Finance 
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Figure 8. Characteristics of individual ports 

(a) Values per weight of exported goods 

 
(b) Weight per container 

 
(c) Share of exports in shipments 

 
Note 1: TEU (Twenty-foot Equivalent Unit) is a measure of volume in units of twenty-foot long containers. 

Note 2: Domestic ports are lined up on the horizontal axis, with labels for major ports. 

Sources: Ministry of Finance, and Ministry of Land, Infrastructure, Transport and Tourism 
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Figure 9. Result of estimation of export functions using kernel methods 

 

 
Note 1: 𝒙 is a vector whose elements are 𝑥1, 𝑥2, … 

Note 2: The table shows the correlation coefficients between the year-on-year change rates of the export index calculated using each kernel 

function and of real exports by containerships. 

Note 3: The training data are for the period January 2017-December 2020 and the test data are for the period January 2021-March 2022. 

The export function is estimated based on the training data and the correlation coefficients are calculated for both data periods. 

 

 

 

 

 

Figure 10. Estimated export function using Gaussian kernel  

(a) Metric tons of cargo and export values         (b) Port call time and export values  

  

 

 

 

 

 

 

 

 

 

 
 

Note: The figures show the smoothed lines based on generalized additive models. 
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Figure 11. Overview of deep learning 

 
Note: The circles in the figure represent neurons, and the arrows show how the output result of one neuron fed into the next neurons. See 

Goodfellow et al. (2016) for details. 

 

 

 

Figure 12. Estimated export function using deep learning 

(a) Metric tons of cargo and export values       (b) Port call time and export values 

 

 

 

 

 

 

 

 

 

 

 
 

Note: The figures show the smoothed lines based on generalized additive models. 
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Figure 13. Export indexes for containerships 

(a) Time series  

 

(b) Out-of-sample period 

Without machine learning  

 techniques              Kernel methods               Deep learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: Real exports are real values of exported goods by containerships. Panel (b) shows the data between Jan. 2021 and Mar. 2022 (out-

of-sample period). 

Source: Ministry of Finance 
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Figure 14. OLS estimation result 

 
Note 1: We take year-on-year change rate of each variable. The estimation period is between Jan. 2018 and Mar. 2022. 

Note 2: The figures on the parentheses are standard errors. *, **, and *** represent statistical significance at 10%, 5%, and 1%, respectively. 

Note 3: In column (1) and (2), we use the export indexes for containerships based on kernel methods and deep learning, respectively. 

Note 4: The adjusted coefficient of determination of the AR(1) model for real exports for the same estimation period is 0.67.  

 

 

 

Figure 15. Estimation result of nowcasting models 

(a) Models with export index                (b) Model with traditional data 

 

 

 

 

 

 

 

 

 

 

 
Note 1: "Nowcasting model (kernel methods)" and "Nowcasting model (deep learning)" are estimated using the export indexes based on 

kernel methods and deep learning, respectively. "Nowcasting model (traditional data)" is estimated using the provisional report of 

the Trade Statistics of Japan. 

Note 2: The RMSEs for the out-of-sample period (Jan. 2021-Mar. 2022) are 5.04 for "Nowcasting model (kernel methods)", 3.64 for 

"Nowcasting model (deep learning)", and 5.80 for "Nowcasting model (traditional data)." The RMSE is 5.70 when a nowcasting 

model is estimated with the export index for containerships without applying machine learning techniques. 
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Figure 16. Export index by Cerdeiro et al. (2020)  

(a) Car exports             (b) Exports by containerships 

 

 

 

 

 

 

 

 

 

 

 
Sources: Cerdeiro et al. (2020) and Ministry of Finance. 

 

 

 

 

 

 

 

Figure 17. OLS estimation result for Cerdeiro et al. (2020) 

 
Note 1: We take year-on-year change rate of each variable. The estimation period is between Jan. 2018 and Mar. 2022. 

Note 2: The figures on the parentheses are standard errors. *, **, and *** represent statistical significance at 10%, 5%, and 1%, respectively. 

Note 3: In column (1) we use the export indexes for car carriers and containerships calculated by Cerdeiro et al. (2020). In column (2) and 

(3), we use the export index for containerships based on kernel methods and deep learning, respectively. 
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Figure 18. Estimation result of a nowcasting model  

using the export index by Cerdeiro et al. (2020)  

 

 

 

 

 

 

 

 

 

 

 
Note: The RMSE for the out-of-sample period (Jan. 2021-Mar. 2022) is 7.44. 
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