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Phillips Curves: A Bayesian VAR-GMM Approach ∗
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Abstract

This paper considers a vertical production chain in an otherwise canonical
sticky price model, and estimates the New Keynesian Phillips curve with the
vertical production stages (PS-NKPC), using the commodity-flow-based U.S. price
data. We employ a Bayesian VAR-GMM method and compare the PS-NKPC
with the canonical NKPC based on a quasi-marginal likelihood criterion, which
is robust under weakly identified parameters. Thus our result adds to the empirical
relevance of the so-called “pipeline price pressures” incurred by upstream stages of
production. Our estimates suggest that (i) the PS-NKPC performs better than the
canonical New Keynesian Phillips curve in terms of quasi-marginal likelihood-based
model comparison, and (ii) pipeline price pressures have non-negligible impacts on
consumer price inflation as well as producer price inflation.
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1 Introduction

The smaller volatility of output prices compared with that of input prices (the left of

Figure 1 for the case of the U.S.) indicates incomplete pass-through of costs to prices, at

least contemporaneously. Another fact is that there seem lags in price adjustment, whose

degree is likely varying by stage of pricing in a production chain. In this regard, Blanchard

(1987) documents that even small lags of price adjustment in each of the production stages

can generate a large degree of price stickiness at the aggregate level. The sluggish price

adjustment could also cause a lingering cost-push pressures on pricing of downstream

firms, which Smets, Tielens, and Van Hove (2019) calls the “pipeline pressure.” This has

become evident again since the COVID-19 pandemic when the relative price of upstream

to downstream firms kept overshooting. (the right of Figure 1.)

Taking these observations into the New Keynesian Philips curve (NKPC), a modern

workhorse for monetary analysis, and obtaining the precise estimates of the pass-through

are therefore imminent tasks. Notwithstanding these, theoretical studies, such as Basu

(1995) and Huang and Liu (2001), have preceded in this field, leaving empirical works

still to be refined. The estimation of the NKPC in early days, such as Roberts (1995)

and Gaĺı and Gertler (1999), is agnostic about measuring the impact of cost pressures

incurred by suppliers. Clark (1999) estimates the response of upstream and downstream

prices to monetary shocks, but his vector autoregression model hinders backing up the

structural parameters of the NKPC. The works of Leith and Malley (2007) and Shapiro

(2008) are notable, in that they take into account intermediate goods in estimating

NKPCs. However, their methods are susceptible to weak identification issues common

to all variants of the NKPCs, leaving room for improving the estimation of the structural

parameters governing the pipeline pressure.

In this paper, we derive the NKPC with the vertical production chain, denoted as the

1



Figure 1: Inflation rates of various production stages and pipeline pressures in the U.S.
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PS-NKPC, and estimate it using the U.S. PPI and the deflator of Personal Consumption

Expenditure (PCE). In deriving the PS-NKPC, we follow the tractable model structure

of Huang and Liu (2005) and Wei and Xie (2020), where the production flow goes from

processing materials to all the way down to the distribution of consumption goods by

retailers. We employ Bayesian VAR-GMM in estimating the PS-NKPC, following the

claim made by Gemma, Kurozumi, and Shintani (2023), Kurozumi and Oishi (2022) and

Kurozumi, Oishi, and Van Zandweghe (2022) on the merit of the Bayesian approach in

comparing various forms of the NKPC.

Our estimation strategy has several notable advantages in pinning down the impact

of the pipeline pressure in the NKPC. First, the assumed vertical structure of production

in this paper facilitates finding the data counterpart of the model, especially for the

inflation rate by production stage, and the variable regarding the pipeline pressures.

We can readily point the PPI and PCE inflation, and their relative prices as natural
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candidates for the data that can be taken to our model.1 Second, as discussed in

Mavroeidis, Plagborg-Møller, and Stock (2014), our Bayesian approach can mitigate the

weak identification issues arising from difficulty in forecasting inflation, while avoiding to

estimate a full DSGE model, which may exacerbate model misspecification issues. Third,

our study enables a robust model comparison between the PS-NKPC and canonical NKPC

utilizing quasi-marginal likelihood (QML). Inoue and Shintani (2018) has shown that the

Bayesian model comparison is valid even in an environment where some parameters are

subject to weak identification, and we take the full advantage of their findings.

Our main findings are two-fold. First, we find that the PS-NKPC fits to the data better

than the canonical NKPC according to the QML under various setup in data and models.

This result is consistent with Shapiro (2008), which estimates a version of the PS-NKPC

utilizing the classical GMM. Our result overrides his result in that our model comparison

is robust to the weak identification issues intrinsic to the NKPCs. As a byproduct of the

better fit of the PS-NKPC, we find that our estimates of structural parameters under the

PS-NKPC formulation are more in line with micro-level evidence. For example, we find

that the estimated price stickiness of consumer prices under the PS-NKPC is closer to

the micro-level evidence, such as the one reported in Kehoe and Midrigan (2015).

Second, our estimation result points to non-negligible degrees of impact of the

pipeline pressure on the inflation rate of each production stage. Although there is a

range of uncertainty in the precise value of the share of intermediate inputs, we find

that the reduced-form coefficients on the pipeline pressure variables are economically

non-negligible. For example, taking the values of the pipeline pressure variable as given,

we find that it directly accounts for a full percentage point change in the PCE inflation

rate from 2021:Q3 to 2022:Q2, when the disruption in the global supply chain exerted a

1 Our model is agnostic about the interaction of sectoral price dynamics given by a detailed input-output
structure, which is explored in Smets, Tielens, and Van Hove (2019) and Rubbo (2023).
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mounting cost-push pressure to consumer prices.2 Although this number does not account

for the whole uptick of the inflation rates during the same period, our model provides a

candidate variable that structurally accounts for the fluctuation of inflation, which the

traditional output gap alone cannot sufficiently capture.

This paper is related to the previous literature in the following two ways. First, this

paper contributes to the literature on the limited-information estimation of Phillips curves.

Results of earlier literature that estimates the canonical NKPC (Gaĺı and Gertler, 1999;

Gaĺı, Gertler, and López-Salido, 2005) or the PS-NKPC (Shapiro, 2008) have suffered

from the weak identification issues, making model comparison a difficult task. To deal

with these problems, recent studies employ Bayesian GMM methods for estimating various

forms of NKPCs: Inoue and Shintani (2018) compares two forms of the hybrid NKPC,

one for assuming the rule-of-thumb (ROT) firms as in Gaĺı and Gertler (1999) and the

other for indexation-to-inflation as in Smets and Wouters (2007). Gemma, Kurozumi, and

Shintani (2023) estimates a “generalized” version of the NKPC in which they incorporate

non-zero trend inflation. They show that incorporating trend inflation into otherwise a

standard NKPC generates non-trivial changes in the drivers of inflation, thereby making

an improvement of the fit of the NKPC to the data. Kurozumi, Oishi, and Van Zandweghe

(2022) evaluates the validity of various forms of expectation formation in the NKPC, and

shows that sticky information is a plausible source of inflation inertia in the U.S. Related

to this study, Kurozumi and Oishi (2022) finds the best-fit model among variants of the

NKPC for Japan is different from that of the U.S. Our paper follows Kurozumi and Oishi

(2022) and others in that we utilize a Bayesian method to estimate the NKPC. But our

focus is the vertical production chain in an otherwise canonical NKPC, and to find the

empirical relevance of the pipeline pressure.

2 This number omits the indirect effect through the impact on inflation expectation, which should be
subject to a range of uncertainty.
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Second, therefore our study adds the empirical evidence to the literature on the

multi-sector production model and its implications on inflation dynamics. Incorporating a

production chain in which a firm uses intermediate goods produced by other firms has been

regarded as a source of monetary non-neutrality, and the flat Phillips curve. (Basu, 1995;

Huang and Liu, 2001; Nakamura and Steinsson, 2010; Pasten, Schoenle, and Weber, 2020)

The cascade effect of the pipeline price pressure, which often prolongs, is also predicted in

the large-scale multi-sector production model by Smets, Tielens, and Van Hove (2019).3

While in general, our result connects to various multi-sector sticky price models, the

closest theoretical counterpart to our empirical model is the vertical production chain

proposed by Huang and Liu (2001, 2004). In terms of monetary policy, higher welfare can

be achieved if a central bank places some weight on stabilizing intermediate goods prices,

in addition to on stabilizing the consumption goods prices, especially if the economy has

a large share of intermediate inputs (Huang and Liu, 2005; Wei and Xie, 2020; Rubbo,

2023). Most of these findings are presented in the models calibrated to the U.S. data.

Our empirical analysis provides some empirical grounds to the theoretical claims.

This paper is organized as follows. Section 2 presents the model setup to derive

PS-NKPC. Section 3 describes the Bayesian VAR-GMM method and the data for

estimation. Section 4 shows our empirical findings and model selections based on QML.

Section 5 concludes.

2 The Model

In this section, we present the PS-NKPC. We follow the model setup of Huang and

Liu (2005) and Wei and Xie (2020) to demonstrate stickiness in firms’ price setting under

a vertical production chain: producing consumption goods requires N vertical stages of

3 In general, literature on production network emphasizes the importance of intermediate goods in
accounting for the business cycle fluctuations. See the review by Carvalho and Tahbaz-Salehi (2019).
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processing, in which firms in the stage n of the production chain use the goods produced by

the firms in the stage n− 1 as inputs; prices are sticky and firms in each production stage

reset their prices in a Calvo (1983) fashion. In what follows, we assume zero trend inflation

for all stages of production. Thus the formulation of the NKPC for each production stage

is going to be quite simple, and what makes our model distinct from the canonical NKPC is

the calculation of the real marginal cost, the main driver of the inflation in New Keynesian

models.4

In each production stage, there exists a unit mass of firms, each producing

differentiated goods. The individual firm i in the first stage produces intermediate goods

using labor as the sole input. The production function is given by

Y1,t(i) = A1,tL1,t(i),

where A1,t is the productivity level and L1,t is the labor input.

In each subsequent stage, firms in the n-th production stage require the composite of

goods produced in the stage n−1 and labor as the inputs for production. The production

function of the n-th production stage is given by

Yn,t(i) = Ȳn−1,t(i)
φn(An,tLn,t(i))

1−φn ,

where Ȳn−1,t(i) = [
∫ 1

0
Yn−1,t(i, j)

(θ−1)/θdj]θ/(θ−1) is the composite of goods produced in the

(n− 1)-th production stage and θ is the elasticity of substitution.

We assume firms in each production stage are price-takers in the input markets while

they are monopolistic competitors in the output market. In each stage, firms set prices

following Calvo (1983) manner: a fraction α ∈ [0, 1) of firms keep their prices unchanged,

4 In the Appendix B, we perform a robustness check, in which we assume non-zero trend inflation for
the PCE deflator.
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while the rest of firms are allowed to change their prices.

In the case that firm i in the n-th production stage can adjust its price, they choose

the optimal resetting price P ∗n,t(i) by solving the maximization problem:

max
Pn,t

Et

∞∑
τ=t

ατ−tn Dt,τ (Pn,t(i)− Φn,τ )Y
d
n,τ (i),

where Dt,τ is the nominal stochastic discount factor between period t and τ , which is

common to all production stages.5 Φn,t is the nominal marginal cost and Y d
n,τ (i) is the

demand of firm i’s output. The latter two variables are given by

Φn,t =


Wt

An,t
n = 1(

P̄n−1,t

)φn ( Wt

An,t

)1−φn
n ≥ 2

, (1)

Y d
n,t(i) =


φn

Φn+1,t

P̄n,t

(
Pn,t(i)

P̄n,t

)−θ ∫ 1

0
Yn+1,t(j)dj n < N(

PN,t(i)

P̄N,t

)−θ
Ct n = N

, (2)

where P̄n−1,t = [
∫ 1

0
Pn−1,t(i)

(1−θ)di](1/1−θ) is the price for the composite intermediate goods

that firms at the n-th production stage take, and Ct is the aggregate consumption. Given

the production functions defined above, the marginal cost at the first stage of production

is the nominal wage evaluated in unit of effective labor, same as the textbook case of the

NKPC. For the subsequent production stages, in contrast, it contains the term regarding

upstream goods’ prices.

Solving and log-linearizing firm’s maximization problem, the inflation rate at each

5 The exact formula can be obtained by solving the canonical utility maximization problem of
households, which we will omit in this paper.
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production stage is given by

πn,t = βEtπn,t+1 + λnm̂cn,t, (3)

where λn ≡ (1 − βαn)(1 − αn)/αn. Although we have skipped showing the derivation

process,6 this functional form exactly matches that of the canonical forward-looking

NKPC. An only tweak is that m̂cn,t is the log-deviation from the steady state of the

nominal marginal cost divided by own price of firms at the n-th stage of the production

flow:

mcn,t = ln(Φn,t/P̄n,t).

This seemingly a minor change in the expression of the “real marginal cost” actually

offers a rich interpretation of the drivers of inflation, when we account for the expression

of the nominal marginal cost (1). For n ≥ 2, mcn,t can be rewritten as

mcn,t = ln

((
P̄n−1,t

P̄n,t

)φn ( Wt

P̄n,tAn,t

)1−φn
)
. (4)

The equation (4) demonstrates that, in addition to the wage term, the relative price

of the upstream firms to the downstream firms appears as a driver of the inflation. This

is the term associated with the pipeline pressure. Note that although only the price of

goods produced at one stage above in the production chain enter into the cost function,

prices of goods produced at even upper stages can have non-negligible impact on the

downstream price, due to the vertical structure of the production chain. In other words,

the cost-push shocks hit at multiple stages of the production chain would accumulate,

bringing a cascade effect on the inflation of consumption goods, which are produced by

6 The derivation process can be seen in Huang and Liu (2005) and Appendix F of Wei and Xie (2020).
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downstream firms.

We finish the discussion of this section by presenting the exact models that we fit to

the data. Let ĝn,t ≡ ln (Pn−1,t/Pn,t)− ln
(
P ss
n−1/P

ss
n

)
be the log deviation from the steady

state of the relative price term. Then it is immediate to arrive at the PS-NKPC as follows:

πn,t =



βEtπn,t+1 + λn

(
ŵt − â1,t −

N∑
i=2

ĝi,t

)
n = 1

βEtπn,t+1 + λn

(
φnĝn,t + (1− φn)

[
ŵt − ân,t −

N∑
i=n+1

ĝi,t

])
n = 2, ..., N − 1

βEtπN,t+1 + λn (φN ĝN,t + (1− φN)(ŵt − âN,t)) n = N

,

(5)

where ŵt and ân,t are the log-deviation of the real wage and productivity from their

corresponding steady state. We define the reduced-form coefficients κmc,n ≡ λn(1 − φ)

and κrp,n ≡ λnφ hereafter for convenience. The former is the coefficient on the traditional

marginal cost variable, and the latter is on the relative price between the upstream and

downstream firms.

Although it is straightforward to derive equations (5) once the marginal cost is

defined, there could be measurement issues in ŵt and especially in ân,t. To overcome

the uncertainty, we present an alternative specification of the PS-NKPC, with a help of

using household’s optimal condition on the trade-off between labor and leisure, which is a

standard condition in the modern macroeconomic theory. Specifically, log-linearizing

firms’ first order condition around the natural consumptions, i.e. the equilibrium
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consumptions under the flexible price economy, leads to7

πn,t =



βEtπn,t+1 + λn

(
σc̃t −

N∑
i=2

g̃i,t

)
n = 1

βEtπn,t+1 + λn

(
φng̃n,t + (1− φn)

[
σc̃t −

N∑
i=n+1

g̃i,t

])
n = 2, ..., N − 1

βEtπN,t+1 + λn (φN g̃N,t + (1− φN)σc̃t) n = N

, (6)

where c̃t and g̃n,t is log-deviation of real consumption and relative price from the

corresponding equilibrium value under the flexible price economy respectively, and σ is

the inverse of the elasticity of intertemporal substitution of households.

We use the following canonical NKPC as the benchmark to compare the performance

of the PS-NKPC. One can consider the canonical NKPC corresponds to the case where

final stage producers do not require intermediate goods input, i.e. φN = 0:

πN,t = βEtπN,t+1 + λN(ŵt − âN,t) (7)

= βEtπN,t+1 + λNσc̃t. (8)

In addition to the purely forward-looking NKPCs, we also consider hybrid NKPCs, in

which lagged inflation appears to take into account inflation inertia. We assume a fraction

ωn of the n-th stage producers is a version of rule-of-thumb (ROT) price setters following

Gaĺı and Gertler (1999).8 ROT firms set their price as the average price chosen in the

most recent round of price adjustment with a correction based on lagged inflation. That

7 See Appendix F in Wei and Xie (2020). In deriving the following PS-NKPC, we assume the constant
relative risk aversion in consumption and constant marginal utility of leisure for households’ preference,

i.e. Ut =
C1−σ
t −1
1−σ − Lt.

8 Although researchers tend to choose “indexation to inflation,” à la Smets and Wouters (2007) as a
dominant source of intrinsic inflation inertia, Inoue and Shintani (2018) finds that the ROT price
setting fits better to the data in terms of quasi-marginal likelihood. We follow the finding of Inoue
and Shintani (2018) and choose the ROT price setting as the candidate model for capturing inflation
inertia.

10



is, hybrid PS-NKPC is given by

πn,t = γb,nπn,t−1 + γf,nEtπn,t+1 + κnm̂cn,t, (9)

where

γb,n ≡
ωn

αn + ωn[1− αn(1− β)]
,

γf,n ≡
βαn

αn + ωn[1− αn(1− β)]
,

κn ≡
(1− ωn)(1− αn)(1− βαn)

αn + ωn[1− αn(1− β)]
.

As in the transformation of the equation (3) into the equation (5) and (6), the

reduced-form coefficients are denoted as κmc,n ≡ κn(1 − φn) and κrp,n ≡ κnφn for

convenience.

3 Estimation Method and Data

3.1 Baynesian VAR-GMM

Following Gemma, Kurozumi, and Shintani (2023), Kurozumi and Oishi (2022) and

Kurozumi, Oishi, and Van Zandweghe (2022), we estimate the PS-NKPCs, along with the

traditional NKPCs, employing a Bayesian VAR-GMM approach. This approach consists

of the following three features: the expected inflation rates in the NKPCs are derived from

Vector Auto Regression (VAR) models; a Bayesian technique is employed to estimate the

PS-NKPC and VAR simultaneously; a quasi-marginal likelihood (QML), proposed by

Inoue and Shintani (2018), is applied for model selection. The advantages of these three

features are well documented in Kurozumi and Oishi (2022), but we reiterate them in
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below, along with the description of the methodological details.

First, we choose a small set of economic variables including the inflation rate at each

production stage, and consider a VAR representation of the set of the variables to derive

the expected inflation rates in the NKPCs. In practice, let Πt ≡ [π1,t, π2,t, ..., πN,t] and

let Yt ≡ [y1,t, y2,t, ..., yM,t], where ym,t is the m-th endogeneous variable other than the

inflation rates in the system of the VAR. Then, assuming that the VAR has the lag

length of k, the VAR system can be conveniently defined as Xt = AXt−1 + εt, where

Xt ≡ [Πt, Yt, ...,Πt−k, Yt−k]
ᵀ, and A contains the block of the VAR parameters. Given the

VAR coefficient matrix A, it is straightforward to retrieve the one-period-ahead expected

inflation rates by appropriately choosing the rows of EtXt+1 = AXt.

Second, we apply a Bayesian method to estimate the VAR coefficient matrix A,

and PS-NKPC parameters ξnkpc ≡ [α1, ..., αn, ω1, ..., ωn, φ1, ..., φn]ᵀ simultaneously.9 As

stressed in Kleibergen and Mavroeidis (2014), the Bayesian approach can mitigate weak

identification issues in estimating NKPCs. We take the root of so-called one step

VAR-GMM, employed by Guerrieri, Gust, and López-Salido (2010), thereby taking the

moment conditions of the PS-NKPC and VAR jointly to the data.10

In order to estimate A and ξnkpc in a Bayesian fashion, we define the vector of moment

functions as follows. Let ξ ≡ [ξᵀnkpc, vec(A)ᵀ]ᵀ be the vector of parameters to be estimated

in the VAR-GMM specification. And let gt(ξ) denote the vector of moment functions,

which is given by

gt(ξ) =

 ut (ξ)Zt

(Xt − AXt−1)Xt−1

 , (10)

where ut(ξ) is the vector of the residuals for the PS-NKPC, and Zt is the vector of

9 We fix the discount rate β, and intertemporal elasticity of substitution σ at specified values. See
section 3.2 for details.

10 Alternatively, the VAR and GMM part can be estimated sequentially, as in Sbordone (2002) and
Cogley and Sbordone (2008). We do not take this root, and we aim to use full information effectively
in estimating all relevant parameters using the Bayesian method.
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instruments including a constant of unity.

We use the efficient two-step GMM estimator following Gaĺı and Gertler (1999) and

Gaĺı, Gertler, and López-Salido (2005). This estimator is choosen to maximize the

objective function q(ξ) = −(1/2)g(ξ)′Wg(ξ), where g(ξ) = (1/
√
T )
∑T

t=1 gt(ξ) and W

is the optimal weighting matrix using Newey and West (1987) HAC estimator. 11

We then apply the Block Metropolis-Hastings algorithm to estimate the parameter

set ξ ∈ Ξ, following Chernozhukov and Hong (2003). Specifically, the estimators are

evaluated based on the quasi-posterior distribution for ξ, which is defined as

exp(q̂(ξ))p(ξ)∫
Ξ

exp(q̂(ξ))p(ξ)dξ
,

where p(ξ) is the prior distribution for ξ. We evaluate this quasi-posterior distribution

using the Markov Chain Monte Carlo (MCMC) simulation. In doing so, the Block

Metropolis Hastings algorithm with two blocks, one for NKPC parameters and the other

for the VAR coefficients, is applied following Kurozumi and Oishi (2022) among others. 12

In our estimation, the first 10,000 draws are discarded as a burn-in, and the quasi-posterior

distribution is derived using the remaining 200,000 MCMC draws.

Finally, we exploit the result of Inoue and Shintani (2018) for model selection under

weak parameter identification, and we use the following QML to select a dominant

PS-NKPC model:

∫
Ξ

exp(q̂(ξ))p(ξ)dξ.

Specifically, we compute the QML for each PS-NKPC using the modified harmonic mean

11 The matrix W is given by W = [Γj(ξ̃) +
∑J
j=1(j/J)(Γj(ξ̃) + Γj(ξ̃)

′)]−1, where Γj(ξ̃) = [1/(T −
j)]
∑T
t=j+1 gt(ξ̃)gt−j(ξ̃)

′and J is the lag length chosen by automatic bandwidth selection method of

Andrews (1991). This paper employs the first-step consistent estimator for ξ̃.
12 The details of the algorithm are shown in the Appendix A.
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method of Geweke (1999), and then select a model with larger value of QML as a better

suited model.

As to which stages of the production flow to include in the estimation of PS-NKPC,

we prepare for several specifications. At first hand, one can readily posit the PS-NKPC

for the consumer price inflation only, that is the equation for the inflation rate of the last

stage of the production chain. In that case, we estimate the equation (3) for n = N only,

and the set of inflation variables enters into the VAR, Πt = [πN−1,t, πN,t]. An alternative

specification is that the inflation dynamics in each production stage can be approximated

by the PS-NKPC (3). Then the aforementioned moment functions (10) should include all

the residuals of NKPCs from the 1st to N -th production stage, in which case we should

include the whole set of inflation rates in the VAR specification as well.

We should also consider the candidate set of other endogenous variables in the VAR,

Yt. In this paper, we take a very simple approach, only to include the variables relevant

to the marginal cost. That is, for (5) we choose x̂t = ŵt − ât as the variable included in

Yt, and for (6) we choose c̃t.

3.2 Fixed parameters and prior distribution

In this subsection, we describe the parameters to be fixed in our estimation, and the

prior distributions for estimated parameters. Two parameters are fixed in our estimation:

the subjective discount factor β = 0.9975 and inverse of the elasticity of intertemporal

substitution σ = 1.39 based on the mode of the posterior distribution estimated by Smets

and Wouters (2007).

We estimate other parameters in the Phillips curves and coefficients in VAR. The

prior distributions of parameters included in the Phillips curves are shown in Table 1.

For the probability of no price change at the n-th production stage, αn, and the fraction
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Table 1: Prior distributions for parameters

Parameters in Phillips curve Distribution Mean Std. dev.

αn probability of no price change at n-th stage beta 0.5 0.1

ωn fraction of ROT pricing n-th stage firms beta 0.5 0.1

φn share of intermediate goods input at n-th stage beta 0.5 0.2

of rule-of-thumb pricing for the n-th stage firms, ωn, the prior distributions are assumed

to be the beta distribution with mean 0.5 and standard deviation 0.1. For the share

of intermediate goods input at the n-th production stage, φn, the prior distribution is

assumed to be the beta distribution with mean 0.5 and standard deviation 0.2.

3.3 Data

The data for our estimation are based on the U.S. time series with quarterly frequency.

We use the producer price index (PPI) constructed by the Bureau of Labor Statistics

(BLS) for prices of upstream production stages. The three categorical data resembling

to the vertical production chain are available for the PPI with a long time-series: crude

material price, intermediate goods price, and wholesale finished consumer goods price.13

We also use the deflator of personal consumption expenditures (PCE) published by the

Bureau of Economic Analysis (BEA) as the price of the final stage, and thereby we assume

four stages in the production chain, N = 4.

For inflation drivers other than the pipeline pressures, we need to have observations

of real wage in unit of efficient labor, which appears in (5), and the log deviation

of consumption from its hypothetical flexible price equilibrium level, which appears in

(6). For the former, we first construct the real wage by dividing the total employment

13 The state-of-the-art methodology to capture the pipeline pressure in the U.S. PPI is based on the final
demand-intermediate demand (FD-ID) aggregation system. Although the FD-ID system corresponds
to the notion of vertical production chain, and covers broader price categories including service prices,
the data are available only from November 2009. To ensure long-term time series data, we employ
the PPI based on the stage-of-processing aggregation system in estimation.
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cost index (ECI) tabulated by BLS by the PCE deflator, and then subtract the

utilization-adjusted total factor productivity calculated by the San Francisco Fed. We

assume, for simplicity, that the productivity is the same across production stages, i.e.

ân,t = ât for all n. In all, x̂n,t = ŵt − ât is computed as the log real wage net of the

log productivity in terms of the deviation from its sample mean. For the latter, the log

deviation of consumption from its hypothetical flexible price equilibrium level is derived by

applying Hamilton (2018) filter to the U.S. personal consumption expenditure by BEA.14

For instruments Zt, we include four lags of the inflation rate, and those of the upstream

inflation rate, following Shapiro (2008). For instance, we include the PCE inflation and

the finished consumer goods PPI inflation in Zt in estimating the final stage PS-NKPC.

We also include two lags of the nominal wage growth measured by total ECI, and the

proxy for canonical real marginal costs, x̂t orc̃t.

4 Empirical Results

We estimate the PS-NKPCs in two ways. First, we estimate the final stage PS-NKPC

and compare them with the canonical NKPC. Second, we estimate the PS-NKPCs of all

stages simultaneously, except for the first stage of processing, to compare the parameters

across production stages.15

4.1 Comparison of PS-NKPC and canonical NKPC

We start from the model comparison between the PS-NKPC and canonical NKPC

for the PCE deflator. In estimation, we use the data covering the post Great Inflation

14 For pipeline pressure variables gn,t to be aligned with the definition of x̂n,t and c̃t, we construct the
log deviation from the sample mean of gn,t for ĝn,t, and the Hamilton-filtered series of gn,t for g̃n,t,
and use them accordingly depending on specification of the PS-NKPC.

15 The first stage corresponds to the inflation of crude materials, which is likely to be determined by
international markets. This is the out of scope of our study.
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Table 2: Log QML of PS-NKPCs and canonical NKPCs

VAR lag length

Geweke τ data Phillips curve k=1 k=2

0.5

x̂t

forward-looking
PS-NKPC -75.64 -110.26

canonical NKPC -78.21 -112.25

hybrid
PS-NKPC -79.93 -112.55

canonical NKPC -80.23 -113.52

c̃t

forward-looking
PS-NKPC -75.41 -113.58

canonical NKPC -80.74 -117.80

hybrid
PS-NKPC -79.54 -116.75

canonical NKPC -84.10 -119.81

0.9

x̂t

forward-looking
PS-NKPC -75.60 -110.41

canonical NKPC -78.21 -112.36

hybrid
PS-NKPC -79.90 -112.64

canonical NKPC -80.22 -113.63

c̃t

forward-looking
PS-NKPC -75.39 -113.73

canonical NKPC -80.75 -117.95

hybrid
PS-NKPC -79.52 -116.82

canonical NKPC -84.11 -119.96

Notes: This table presents the log QML for each specification of PS-NKPCs and NKPCs. For the data
column, x̂t corresponds to the case where the labor cost part of (4) is defined as ŵt − ât. Instead, c̃t
corresponds to the case where the log deviation of consumption from its natural level is substituted for
the labor cost part of (4). For the Phillips curve column, the “forward-looking” corresponds to the model
specification (3) and “hybrid” corresponds to (9). The sample period is from 1988:Q1 to 2019:Q4.

periods from 1988:Q1 to 2019:Q4. As described in the preceding section, the model

selection criteria is the QML. Table 2 shows log QML for the PS-NKPCs and canonical

NKPCs with the VAR lag length k = 1, 2. We use two alternative truncation parameters

τ = 0.5, 0.9 proposed by Geweke (1999) to calculate QML. Table 2 reports the result.

Our estimation results mainly point two findings. First and most importantly, the

PS-NKPCs have larger QML than the canonical NKPCs under a broad set of combinations

in data, model specification and truncation parameters in calculating the QML. This
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finding suggests that pipeline pressures emerging from the vertical production chain play

an important role in accounting for inflation fluctuations. Our result is also consistent

with the result of Shapiro (2008), which shows that using real unit input costs as a proxy

of the real marginal costs yields a better fit with NKPC models in terms of significance

and stability of the coefficients on the marginal cost.

Second, by comparing purely forward-looking NKPCs with hybrid NKPCs, our

estimation results show that the forward-looking models have larger QML than hybrid

ones universally. Although the extensive studies of Gemma, Kurozumi, and Shintani

(2023) and Kurozumi, Oishi, and Van Zandweghe (2022) on the trend inflation and sources

of inflation inertia generally support the opposite result, with which we concur, the vastly

stylized comparison between the purely forward-looking NKPC and the canonical hybrid

NKPC in our study has yielded somewhat a different result. Note, however, that our

result is not solely contradicting with Kurozumi, Oishi, and Van Zandweghe (2022), in

that they also report that a purely forward-looking NKPC can be favored against a vastly

stylized hybrid NKPC à la Smets and Wouters (2007) for the post Great-inflation era.

4.2 Quasi-posterior estimates of Phillips curve

Next, we report quasi-posterior estimates of structural parameters and reduced-form

coefficients for the PS-NKPC and the canonical NKPC for the PCE deflator.

Table 3 reports the quasi-posterior mean and 95 percent highest quasi-posterior density

interval for the structural parameters and reduced-form coefficients for estimated Phillips

curves for the PCE deflator. We find that the probability of no price change α4 in the

PS-NKPCs is lower than that of the canonical NKPCs. This result is invariant with the

existence of ROT-pricing firms. The probability of no price change for the NKPC in the

second column, α4 = 0.899, and that for the PS-NKPC in the third column, α4 = 0.837,
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Table 3: Quasi-posterior estimates of Phillips curves for PCE deflator

forward-looking hybrid

parameter NKPC PS-NKPC NKPC PS-NKPC

α4

0.899 0.837 0.903 0.850

[0.874, 0.925] [0.803, 0.877] [0.874, 0.932] [0.800, 0.900]

φ4

0.661 0.664

[0.470, 0.836] [0.360, 0.880]

ω4

0.455 0.431

[0.351, 0.574] [0.319, 0.545]

γb,4
0.334 0.336

[0.278, 0.392] [0.271, 0.395]

γf,4
0.665 0.663

[0.607, 0.721] [0.604, 0.728]

κmc,4
0.017 0.015 0.005 0.005

[0.009, 0.026] [0.006, 0.026] [0.003, 0.009] [0.001, 0.009]

κrp,4
0.022 0.007

[0.010, 0.034] [0.002, 0.015]

Notes: This table reports the quasi-posterior mean for each parameter in the Phillips curves for the PCE
deflator, the final stage of the production flows, using the consumption gap c̃t with the VAR lag length
of k = 1. The numbers in square brackets show 95 percent highest quasi-posterior density interval. The
sample period is from 1988:Q1 to 2019:Q4.

imply that the average duration a price is fixed for consumer prices is 29.7 months and

18.4 months respectively. This finding provides a support for the PS-NKPC, because

the duration implied in the PS-NKPC is closer to the finding by Kehoe and Midrigan

(2015) who reports the average duration of 14.5 months.16 The left panels of Figure 2

visually make this case: although the posterior density of α4 of the PS-NKPC somewhat

overlaps with that of the canonical NKPC, the density apparently shifts to the left when

the PS-NKPC is assumed.

16 Nakamura and Steinsson (2008) reports a shorter average duration implied in PS-NKPC type
specifications, about 7-11 months. However, this number takes temporary price increases into
considerations. In contrast, Kehoe and Midrigan (2015) calculates the duration excluding both
temporary price increases and decreases.
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Figure 2: Quasi-posterior distributions of NKPC parameters
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Note: These panels show quasi-posterior distributions for PS-NKPCs and NKPCs using c̃t with the VAR
lag length of k = 1.

The share parameter for intermediate goods in the marginal cost, φ4 is around

two-thirds, which implies an important role of intermediate inputs in production process.

Given α4 and φ4, we can calculate the reduced-form coefficient on the relative price,

κrp,4. We find that the magnitude of κrp,4 implies that the relative price plays a

non-negligible role to account for inflation dynamics of the PCE deflator given that

pipeline price pressures emerging from upstream production stages are volatile and often

persistent, as shown in Figure 1. For example, in the case of the forward-looking

PS-NKPC, the large uptick in the pipeline pressures from the production stage of the

wholesale finished consumer goods from 2021:Q3 to 2022:Q2 has induced a cumulative

of around one percent increase in the PCE deflator in the corresponding periods, in a

direct manner. Although this direct effect accounts for just around one-sixth of the
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PCE inflation during the same period,17 this order of magnitude is much larger than

the impact generated from output gap variation given our estimates of κmc,4, which is in

line with traditional estimates. Thus our result suggests that the pipeline pressure is a

non-negligible force in accounting for the U.S. inflation dynamics.

Finally, we find no significant difference in the value of the reduced-form coefficients

on the canonical real marginal cost variables, κmc,4, between the PS-NKPCs and canonical

NKPCs, holding other parts of model specification unchanged. These values are somewhat

larger than the median estimate shown in Mavroeidis, Plagborg-Møller, and Stock (2014),

but they are still within the region of so-called flat Phillips curves reported in previous

studies.

4.3 Comparison of PS-NKPCs by production stage

The above estimates only consider the PS-NKPC at the final stage of production. But

as our model exposes, the PS-NKPC can be applied to upstream firms as long as they also

require intermediate inputs. In that case, the pipeline pressure could flow from the firms

at a far upstream stage to the bottom of the production flow gradually. To this end, we

jointly estimate the PS-NKPCs for the PPI intermediate goods, wholesale finished goods

(PPI final consumption goods), and PCE deflator, each corresponding to n = 2, 3, 4. The

structural parameters in the Phillips curves and the reduced-form coefficients are reported

in Table 4 and Table 5 respectively. The quasi-posterior distributions for some important

parameters are shown in Figure 3.

Our findings can be summarized as follows. First, forward-looking models have larger

values of QML compared with hybrid models, as in the case of estimating the final stage

PS-NKPC alone. This implies that the stylized forward-looking NKPC, when combined

17 The effect of the pipeline pressure should feed into the inflation expectation term. We omit this effect
as there should be uncertainty in, for example, the persistence of pipeline pressures, which is the out
of scope of this paper.
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Table 4: Structural parameters of PS-NKPCs of all stages

c̃t x̂t
forward-looking hybrid forward-looking hybrid

QML -100.46 -109.28 -98.48 -104.02

α2
0.766 0.796 0.776 0.794

[0.732, 0.800] [0.750, 0.844] [0.738, 0.813] [0.741, 0.847]

α3
0.739 0.725 0.747 0.704

[0.699, 0.783] [0.654, 0.802] [0.706, 0.791] [0.636, 0.780]

α4
0.844 0.816 0.855 0.807

[0.816, 0.875] [0.763, 0.874] [0.823, 0.893] [0.752, 0.866]

φ2
0.369 0.396 0.417 0.372

[0.147, 0.653] [0122, 0.741] [0.152, 0.739] [0.09, 0.772]

φ3
0.420 0.734 0.407 0.531

[0.178, 0.648] [0.411, 0.933] [0.180, 0.607] [0.272, 0.697]

φ4
0.557 0.438 0.453 0.344

[0.451, 0.678] [0.181, 0.702] [0.258, 0.705] [0.100, 0.691]

ω2
0.471 0.485

[0.340, 0.499] [0.404, 0.574]

ω3
0.426 0.396

[0.320, 0.564] [0.300, 0.492]

ω4
0.336 0.371

[0.253, 0.423] [0.285, 0.471]

Notes: This table reports the quasi-posterior mean for each structural parameter in the Phillips curves
for the PPI intermediate goods, n = 2, wholesale finished goods, n = 3, and PCE deflator, n = 4. The
results are the case with the VAR lag length of k = 1. The numbers in square brackets show 95 percent
highest quasi-posterior density interval. The sample period is from 1988:Q1 to 2019:Q4.
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with the vertical production chain, is a suitable extension of the canonical NKPC for the

U.S. inflation dynamics in the post Great-inflation era.

Second, the probabilities of no price change αn are a bit smaller for upstream firms.

For instance, in the case of the forward-looking PS-NKPC using x̂t, the implied durations

between price changes for intermediate goods and wholesale finished goods are around 13

months and 12 months respectively, shorter than the case for consumer prices. The

estimated durations for PPI are a bit larger than the micro-level evidence shown in

Nakamura and Steinsson (2008), which reports the median duration of 7-9 months for

the U.S. PPI. Note, however, that our numbers are smaller than the classical GMM

estimates of Leith and Malley (2007), which reports the average duration of around 15

months for the U.S. manufacturing industries. Our result reduces the gap between the

micro-level evidence and econometric estimates.18

The intermediate input shares φn reported in Table 4 center around 0.4-0.5. But

there is a range of uncertainty in the estimates, which is evident from the graphical

representation of the quasi-posterior distribution seen in Figure 3. We may require more

information, such as on quantity, to obtain precise estimates of the intermediate input

shares.19

Even with this uncertainty, we find a non-negligible effect of the pipeline pressure in

each stage of production, as the estimated κrp,n have a similar order of the magnitude to

the case of solo estimation of the final stage PS-NKPC. (See Table 5)

Finally, we find that the coefficients on the canonical real marginal cost κmc,n are larger

for upstream firms, consistent with the fact that inflation rates at upstream production

18 Another factor that can explain the difference is that Nakamura and Steinsson (2008) identifies
temporary price increases as regular price changes, which unsurprisingly shortens the duration.

19 Incorporating the inflation dynamics of upstream firms into the PS-NKPC specification changes the
shape of moment functions, the functional form of the VAR, and the set of instruments in estimation.
These together could change certain aspects of our estimation results, especially for parameters that
are subject to weak identification.
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Table 5: Reduced form coefficients in PS-NKPC

c̃t x̂t
forward-looking hybrid forward-looking hybrid

γb,2 0.343 0.379
[0.301, 0.381] [0.335, 0.423]

γb,3 0.369 0.359
[0.305, 0.437] [0.301, 0.411]

γb,4 0.291 0.314
[0.235, 0.342] [0.259, 0.370]

γf,2 0.656 0.620
[0.619, 0.698] [0.577, 0.664]

γf,3 0.631 0.640
[0.562, 0.694] [0.589, 0.698]

γf,4 0.708 0.685
[0.657, 0.763] [0.629, 0.740]

κmc,2 0.065 0.018 0.040 0.012
[0.027, 0.108] [0.005, 0.034] [0.013, 0.074] [0.003, 0.025]

κmc,3 0.075 0.013 0.051 0.023
[0.043, 0.110] [0.003, 0.027] [0.031, 0.071] [0.011, 0.036]

κmc,4 0.018 0.016 0.014 0.014
[0.009, 0.028] [0.005, 0.028] [0.005, 0.025] [0.004, 0.030]

κrp,2 0.026 0.008 0.026 0.006
[0.011, 0.041] [0.002, 0.017] [0.012, 0.041] [0.002, 0.013]

κrp,3 0.047 0.030 0.040 0.028
[0.019, 0.078] [0.008, 0.060] [0.013, 0.074] [0.007, 0.055]

κrp,4 0.040 0.009 0.036 0.007
[0.013, 0.072] [0.002, 0.018] [0.011, 0.065] [0.002, 0.013]

Notes: This table reports the quasi-posterior mean for each reduced-form parameter in the Phillips curves
for the PPI intermediate goods, n = 2, wholesale finished goods, n = 3, and PCE deflator, n = 4. The
results are the cases with the VAR lag length of k = 1. The numbers in square brackets show 95 percent
highest quasi-posterior density interval. The sample period is from 1988:Q1 to 2019:Q4.
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Figure 3: Quasi-posterior distributions of PS-NKPC parameters
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Note: These panels show quasi-posterior distributions for forward-looking PS-NKPC using x̂t with the
VAR lag length of k = 1.

stages are more volatile.

We should note that our models are agnostic about the impact of trend inflation, as

discussed in Gemma, Kurozumi, and Shintani (2023), hence subject to misspecification

issues. In the Appendix B, we perform a small set of additional estimations in which

the two-percent trend inflation for the PCE deflator is considered. A tentative finding

is that considering the trend inflation in the PS-NKPC increases the model fit, but the

estimation bias of the structural parameters is potentially small. Further analysis on the

trend-inflation, such as the one for intermediate goods inflation in the PS-NKPC context,

is warranted and we leave it a future study.
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5 Concluding Remarks

In this paper, we estimate the PS-NKPC taking into account the vertical production

chain from processing material all the way down to the distribution of consumption goods

by retailers. We employ a Bayesian VAR-GMM approach to estimate the PS-NKPC,

and then compare it with the canonical NKPC based on a quasi-marginal likelihood

criterion, which is robust under weakly identified parameters. The analysis indicates

that the PS-NKPC is the better model than the canonical NKPC, suggesting production

chains play an important role in accounting for inflation dynamics. We find that the the

pipeline price pressures, represented by the the relative price terms between upstream

and downstream firms, have a non-negligible impact on the U.S. inflation dynamics.

Some of our results need further exploration. For example, our result raises an issue

that inflation data alone is not effective enough to pin down precisely the value for

the intermediate input shares. In addition, our model does not incorporate important

economic thoughts that would help understanding inflation dynamics, such as those on

trend inflation and expectation formation. These omissions could lead to, for example, an

imprecise comparison between forward-looking and hybrid NKPCs. Since some of these

features can be incorporated by following the methods of existing literature, we expect

future studies will follow these venues.
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A Block Metropolis-Hastings Algorithm in Bayesian

VAR-GMM Estimation

In this appendix, we describe the Block Metropolis-Hastings algorithm to calculate

the quasi-posterior distribution of the parameters in Phillips curves and VAR coefficients.

The algorithm is based on Kurozumi, Oishi, and Van Zandweghe (2022) who set two

blocks, the VAR coefficients and the parameters in Phillips curves. The algorithm takes

the following steps.

Initialization

Let ξnkpc be the Phillips curve parameters, and vec(A) be the VAR coefficient matrix.

Initialize A0 and ΣA,0 at the quasi-posterior mean and variance of the estimated VAR.

Then, initialize ξnkpc,0 at the quasi-posterior mode which is calculated using A0 and Σξ,0 as

the negative of the inverse Hessian of the log quasi-posterior probability density evaluated

at ξnkpc,0,

Σξ,0 = −

 ∂2log(p(ξnkpc, vec(A0) | Y ))

∂ξnkpc∂ξ′nkpc

∣∣∣∣∣
ξnkpc=ξnkpc,0

−1

Block Metropolis-Hastings algorithm

For i = 1 to N :

1. Draw vec(Ã) from a Gaussian proposal distribution with mean vec(Ai−1) and

variance c1ΣA,i−1, where c1 is the scaling parameter to set an acceptance rate as

approximately 25 percent.
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Set Ai = Ã with probability

ψ1,i = min

1,
p
(
ξnkpc,i−1, vec(Ã)

)
| Y )

p (ξnkpc,i−1, vec(Ai−1)) | Y


and Ai = Ai−1 with probability 1− ψ1,i.

2. Then, draw ξ̃nkpc from a Gaussian proposal distribution with mean ξnkpc,i−1 and

variance c2Σξ,i−1, where c2 is the scaling parameter to set an acceptance rate as

approximately 25 percent.

Set ξnkpc,i = ξ̃nkpc with probability

ψ2,i = min

1,
p
(
ξ̃nkpc, vec(Ai)

)
| Y

p (ξnkpc,i−1, vec(Ai)) | Y


and ξnkpc,i = ξnkpc,i−1 with probability 1− ψ2,i.

3. Repeat from step 1 to 2 until i = N where N is the number of total draws including

burn-in to be discarded.
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B Robustness analysis

We estimate small variants of the PS-NKPC in this appendix. The first is using the

U.S. output gap published by the Congressional Budget Office (CBO), instead of using

our Hamilton-filtered consumption gap.

Second, we consider the two-percent trend inflation rate in our PS-NKPC, given that

the Federal Reserve has made it explicit that the inflation of two percent over the longer

run, as measured by the annual change in PCE deflator, is most consistent with their

mandate for maximum employment and price stability. We do so by assuming the

annualized rate of two-percent trend inflation in the PCE deflator, denoted by π̄, and

reformulate the PS-NKPC of the final stage as follows:

πN,t − π̄ = βπ̄Et (πN,t+1 − π̄) + λ̄N (φN g̃N,t + (1− φN)σc̃t)

+ ρ̄NEt

[
∞∑
τ=1

(
βαN π̄

θ−1
)τ

(∆ỹt+τ + θ (πN,t+τ − π̄)− rt+τ )

]
,

where

λ̄N ≡
(
1− αN π̄θ−1

) (
1− βαN π̄θ

)
αN π̄θ−1

,

ρ̄N ≡
(π̄ − 1)

(
1− αN π̄θ−1

)
αN π̄θ−1

,

and where ∆ỹt and rt are the growth rate of the aggregate output in terms of the deviation

from the trend growth and the nominal interest rate respectively.20 As in the case

20 In what follows, the elasticity of substitution, θ, is set to 9.32 following Ascari and Sbordone (2014).
In addition, we assume ∆ỹt = ∆c̃t and give numbers for rt+τ from the outside of the PS-NKPC model,
using a small vector autoregression model. These procedures facilitate the estimation and comparison
with the main result, while reasonably adhering to existing thoughts of macroeconomics.
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Table 6: Additional estimates of Phillips curves for PCE deflator

forward-looking

(1) (2) (3) (4) (5)

gap data c̃t c̃t CBO gap c̃t c̃t

model NKPC PS-NKPC PS-NKPC NKPC PS-NKPC

π̄ zero zero zero two two

QML -80.74 -75.41 -78.06 -80.16 -73.42

parameter

αN
0.899 0.837 0.860 0.863 0.805

[0.874, 0.925] [0.803, 0.877] [0.825, 0.898] [0.831, 0.898] [0.769, 0.848]

φN
0.661 0.562 0.654

[0.470, 0.836] [0.302, 0.807] [0.437, 0.841]

κmc,N 0.017 0.015 0.010 0.016 0.015

or κ̄mc,N [0.009, 0.026] [0.006, 0.026] [0.003, 0.020] [0.006, 0.028] [0.005, 0.028]

κrp,N 0.022 0.013 0.021

or κ̄rp,N [0.010, 0.034] [0.005, 0.023] [0.008, 0.034]

Notes: This table reports the quasi-posterior mean for each parameter in the Phillips curves for the PCE
deflator, the final stage of the production flows, with the VAR lag length of k = 1. The numbers in square
brackets show 95 percent highest quasi-posterior density interval. The sample period is from 1988:Q1 to
2019:Q4.

for the zero-trend-inflation model, we can define the reduced form coefficients for the

two-percent-trend model as κ̄mc,N ≡ λ̄Nφσ and κ̄rp,N ≡ λ̄N (1− φ).

The column (3) shows the result when we use the CBO output gap. The QML does

not improve, and the coefficient on the output gap and relative price are slightly less

potent.

The column (4) and (5) show the case for two-percent trend inflation. The QML

improves, especially for the PS-NKPC model. However, the reduced-form coefficients are

not meaningfully different from the case of zero trend inflation, shown in the column (1)

and (2).
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