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Abstract 
 

Machine learning (ML) has been used increasingly in a wide range of operations at 
financial institutions. In the field of credit risk management, many financial 
institutions are starting to apply ML to credit scoring models and default models. In 
this paper we apply ML to a credit rating classification model. First, we estimate 
classification models based on both ML and ordinal logistic regression using the same 
dataset to see how model structure affects the prediction accuracy of models. In 
addition, we measure variable importance and decompose model predictions using so-
called eXplainable AI (XAI) techniques that have been widely used in recent years. 
The results of our analysis are twofold. First, ML captures more accurately than ordinal 
logit regression the nonlinear relationships between financial indicators and credit 
ratings, leading to a significant improvement in prediction accuracy. Second, SHAP 
(Shapley Additive exPlanations) and PDP (Partial Dependence Plot) show that several 
financial indicators such as total revenue, total assets turnover, and ICR have a 
significant impact on firms’ credit quality. Nonlinear relationships between financial 
indicators and credit rating are also observed: a decrease in ICR below about 2 lowers 
firms’ credit quality sharply. Our analysis suggests that using XAI while understanding 
its underlying assumptions improves the low explainability of ML.  
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1 Introduction 

Machine learning (ML) has been used increasingly in a wide range of operations at financial 

institutions. The Bank of England (2022) points out that more than 70% of UK financial 

institutions use ML in various business areas, including customer engagement, anti-money 

laundering measures, fraud detection, and risk management.1 

In the field of credit risk management, as discussed by the European Banking Authority 

(2021) (“EBA (2021)”), many financial institutions are starting to use ML to construct credit 

scoring models and default models that predict the creditworthiness of individual borrowers or 

firms based on their financial data and macroeconomic variables.  

Traditionally, parametric models such as logit regression have been widely used to build a 

model for borrowers’ default rates and credit ratings. In the field of default rate models, recent 

years have seen a growing trend in the use of ML, showing that ML can improve the accuracy 

of predictions as it can capture more complex nonlinearity. For example, using data on retail 

loans extended by individual Spanish banks, Alonso and Carbó (2021) show that ML achieves 

more accurate prediction of default rates than logit regression. In addition, Miura et al. (2019) 

construct a default model that can be applied to non-listed firms, mainly small and medium-

sized enterprises, using information on their deposit account activities, arguing that the ML-

based model achieves better default prediction than logit regression. 

In the field of credit rating classification models, on the other hand, while there have been 

several studies using parametric methods, such as Kobayashi (2001),2 few studies have used 

ML. A credit rating classification model is a framework to predict firms’ credit ratings based on 

their financial indicators and macroeconomic variables. Since ML can capture complex model 

structures, ML-based models are considered to have higher prediction accuracy than parametric 

models, especially when a nonlinear relationship exists between financial indicators 

(explanatory variables) and credit ratings (the dependent variable), as is often seen in practice. 

In those practical cases, if an ML-based credit rating classification model improves the accuracy 

                                                        
1 In addition to private financial institutions, central banks have also started to use ML. Araujo et al. (2022) 
point out that ML has been introduced into a wide range of central bank operations, such as data collection, 
monetary and economic analysis, monetary policy management, and prudence operations. 
2 Using data for Japan’s manufacturing industry, Kobayashi (2001) estimates ordinal and multinomial probit 
regressions with financial indicators as explanatory variables and corporate bond ratings as the dependent 
variable. 
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of prediction, we can expect to refine the credit risk assessment of individual firms and to 

increase the usefulness of scenario analysis based on the model.3  

Despite its ability to capture complex nonlinearity, ML often faces criticism for its model 

complexity and associated low explainability. For example, EBA (2021) points out that because 

the relationship between model prediction and explanatory variables is hard to understand, ML 

presents a challenge to ensuring adequate understanding by management and to justifying the 

results to supervisors.4 

In response to ML’s low explainability, studies on techniques to address this issue – so-called 

eXplainable AI (XAI) – have been developing rapidly in recent years. 5  Reflecting these 

considerations, in this paper we first evaluate the prediction accuracy of an ML-based credit 

rating classification model, and we then examine the relationship between firms’ financial 

indicators and creditworthiness using XAI. Finally, we discuss the caveats of using ML to 

estimate credit rating classification models. 

The main contributions of this paper are twofold. First, we use ML to estimate a credit rating 

classification model. Compared with research on default models, where a number of empirical 

studies have reported improvements in prediction accuracy when applying ML, few studies 

have applied ML to a rating classification model. Thus, this paper constructs two credit rating 

classification models based on ML and ordinal logit regression using the same dataset, and 

examines how model structure affects the prediction accuracy of models. The results show that, 

as in previous literature on default models, an ML-based credit rating classification model 

achieves higher prediction accuracy than ordinal logit regressions. 

Second, we use XAI techniques to examine the relationships between firms’ financial 

indicators and creditworthiness. We use two XAI techniques to understand what determines 

firms’ creditworthiness in the estimated credit rating classification model: (1) SHAP (SHapley 

Additive exPlanations), which represents the contribution of explanatory variables to model 

prediction, and (2) PDP (Partial Dependence Plot), which identifies changes in model prediction 

when changing explanatory variables. These XAI techniques reveal that, as discussed in 

                                                        
3 The Financial System Report, published in October 2022 by the Bank of Japan, estimates the response of 
firms’ default curves to a deterioration in ICR due to an increase in firms’ funding costs using an ML-based 
credit rating classification model. See Bank of Japan (2022) for details. 
4  Apart from ML’s low explainability and complexity, Alonso and Carbó (2022) mention that financial 
institutions also need to consider data security and privacy issues when implementing ML.  
5 Molnar (2019) and Morishita (2021) provide comprehensive coverage of studies on XAI.  
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research on default models, total revenue and ICR have high explanatory powers in the model, 

and ICR has a nonlinear impact on firms’ credit ratings.  

The remainder of the paper is organized as follows. Section 2 presents an overview of our 

models and data employed in the analysis. Section 3 compares the prediction accuracy of two 

classification models based on ML and ordinal logit regression. Section 4 examines the 

relationship between firms’ financial indicators and creditworthiness using SHAP and PDP, and 

discusses a number of caveats regarding the application of ML in credit rating classification 

models. Section 5 concludes. 

2 Data and models 

2.1 Data 

Overview 

We use credit ratings and financial data for about 6,000 firms, excluding Japanese firms. The 

observation period ranges from the January-March quarter of 1991 to the April-June quarter of 

2022. The data frequency is quarterly. 

The dependent variable is the long-term issuer ratings obtained from Moody’s Investors 

Service.6 Figure 1 shows the distribution of the number of firms by credit rating in the dataset. 

It shows the existence of an imbalance in the number of firms by rating class: while there are a 

cumulative total of 43,000 observations rated as “BBB,” only a cumulative total of 19,000 

observations are rated as “CCC or below.” 7  If the class imbalance is not addressed, the 

prediction accuracy for minority class firms may deteriorate because the classification model 

tends to label firms as majority class. For this reason, following Chawla et al. (2002), we use 

SMOTE (Synthetic Minority Over-sampling Technique) to construct a model with the same 

sample size for all classes.8  
  

                                                        
6 In this paper, for the sake of analysis, Moody’s ratings of A3 or above are classified as “A or above,” Baa1 
to Baa3 as “BBB,” Ba1 to Ba3 as “BB,” B1 to B3 as “B,” and Caa1 or below as “CCC or below.” 
7 An observation corresponds to a given firm in a given quarter in our dataset. 
8 In addition to SMOTE, there are other techniques to handle class imbalance, including Oversampling, 
which resamples instances for the minority class, and Downsampling, which removes instances for the 
majority class. We obtain similar results to SMOTE when using these techniques. 
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As explanatory variables, we use six types of financial indicators based on individual firms’ 

financial data obtained from S&P Global Market Intelligence: business size, repayment capacity, 

profitability, financial leverage, liquidity and sector growth (Figure 2).  

 

 

 

 

 

 

 

 

Specifically, the following nine explanatory variables are used; (1) business size: Total 

Revenue (log-scale); (2) repayment capacity: ICR (EBITDA / Cash Interest) and Net DER 

((Interest-bearing Debt – Cash and Cash Equivalents) / Total Equity); (3) profitability: EBITDA 

margin (EBITDA / Total Revenue), Net Income Growth, and Total Assets Turnover (Total 

Revenue / Total Assets); (4) financial leverage: Leverage (Interest-bearing Debt / Total Assets); 

Figure 2: List of explanatory variables 

Financial Indicators Variables

Business Size Total Revenue (Log-scale)

ICR (x)

Net DER (x)

EBITDA Margin (%)

Net Income Growth (%)

Total Assets Turnover (x)

Financial Leverage Leverage (%)

Liquidity Current Ratio (x)

Sector Growth Sector-level Revenue Growth (%)

Repayment Capacity

Profitability

Figure 1: Number of observations by rating 

Note: Shows the total number of firms by rating throughout the observation period 

0 10 20 30 40 50

A or
above

BBB

BB

B

CCC or
below

# of observations, thousands
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(5) liquidity: Current Ratio (Current Assets / Current Liabilities); and (6) sector growth: Sector-

level Revenue Growth. 9  These indicators are roughly consistent with the credit rating 

methodologies employed in Moody’s Investors Service (2021) and S&P Global Market 

Intelligence (2020). 

Relationship between credit ratings and financial indicators 

Figures 3 through 6 show the distributions by rating of the financial indicators used as 

explanatory variables. These distributions show several patterns in the relationship between 

ratings and financial indicators. 

 

 

 

 

 

 

 

 

 

 

 

 

 

First, we observe the monotonicity between ratings and financial indicators. The median 

values of total revenue and ICR in Figure 3 decrease monotonically and linearly as the rating 

worsens. In contrast, the median values of leverage increase monotonically and nonlinearly 

                                                        
9  Sectors are the 24 industry groups based on the S&P Global Industry Classification Standard. See 
https://www.spglobal.com/spdji/en/landing/topic/gics/ for details. 

Figure 3: Financial indicators by rating (1) 
Total revenue (log-scale) ICR (x) 

Leverage (%) 

Note:  
The vertical line in each bar shows the median, 
while the top edge and bottom edge show the 25 
and 75 percentile values, respectively. 
The same applies to the following figures. 

https://www.spglobal.com/spdji/en/landing/topic/gics/
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with rating downgrades. The change in median values of leverage from “A or above” to “BB” 

is relatively limited, while that for lower rating classes is more pronounced.  

On the other hand, some indicators do not behave monotonically as credit ratings change. 

First, the median value of financial indicators in Figure 4 shows an upward convex shape. The 

EBITDA margin first increases in the rating changes from “A or above” to “BB,” reaching its 

peak at “BB”, then gradually decreases thereafter. Current ratio and total assets turnover also 

show an upward convex shape, except that they peak at “B.” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Second, for several financial indicators such as ICR, leverage, net income growth, and net 

DER, the variance among firms is correlated to the level of credit ratings. The 25% – 75% 

interval of ICR expands as the rating gets higher: the interval is narrow around 0.9 - 2.8 at “CCC 

or below”, while it is much wider around 3.4 - 14.6 at “A or above”. In contrast to ICR, the 

25% – 75% interval of leverage expands as the rating lowers: it remains the same around 20% 

Figure 4: Financial indicators by rating (2) 
EBITDA margin (%) Current ratio (x) 

Total assets turnover (x) 
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- 40% at “A or above” and “BBB,” while jumping to 44% - 81% at “CCC or below”. The 

absolute values of net income growth and net DER shown in Figure 5 tend to be larger for 

lower-rated firms: while their median values stay almost the same across credit ratings, the 

wider the 25-75% interval expands as the rating lowers, and the more likely it is to be an outlier. 

One possible reason for this is the smaller business size of lower-rated firms. So, the 

denominators of the net income growth rate and net DER, i.e., net income and equity capital, 

tend to be small for low-rated companies, and the absolute values of the net income growth rate 

and net DER may vary significantly among firms. 

 

 

 

 

 

 

 

 

Finally, sector-level revenue growth shown in Figure 6 seems to bear no clear relationship 

with credit rating. Its median value decreases from “A or above” to “BBB,” but then rebounds 

to “B,” and turns again to decrease at “CCC or below.” 

 

 

 

 

 

 

 

Figure 5: Financial indicators by rating (3) 
Net income growth (%) Net DER (x) 

Figure 6: Financial indicators by rating (4) 
Sector-level revenue growth (%) 
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Given the shape of the distributions above, we can safely say that there is not necessarily a 

monotonous linear relationship between financial indicators and credit ratings. This implies that, 

in order to estimate a credit rating classification model with high prediction accuracy, it is 

essential to incorporate the nonlinear relationship between financial indicators and credit ratings 

and information on variances, as well as the average level of indicators. This also implies that 

an ML-based model, which can capture complex relationships between the dependent and 

explanatory variables, is likely to incorporate such nonlinear relationships between financial 

indicators and credit ratings, whereas an ordinal logit regression leads to relatively low 

prediction accuracy as it only evaluates the average level of indicators.  

Correlation matrix of financial indicators 

It is widely known that multicollinearity reduces the stability of estimated parameters in 

traditional parametric models such as logit regression. In addition, Morishita (2021) points out 

that ML-based models may face difficulty in evaluating the model when multicollinearity exists. 

However, the correlation matrix of financial indicators in Figure 7 shows that any pair-wise 

correlations are relatively low in our dataset, the highest of which is limited to 0.36 between 

EBITDA margin and total assets turnover. Thus, we consider the impact of multicollinearity on 

parameter stability and model evaluation to be small in our model. 

 

 

 

 

 

 

 

 

 

 

Figure 7: Correlation matrix of financial indicators 

Note: Each cell is colored according to the magnitude of the correlation. 
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2.2 Models 

We estimate two credit rating classification models, based on both ordinal logit regression 

and ML, which target five rating classes, namely “A or above,” “BBB,” “BB,” “B,” “CCC or 

below.” For our ML model, we choose a gradient boosting tree (LightGBM, henceforth 

LGBM)10 as it is capable of both high prediction accuracy and fast computation time.11 For 

model estimation and evaluation, we divided our dataset into three sub-sets: training, validation, 

and test sets. We estimate our model using the training and validation sets and evaluate the 

prediction accuracy based on the test set. 

In order to simplify computation and interpretation of SHAP and PDP, which will be 

presented in Section 4,12  we also estimate a model that classifies firms into two classes: 

“Investment Grade” (“IG”), and “Non-investment Grade” (“Non-IG”). Since the number of 

firms for both classes is almost the same (IG: 77,000, Non-IG: 80,000), we did not employ 

SMOTE for the 2-class model.  

Ordinal logit regression 

Yamashita and Miura (2011) argue that ordinal logit regression is often employed when 

estimating a classification model for ordered discrete data such as credit ratings. Ordinal logit 

regression assumes that the ordered discrete data 𝑌 with 𝐽 classes is determined by the latent 

variable 𝑦∗ and thresholds as follows.13 Here, 𝑡1, … , 𝑡𝐽−1 are the thresholds for determining 

classes, based on which observation is labeled as a respective class depending on the level of 

the latent variable 𝑦∗. 

𝑌 = {

1    − ∞ ≤ 𝑦∗ ≤ 𝑡1

 2      𝑡1 ≤ 𝑦∗ ≤ 𝑡1

∶
 𝐽      𝑡𝐽−1 ≤ 𝑦∗ ≤ ∞

 

                                                        
10  LightGBM (Light Gradient Boosting Machine) is a gradient boosting tree developed by Microsoft 
Research in 2016. As the name “Light” suggests, it reduces the estimation time required to tune parameters, 
achieving high prediction accuracy; see Ke et al. (2017) for more information on LGBM. 

11 Although some minor differences are observed in model prediction accuracy, other typical ML-based 
models (Random Forest and XGBoost) show roughly similar results to LGBM. 
12  SHAP values and PDPs in multi-class classification problems are calculated as many classes to be 
classified. For example, in the case of SHAP values, it is necessary to calculate the “SHAP value of an 
explanatory variable for the probability of being a certain credit rating” for each rating class, which takes 
more computation time and is difficult to interpret. 
13 The theoretical background of ordinal logit regression can be found in McCullagh (1980) and others. 
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The latent variable 𝑦∗ is defined as the weighted linear combination of each component 

𝑥𝑖  (1,2, … , 𝑀)  of 𝑀  explanatory variables with the respective weight 𝑤𝑖 . Note that the 

probability of being 𝑌 = 𝑗 relates to the probability that 𝑦∗ falls between two thresholds that 

determine the interval of class 𝑗. 

𝑦∗ = ∑ 𝑤𝑖𝑥𝑖

𝑀

𝑖=1

= 𝒘𝑻𝒙 

𝑃(𝑌 = 𝑗|𝒙) = 𝑃(𝑡𝑗−1 < 𝑦∗ ≤ 𝑡𝑗|𝒙) 

As shown in the equation above, ordinal logit regression is one of the generalized linear 

models, in which the latent variable is a linear combination of explanatory variables.14 The key 

characteristic of ordinal logit regression is that it assumes the weights 𝑤𝑖 are independent from 

classes. This assumption, which is known as the equal slopes assumption, is strong in the sense 

that the importance of explanatory variables in classification remains the same across all classes. 

In other words, when the importance of explanatory variables differs significantly across classes, 

it is inappropriate to use ordinal logit regression, and the model prediction accuracy is likely to 

decline.  

In this paper, we select seven variables out of nine financial indicators and the sector dummy 

as explanatory variables based on AIC and estimate the ordinal logit regression to classify credit 

ratings. Note that the ordinal logit becomes the normal binomial logit under the 2-class 

classification problem (IG/Non-IG). Details of the estimation results are provided in Appendix 

Figure 1.  

LGBM 

LGBM is one of the most widely used models in the field of ML. Gradient boosting trees, 

including LGBM, have a model structure in which many decision trees are sequentially 

connected. Each successive decision tree gradually reduces the residuals between actual data 

and model prediction produced using the previous trees.15  

Each decision tree in the gradient boosting tree splits observations in the training set. At each 
                                                        
14 In general, the weights of explanatory variables 𝑤𝑖 and thresholds for classes 𝑡𝑗 are estimated using the 
maximum likelihood method as in binomial logit regression. 
15 Tree-based models include models using a method called boosting, in which decision trees are sequentially 
connected, and those using a method called bagging, in which trees are trained in parallel, as in the case of 
Random Forests. 
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split node, a split condition is set using an explanatory variable, such as ICR less than 2. This 

decision tree structure allows LGBM to capture nonlinear relationships between explanatory 

and dependent variables. 

Figure 8 shows the splits in a decision tree. At each split node, observations that satisfy the 

condition move on the left side of the node, otherwise on the right, moving to the next node. At 

the terminal nodes, where all observations arrive after all split nodes, prediction values are 

assigned, such as 80% probability of being Non-IG. In each decision tree, the choice of 

explanatory variables for splits, their thresholds, and the prediction values of the terminal nodes 

are determined to minimize the discrepancy between the actual ratings in the training set and 

the model prediction, given predetermined parameters such as the maximum depth of the tree.16 

It should be noted that in case the model structure becomes too complex by splitting the 

observations more than necessary, the model tends to over-fit the training set (so-called 

overfitting). This results in extremely poor out-of-sample prediction accuracy and takes much 

more time for the estimation. 

 

 

 

 

 

 

 

 

 LGBM introduces several innovations to addresses one of the key challenges in modeling 

a gradient boosting tree, the slowness of estimation and parameter tuning. These innovations 

include improving the method of splitting and threshold selection of a decision tree and 

attempting to minimize errors by focusing on observations with large errors in the previous tree. 

                                                        
16 The maximum depth of tree is a parameter to determine the number of splits in the training set. A larger 
number of splits will further reduce the error between the training set and the model prediction, but it may 
also deteriorate the generalizability, namely worsening the fit to data not used in training, e.g. the test set. 

Figure 8: Diagram of splits in a decision tree 

Non-IG: 35
IG: 65

Non-IG: 21
IG: 49

Non-IG: 16
IG: 4

Non-IG: 5
IG: 45

Non-IG: 14
IG: 16

Non-IG: 9
IG: 1

Non-IG: 5
IG: 15

Leverage: <80% ≥80%

ICR: <2 ≥2 ICR: <4 ≥4

P(Non-IG): 0.8 0.1 0.9 0.25

# of firms
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As a result, LGBM often achieves high prediction accuracy in a relatively short estimation time. 

Considering these advantages, we use LGBM for our ML-based model. We estimate LGBM 

with the nine financial indicators listed above and sector (a categorical variable) as explanatory 

variables, credit ratings as the dependent variable, and log-loss as the loss function.17 

Interpretation and caveats of estimation results 

Generally, in addition to quantitative information such as a firm’s financials and 

macroeconomic indicators, credit rating agencies also use qualitative information in their rating 

process, such as the firm’s business environment and risks for the outlook. 18  However, 

qualitative information is sometimes not available for every firm in the dataset. Thus, we only 

use firms’ financial indicators to estimate credit rating classification models, as in the previous 

literature such as Kobayashi (2001). In addition, we group the dependent variable, credit ratings, 

into five (A or above/BBB/BB/B/CCC or below) or two (IG/Non-IG) classes. 

It should be noted that our model cannot perfectly predict credit ratings of rating agencies as 

we only use financial indicators. This may explain why, despite LGBM’s high prediction 

accuracy, there is still a discrepancy between the actual ratings and the model’s predictions, as 

we will see in Section 3. However, our analysis still provides valuable insights into how 

accurately the ratings can be estimated using only financial indicators and how the accuracy of 

ordinal logit regression and LGBM can differ given the same dataset. 

3 Prediction accuracy of models 

This section compares the prediction accuracy of two models using accuracy score and AUC 

(Area Under the Curve), which are metrics widely used to evaluate the prediction accuracy of 

classification models. 

                                                        
17  In estimation, we employ early-stopping to reduce the risk of overfitting and use a grid search for 
parameter tuning. Early-stopping is a technique that stops the estimation when no decrease in the loss function 
is observed in the validation set.  
18 Moody’s Investors Service (2021) and S&P Global Market Intelligence (2020) note that in their rating 
process, agencies consider qualitative information gathered by their analysts, e.g., the firm’s business profile 
(its position in the sector, regulations faced by the sector, the commitment to ESG) and financial/capital 
policies (whether it has captive financial subsidiaries that enables smooth financing, the commitment of its 
management to maintaining healthy financials and capital structure), in addition to quantitative information 
such as the firm’s financials, risk scores and inflation of the country where it resides. 
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3.1 Evaluation using accuracy score 

First, we evaluate the accuracy score of both models. Figure 9 shows the confusion matrices, 

with the predicted ratings on the horizontal axis and the actual ratings on the vertical axis. The 

accuracy score is the percentage of observations for which the model correctly labels the rating. 

Here, the accuracy score for the total observations is defined as the sum of the diagonal 

components of the confusion matrix divided by the total number of observations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Confusion matrices 
(1) 5-class classification 
Ordinal logit regression 

Note: Based on the test set. Each cell is colored according to the number of firms. 

A or
above BBB BB B CCC or

below
Accuracy

(%)

A or above 4,049 1,716 710 183 105 59.9

BBB 2,593 2,953 2,240 743 138 34.1

BB 626 1,015 1,947 1,308 347 37.1

B 260 556 1,473 2,450 2,195 35.3

CCC or below 57 127 376 1,108 2,131 56.1

Total Accuracy: 43.1

Prediction

Ac
tu

al

A or
above BBB BB B CCC or

below
Accuracy

(%)
A or above 5,992 569 139 48 15 88.6

BBB 681 6,965 723 223 75 80.4

BB 132 528 3,796 628 159 72.4

B 53 234 645 5,171 831 74.6

CCC or below 7 49 129 590 3,024 79.6

Total Accuracy: 79.4

Ac
tu

al

Prediction

LGBM 
 

(2) 2-class classification 
Ordinal logit regression 

 
LGBM 

 

IG Non-IG Accuracy
(%)

IG 13,966 1,464 90.5

Non-IG 1,817 14,159 88.6

Total Accuracy: 89.6

Ac
tu

al

Prediction

IG Non-IG Accuracy
(%)

IG 12,268 3,162 79.5

Non-IG 3,832 12,144 76.0

Total Accuracy: 77.7

Prediction

Ac
tu

al
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The accuracy score for the total observations in the 5-class classification problem is 43.1% 

for ordinal logit regression and 79.4% for LGBM. Although both models show deviations from 

the actual ratings, the accuracy score for LGBM is much higher. The confusion matrix for 

ordinal logit regression shows that while the accuracy score for both the highest and lowest 

classes (“A or above” and “CCC or below”) is relatively high at around 55 - 60%, that for other 

classes is relatively low, in the 30% range. This may be because ordinal logit regression is 

unsuited to capturing complex relationships such as nonlinearity between financial indicators 

and ratings and the correlation between the variance of financial indicators and ratings. The 

accuracy score for the 2-class classification problem is 77.7% for ordinal logit and 89.6% for 

LGBM, with LGBM showing the higher prediction accuracy, as in the 5-class classification 

problem. 

3.2 Evaluation using AUC 

Next, following Alonso and Carbó (2021), we compare the prediction accuracy of two 

models using AUC, which is one of the typical metrics used to measure the prediction 

performance of classification models. AUC represents the area under the ROC (Receiver 

Operating Characteristic) curve,19 which plots the TPR (True Positive Rate)20 on the vertical 

axis and the FPR (False Positive Rate)21 on the horizontal axis, with a larger AUC indicating a 

higher prediction accuracy of the classification model.22 

Figure 10 shows the AUCs calculated for both LGBM and ordinal logit regression. The left 

and right charts show the AUCs for the 5-class and 2-class classification problems. The figure 

shows that although both models deviate from the actual ratings, the AUC for the LGBM has a 

larger area under the discrimination curve and higher prediction accuracy for both the 5-class 

and the 2-class classification, as in the accuracy score.23 It should also be noted that the AUC 

                                                        
19  The ROC curve is the curve plotting how TPR and FPR change when the class criterion (threshold) 
changes in the classification model. 
20  TPR corresponds to the percentage of correct labeling of Non-IG firms as Non-IG in a 2-class 
classification problem (IG/Non-IG) where Non-IG is considered as positive. In a 5-class problem, TPR is 
calculated based on the definition of OvR (One-versus-Rest); defining a certain rating (e.g., “A or higher”) 
as positive and others as negative, TPR refers to the percentage of correct predictions of the positive rating 
as positive. 
21 FPR corresponds to the percentage of mistaken labeling of IG (negative) firms as Non-IG (positive) in the 
2-class problem above. In the 5-class, the TPR is calculated based on the definition of OvR. 
22 AUC should be equal to 1 for a model with perfect prediction, while it is close to 0.5 for a model with 
random prediction.  
23 The 5-class ROC curve in Figure 10 is a simple arithmetic average of the ROCs calculated based on the 
OvR definition for each class. 
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for ordinal logit regression shows a reasonable prediction accuracy of 0.77 for the 5-class and 

0.86 for the 2-class classification.24  

 

 

 

 

 

 

 

 

3.3 Background to differences in prediction accuracy 

As seen in the previous sections, although both ordinal logit regression and LGBM achieve 

reasonable prediction accuracy, deviations from the actual ratings still remain. This may be 

because the models in this paper differ from the methodologies taken by rating agencies in that 

we do not take into account qualitative information such as firms’ business profiles or risks. 

In the sections above, we see that LGBM achieves higher prediction accuracy than ordinal 

logit regression both in the accuracy score and AUC. Possible reasons for higher predictive 

performance in LGBM are that ordinal logit regression fails to capture the nonlinear 

relationship between the explanatory variables and the dependent variable, as well as the 

correlation between the variance of the explanatory variables and the dependent variable, as 

discussed in Section 2. For example, a 2 decrease in ICR from 10 to 8 and that from 2 to zero 

would have a different impact on a firm’s creditworthiness: the latter would deteriorate its credit 

quality significantly compared with the former. This nonlinear impact on creditworthiness 

cannot be captured in ordinal logit regression due to its formulation.25 In addition, a parametric 
                                                        
24 Ogi (2017) argues that, as a rough approximation level, a reasonable prediction accuracy corresponds to 
the AR value of about 0.8 (about 0.9 for AUC) for the default model using financial information for large 
firms. 
25  It is possible to incorporate such nonlinearity even in ordinal logit regression through variable 
transformation, such as employing additional power terms, interaction terms, and/or Z-values standardized 
by the mean and variance of the explanatory variables. However, choosing the proper variable transformation 

Figure 10: AUC 

5-class classification 2-class classification 

Note: Based on the test set. 
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model that assumes the distribution and the functional form a priori fails to capture the 

relationship where the average level remains almost the same across ratings but the variance 

increases as ratings change, as seen in net income growth. In contrast, the structure of a tree-

based ML model such as LGBM allows us to capture those nonlinear relationships, leading to 

higher prediction accuracy.  

In Section 4, we will discuss the relationship between firms’ financial indicators and 

creditworthiness using techniques to improve the ML explainability that have been studied in 

recent years. This includes how the ML-based model actually captures the nonlinear structure 

between variables, which parametric models hardly capture. 

4 Relationship between firms’ financial indicators and creditworthiness 

4.1 Techniques to improve ML explainability (XAI) 

Parametric models assume a priori a functional form and distribution. Thus, one can infer the 

impact of explanatory variables on model prediction by the estimated regression coefficients. 

In contrast, an ML-based model has a complex model structure that makes such inferences 

difficult. This low explainability is often pointed out as a challenge for ML.  

In practice, it is vital to understand which explanatory variables contribute to the model 

prediction. To meet this practical need, a growing number of studies on techniques to improve 

the explainability of ML-based models (XAI) have been conducted. Figure 11 shows an 

overview of the main XAI techniques. XAI techniques are categorized depending on the 

purpose of the analysis, such as whether researchers want to interpret the model as a whole 

(global) or understand the determinants of the model prediction on an observation basis (local). 

In most cases, researchers can calculate XAI independently of the model structure (model-

agnostic). This characteristic makes XAI applicable to a wider variety of ML-based models,26 

and also allows for comparison of the results derived by XAI techniques across different 

models.27 
                                                        
methods requires expertise in this area. In addition, using these transformed terms would undermine the 
model explainability, which is one of the benefits of parametric approaches. 
26 Kaneda et al. (2022) visualize the fluctuations of crude oil prices using SHAP and argue that, in addition 
to supply, demand, and market factors, monetary policy factors (measured by the balance sheet size of the 
Federal Reserve) have contributed to recent price fluctuations. 
27 These techniques are based on several assumptions that require caution in their interpretation. For example, 
PDP calculates the impact on model prediction without taking into account dependencies among explanatory 
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 Model-level (global) Observation-level (local) 

Overview/ 
usage 

 Which explanatory variables are 
important (learned) by the model? 

 Which variables have what impact 
on the predicted values? 

 How much does each explanatory 
variable contribute to the 
prediction result of the 
observation? 

Metrics28 

 Variable Importance (PFI, 
Permutation Feature Importance) 

 Partial Dependence Plot (PDP) 

 LIME (Local Interpretable Model-
agnostic Explanations)29 

 ICE (Individual Conditional 
Expectation)30 

SHAP (both model-level and observation-level are applicable) 

In this section, we discuss the relationship between firms’ financial indicators and 

creditworthiness in the estimated LGBM using SHAP, which evaluates at the instance level 

how much each explanatory variable contributes to the prediction, and PDP, which visualizes 

the change in the prediction when one or two explanatory variables change while others are 

held constant (the metrics underlined in Figure 11). Note that all of the following discussion is 

based on the LGBM for the 2-class classification problem. Thus, the SHAP values and PDPs 

presented in this section represent the probability of being Non-IG predicted by the model and 

the contribution to its prediction. 

4.2 SHAP 

SHAP (SHapley Additive exPlanations) is a technique to evaluate the contribution of each 

explanatory variable to the predicted value for each observation, and the contribution of each 

variable is called the SHAP value.31  Specifically, SHAP additively decomposes the model 
                                                        
variables. However, if such dependencies exist, it may give certain weights to combinations of explanatory 
variables that are unlikely to occur. 
28 While there are other variable importance metrics that are specific to tree-based models, such as Gains 
(the amount of reduction in prediction errors when splitting) or Splits (the total number used in splitting), this 
table only shows model-agnostic metrics. For more information on variable importance such as Gains, see 
Nembrini et al. (2018). 
29 LIME is a metric that constructs a linear regression model for the data space around the instance to be 
examined and measures how much each variable contributes to the prediction. See Ribeiro et al. (2016a, 
2016b) for details. Because LIME has a limitation in that its results easily fluctuate depending on how 
“around the instance” is defined, SHAP tends to be more widely used. 
30 ICE is a metric that shows how changes in a certain explanatory variable change the prediction of an 
observation in a single line. See Goldstein et al. (2015) for details of ICE. Note that PDP is the average of 
ICEs over all observations. 
31 SHAP is proposed by Lundberg and Lee (2017) and Lundberg et al. (2018) based on Shapley values in 
Game Theory. Shapley values in Cooperative Game Theory measure the marginal contribution by each player 
to the total payoffs achieved by the cooperation of all players so that the payoffs can be distributed among 
players in a fair manner. 

Figure 11: Overview of the main XAI techniques 
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prediction of an observation into the average of the predicted values of all observations and the 

SHAP value of each explanatory variable, as shown in the following formula. 

𝑓(𝑥)   =   𝐸𝑋[𝑓(𝑋)]  +   ∑ 𝜙𝑗

𝑀

𝑗=1

 

 

 

Details of the method used to calculate SHAP values can be found in Lundberg and Lee 
(2017), among others. Here, we illustrate the specifics of how SHAP values are calculated 
with a simple example model that predicts the probability of being Non-IG using two 
explanatory variables, ICR and leverage. First, suppose that the model predicts the probability 
that a firm with ICR 2 and leverage 80% is Non-IG is 0.7. Also assume that the average of the 
predictions for the entire sample is 0.5. In this case, the difference between them (0.2) is 
considered to be the sum of the contributions of ICR and leverage (SHAP values). Then the 
SHAP value of ICR is calculated as the change from the difference between “predicted value 
calculated without information on ICR” and the “predicted value calculated with information 
on ICR”. This method follows the method used to calculate the Shapley value for the marginal 
contribution of a player.32 The SHAP value of leverage can be calculated in the same manner. 
Next, we will discuss how SHAP can be used with specific examples. 

 

Observation-level evaluation 

In risk management practice, it is important to evaluate the credit rating classification model 

itself, so as to understand which explanatory variables are the most important determining 

factors in the rating, and it is also important to check the contribution of explanatory variables 

at the individual firm level. For example, when a firm is estimated to have a 90% probability 

of being Non-IG, it is sometimes important to know which financial indicators led to this result. 

SHAP can address this issue. Figures 12 and 13 show the contribution of the explanatory 
                                                        
32 Since the marginal contribution of a variable varies depending on the order in which the explanatory 
variables are added, a precise calculation of the Shapley values requires averaging the contributions for all 
possible combinations, which leads to an exponential increase in computational costs with the number of 
explanatory variables. Lundberg et al. (2018) develop the TreeSHAP algorithm, based on the idea of 
conditional expectation, which reduces the computational costs of SHAP values significantly in tree-based 
ML models. The algorithm allows the researcher to compute SHAP values more efficiently while maintaining 
the characteristics of Shapley values, which express the predicted value of an observation as the sum of 
contributions of explanatory variables. 

Predicted values of 
an observation 𝑥 

の予測値 

Average of 
predicted values of 

all observations 
 

Sum of SHAP values 𝜙𝑗 of 
𝑀 explanatory variables for 

an observation 𝑥 
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variables using SHAP for two firms chosen randomly from the dataset. Figure 12 represents a 

firm labeled as Non-IG, while Figure 13 shows a firm labeled as IG. In both cases, the horizontal 

axis shows the predictions of the model (𝑓(𝑥), the probability of being Non-IG), and the vertical 

axis lists the explanatory variables. The contribution of each explanatory variable to the model 

predictions (SHAP values, 𝜙𝑗) is shown as the difference between the predicted value for the 

firm and the average of predicted values of all firms (𝐸[𝑓(𝑥)] = 0.533).  

The predicted value of the firm shown in Figure 12 is 𝑓(𝑥) = 0.963, labeling as Non-IG. 

The contribution of each financial indicator shows that low ICR (1.194) boosts the probability 

of being Non-IG by 0.23 (23%pt), while low total assets turnover (0.71) and low total revenue 

(14.341) also contribute to the probability by 0.08 and 0.07 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, for the firm in Figure 13, the predicted value is low at 𝑓(𝑥) = 0.226, 

labeling as IG. SHAP values show that high ICR (7.878) and total revenue (15.75) reduce the 

Figure 12: Observation-level evaluation by SHAP (1) 
A firm labeled as Non-IG 

Note:  
SHAP values are calculated for a firm randomly chosen from the test set. 
𝐸[𝑓(𝑥)] in the figure shows the average of predicted values of all firms (the probability of being Non-IG). 
The same applies to the following figure. 

Probability of being Non-IG 
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probability of being Non-IG by -0.17 and -0.11 respectively, and the sector (Utilities) by -0.13.33 

 

 

 

 

 

 

 

 

 

 

 

 

Model-level evaluation 

Next, we introduce the SHAP variable importance and SHAP dependence plot, which are 

popular model-level evaluation techniques using SHAP. 

As described above, SHAP values can be used to evaluate the contribution of explanatory 

variables on an observation basis. They can also be used for model-level evaluation by 

accumulating the SHAP values of explanatory variables across the entire dataset (SHAP 

variable importance). SHAP variable importance represents the contribution of each 

explanatory variable for the entire dataset. This is calculated by taking the average of the 

absolute SHAP values for all observations. Figure 14 shows the SHAP variable importance for 

the estimated rating classification model. It shows that several financial indicators, such as total 

                                                        
33 The SHAP value for a categorical variable such as “Sector” is interpreted as a decrease in the probability 
that a firm with such high ICR and total revenue is Non-IG, considering the information on the sector to 
which the firm belongs. In fact, as shown in Appendix Figure 2, the share of high credit rating in Utilities is 
higher than that of other sectors. 

Figure 13: Observation-level evaluation by SHAP (2) 
A firm labeled as IG 

Probability of being Non-IG 
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revenue, ICR, total assets turnover, have a significant effect on the prediction of IG or Non-

IG.34   

 

 

 

 

 

 

 

 

 

 

The SHAP dependence plot shows the change in SHAP values and their variance according 

to the level of explanatory variables. The horizontal axis of the SHAP dependence plot generally 

represents the values of explanatory variables, while the vertical axis represents the 

corresponding SHAP values. Figure 15 shows the SHAP dependence plots for explanatory 

variables with high SHAP variable importance: total revenue, total assets turnover, ICR, and 

leverage. 

Figure 15 shows that total revenue has a negative relationship with the probability of being 

Non-IG: the probability of being Non-IG decreases as sales increase. ICR also has a negative 

relationship with the SHAP values, but the SHAP values increase nonlinearly when ICR drops 

below 2. In addition, the SHAP values gradually increase as leverage increases, and the variance 

of the SHAP values becomes large at both ends of the PDP. This suggests that the interaction 

effect with other explanatory variables likely has a more significant impact on the prediction of 

                                                        
34 In addition to SHAP variable importance, which accumulates SHAP values for each observation, there are 
other types of variable importance metrics; Permutation Feature Importance evaluates how random replacing 
of an explanatory variable decreases the prediction error of the model at model-level (paradoxically, which 
explanatory variables contribute the most to reducing the prediction error). The results using this method are 
similar to those shown in Figure 14. 

Figure 14: SHAP variable importance 

Note: Calculated using the test set. 
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IG or Non-IG classification when leverage takes extremely high or low values. These results 

are consistent with the characteristics of the dataset described Section 2. Note that total SHAP 

values increase (i.e., the probability of being Non-IG increases) as total assets turnover becomes 

higher. One possible explanation behind this counterintuitive result is that many of the Non-IG 

firms in this dataset have small total assets due to their small business size, which is the 

denominator of the ratio, leading to high total assets turnover.35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 PDP 

Partial dependence plot (PDP) is a typical model-level evaluation technique that visualizes 

                                                        
35 Figure 4 also confirms this trend that the lower the rating, the higher total assets turnover. 

Figure 15: SHAP dependence plots 

Note:  
Based on the test set. The horizontal and vertical axes show the level of explanatory variables and the SHAP 
values (contributions to the probability of being Non-IG). 

Total revenue (log-scale) ICR (x) 

Total assets turnover (x) Leverage (%) 
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the average relationship between explanatory variables and predicted values, showing the 

marginal effects of explanatory variables on a predicted value.36 Specifically, PDP is calculated 

by changing the level of one or two explanatory variables of interest for the entire dataset, while 

keeping other variables constant, and then taking the arithmetic mean of the model predictions 

derived for each level of the variables of interest.  

 

 

 

 

 

 

 

 

 

 

While the SHAP dependence plots in the previous section show the relationship between a 

single explanatory variable and its contribution to the probability of being Non-IG, PDP can 

visualize the impact on the probability of being Non-IG when multiple explanatory variables 

change simultaneously. 37  Figure 16 shows the probability of being Non-IG for each 

combination of ICR and leverage under the estimated rating classification model using PDP. 

The figure shows that, as in Figure 15, the probability of being Non-IG jumps sharply when 

ICR (vertical axis) drops below 2. As for leverage (horizontal axis), the relationship with the 

predicted values is weaker than that of ICR, but the probability of being Non-IG is higher for 

firms with higher leverage. 

As seen above, a two-variable PDP visualizes the impact of changes in ICR and leverage on 

                                                        
36 See Friedman (2001) for the theoretical background on PDPs. 
37 The single variable PDPs are omitted from this analysis as their results are similar to the SHAP dependence 
plots. 

Figure 16: Partial dependence plot (two variables) 

Note:  
Based on the test set. The horizontal and vertical axes show the level of explanatory variables of interest, 
while the figure in each cell shows the average of model predictions for each combination of ICR and 
leverage. 

Leverage (%) 

IC
R

 (x
) 
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the predicted values. Depending on the combination of explanatory variables, there may be 

cases where the impact of the interaction of the variables cannot be captured by simply 

observing the behavior of one variable. A two-variable PDP can be used to understand the 

impact in such cases, increasing the explainability of ML-based models. 

4.4 Caveats for the ML application for credit rating classification 

This section discusses several points that warrant attention when using ML for a credit rating 

classification model, taking into account the results of previous analyses. 

First, the interpretation of model prediction using XAI relies heavily on several assumptions. 

For example, PDP is calculated without considering dependencies among explanatory variables. 

Using XAI for ML-based models without these assumptions in mind may lead to inappropriate 

conclusions. Thus, when using XAI, it is vital to consider whether its assumptions are 

reasonable for the situation to which it is being applied. 

Second, the use of XAI to the classification problem of three or more classes requires several 

considerations. In this section, we focus on the 2-class classification problem, in which the 

calculation and interpretation of XAI is relatively simple. It should be noted that in a multi-

class problem, SHAP and PDP are calculated for the number of classes, making them more 

difficult to calculate and interpret; in a five-class problem, five SHAP values are calculated for 

a particular explanatory variable in a given observation. In contrast, a traditional parametric 

model, such as logit regression, explicitly assumes a functional form and distribution, ensuring 

a high explainability in that the impact of each explanatory variable on the predicted values can 

be easily understood from the regression coefficients. Considering these points, it is useful to 

use both ML and parametric models to complement each other in prediction accuracy and 

explainability, especially in cases where the interpretation of an ML-based model using XAI 

seems to be challenging.  

5 Conclusion 

In this paper, we apply ML to estimate a credit rating classification model and compare its 

prediction accuracy with ordinal logit regression, which has been widely used in this field. Since 

ML-based models can incorporate complex nonlinearities between the explanatory and the 

dependent variables, our ML-based model achieved higher prediction accuracy compared with 

parametric models. Our results are consistent with those in previous literature where ML was 
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used to estimate default models. 

We also examine the relationship between firms’ financial indicators and creditworthiness 

using XAI techniques such as SHAP and PDP. These XAI techniques reveal the existence of 

nonlinearities in the relationship between financial indicators and creditworthiness, such as ICR 

and leverage. Using XAI makes it possible to address ML’s low explainability to a certain 

extent, which has often been regarded as one of the key challenges for ML. 

Many studies have been conducted on XAI in recent years and new techniques will continue 

to be developed. In line with these developments, the use of ML in the operations of financial 

institutions is becoming more widespread and the importance and usefulness of these 

techniques will continue to increase.  
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Appendix Figure 1: Regression results of ordinal logit regression 

Note:  
The coefficient table and thresholds between classes for ordinal logit regression. 
In estimating the model, net income growth and net DER are excluded based on AIC, while sector fixed effects are 
included. 

Coef Std. Error Z-value P-value
Total Revenue (Log-scale) -0.638 0.004 -150.080 0.000

ICR (x) -0.008 0.000 -23.925 0.000
EBITDA Margin (%) -0.061 0.001 -74.840 0.000

Total Assets Turnover (x) 0.858 0.012 69.970 0.000
Leverage (%) 0.035 0.000 117.832 0.000

Current Ratio (x) 0.027 0.004 6.049 0.000
Sector-level Revenue Growth (%) -0.020 0.000 -43.967 0.000

Thresholds
A or above - BBB -11.09

BBB - BB -9.54
BB - B -8.14

B - CCC or below -6.54
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Appendix Figure 2: Credit rating composition by sector 

Note:  
Out of 24 industry groups in the S&P Global Industry Classification Standard, the rating compositions of the top 10 
groups with the highest percentage of firms with “A or above” are shown, together with that of all industries. 
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